openstef 3.4.24__py3-none-any.whl → 3.4.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. openstef/model/regressors/dazls.py +28 -107
  2. openstef/pipeline/create_component_forecast.py +2 -19
  3. {openstef-3.4.24.dist-info → openstef-3.4.25.dist-info}/METADATA +1 -1
  4. {openstef-3.4.24.dist-info → openstef-3.4.25.dist-info}/RECORD +7 -25
  5. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z +0 -0
  6. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z.license +0 -3
  7. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z +0 -0
  8. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z.license +0 -3
  9. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z +0 -0
  10. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z.license +0 -3
  11. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z +0 -0
  12. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z.license +0 -3
  13. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z +0 -2
  14. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z.license +0 -3
  15. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z +0 -0
  16. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z.license +0 -3
  17. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md +0 -14
  18. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md.license +0 -3
  19. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z +0 -0
  20. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z.license +0 -3
  21. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z +0 -0
  22. openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license +0 -3
  23. {openstef-3.4.24.dist-info → openstef-3.4.25.dist-info}/LICENSE +0 -0
  24. {openstef-3.4.24.dist-info → openstef-3.4.25.dist-info}/WHEEL +0 -0
  25. {openstef-3.4.24.dist-info → openstef-3.4.25.dist-info}/top_level.txt +0 -0
@@ -4,65 +4,41 @@
4
4
  """This module defines the DAZL model."""
5
5
  import numpy as np
6
6
  from sklearn.base import BaseEstimator
7
+ from sklearn.compose import TransformedTargetRegressor
8
+ from sklearn.linear_model import LinearRegression
7
9
  from sklearn.metrics import mean_squared_error, r2_score
8
- from sklearn.neighbors import KNeighborsRegressor
10
+ from sklearn.pipeline import Pipeline
9
11
  from sklearn.preprocessing import MinMaxScaler
10
- from sklearn.utils import shuffle
11
12
 
12
13
 
13
14
  class Dazls(BaseEstimator):
14
15
  """DAZLS model.
15
16
 
16
- The model carries out wind and solar power prediction for unseen target substations using training data from
17
- other substations with known components.
18
- This model has two sub-models:
19
-
20
- - domain model : a model taking a set of 'input' features of a substation and make an 'initial' prediction.
21
- Input features can be features such as: weather, geospatial, total load, etc.
22
- These features are always directly related to the components' size in some way.
23
-
24
-
25
- - adaptation model : a model taking a set of 'meta' features of a substation and refines the domain model's
26
- prediction. Next to the features, it is trained on the domain model's predictions.
27
- 'Meta' features are features related to the uncertainty of the data, and include:
28
- variance of the total load, standard deviation of the total load, etc.
29
-
30
- Any data-driven model can be plugged and used as the base for the domain and the adaptation model.
31
-
32
- CAUTION : 'Meta' features should be kept out of the domain model, and vice versa input features should be
33
- kept out the adaptation model.
34
-
35
- For a full reference, see:
36
- Teng, S.Y., van Nooten, C. C., van Doorn, J.M., Ottenbros, A., Huijbregts, M., Jansen, J.J.
37
- Improving Near Real-Time Predictions of Renewable Electricity Production at Substation Level (Submitted)
38
-
39
- Args:
40
- - BaseEstimator (object) : a base model that can be used to carry out predictions.
17
+ The model carries out wind and solar power prediction for unseen target substations using training data from other
18
+ substations with known components.
41
19
 
42
20
  """
43
21
 
22
+ model_: Pipeline
23
+
44
24
  def __init__(self):
45
25
  """Initialize DAZL model."""
46
26
  self.__name__ = "DAZLS"
47
- self.domain_model_scaler = MinMaxScaler(clip=True)
48
- self.adaptation_model_scaler = MinMaxScaler(clip=True)
49
- self.target_scaler = MinMaxScaler(clip=True)
50
- self.domain_model = KNeighborsRegressor(n_neighbors=20, weights="uniform")
51
- self.adaptation_model = KNeighborsRegressor(n_neighbors=20, weights="uniform")
27
+
28
+ regressor = TransformedTargetRegressor(
29
+ regressor=LinearRegression(),
30
+ transformer=MinMaxScaler(clip=True),
31
+ )
32
+
33
+ self.model_ = Pipeline(
34
+ [("scaler", MinMaxScaler(clip=True)), ("regressor", regressor)]
35
+ )
52
36
 
53
37
  # The input columns for the domain and adaptation models (with description)
54
- self.domain_model_input_columns = [
38
+ self.baseline_input_columns = [
55
39
  "radiation", # Weather parameter
56
40
  "windspeed_100m", # Weather parameter
57
- "total_substation", # Substation's measured total load
58
- "lat", # Latitude
59
- "lon", # Longitude
60
- "hour", # Hour of the day
61
- "minute", # Minute of the hour
62
- ]
63
- self.adaptation_model_input_columns = [
64
- "var_total", # Variance of the total load
65
- "sem_total", # Standard Error of the Mean of the total load
41
+ "total_load",
66
42
  ]
67
43
  self.target_columns = ["total_wind_part", "total_solar_part"]
68
44
 
@@ -76,34 +52,15 @@ class Dazls(BaseEstimator):
76
52
  Args:
77
53
  features: inputs for domain and adaptation model (domain_model_input, adaptation_model_input)
78
54
  target: the expected output (y_train)
79
-
80
55
  """
81
- x, x2, y = (
82
- features.loc[:, self.domain_model_input_columns],
83
- features.loc[:, self.adaptation_model_input_columns],
56
+ x, y = (
57
+ features.loc[:, self.baseline_input_columns],
84
58
  target.loc[:, self.target_columns],
85
59
  )
86
- domain_model_input, adaptation_model_input, y_train = shuffle(
87
- x, x2, y, random_state=999
88
- ) # just shuffling
89
-
90
- self.domain_model_scaler.fit(domain_model_input)
91
- self.adaptation_model_scaler.fit(adaptation_model_input)
92
- self.target_scaler.fit(y_train)
93
- domain_model_input = self.domain_model_scaler.transform(domain_model_input)
94
- adaptation_model_input = self.adaptation_model_scaler.transform(
95
- adaptation_model_input
96
- )
97
- y_train = self.target_scaler.transform(y_train)
98
60
 
99
- self.domain_model.fit(domain_model_input, y_train)
100
- domain_model_pred = self.domain_model.predict(domain_model_input)
101
- adaptation_model_input = np.concatenate(
102
- (adaptation_model_input, domain_model_pred), axis=1
103
- )
104
- self.adaptation_model.fit(adaptation_model_input, y_train)
61
+ self.model_.fit(x, y)
105
62
 
106
- def predict(self, x: np.array, return_sub_preds: bool = False):
63
+ def predict(self, x: np.array):
107
64
  """Make a prediction.
108
65
 
109
66
  For the prediction we use the test data x. We use domain_model_input_columns and
@@ -119,41 +76,10 @@ class Dazls(BaseEstimator):
119
76
 
120
77
  Returns:
121
78
  prediction: The output prediction after both models.
122
-
123
79
  """
124
- domain_model_test_data, adaptation_model_test_data = (
125
- x.loc[:, self.domain_model_input_columns],
126
- x.loc[:, self.adaptation_model_input_columns],
127
- )
128
- # Rescale test data for both models (if required)
129
- domain_model_test_data_scaled = self.domain_model_scaler.transform(
130
- domain_model_test_data
131
- )
132
- adaptation_model_test_data_scaled = self.adaptation_model_scaler.transform(
133
- adaptation_model_test_data
134
- )
135
- # Use the scaled data to make domain_model_prediction
136
- domain_model_test_data_pred = self.domain_model.predict(
137
- domain_model_test_data_scaled
138
- )
139
- # Use the domain_model_prediction to make adaptation_model_prediction
140
- adaptation_model_test_data_pred = self.adaptation_model.predict(
141
- np.concatenate(
142
- [adaptation_model_test_data_scaled, domain_model_test_data_pred], axis=1
143
- )
144
- )
145
- # Rescale adaptation_model_prediction (if required)
146
- prediction = self.target_scaler.inverse_transform(
147
- adaptation_model_test_data_pred
148
- )
80
+ model_test_data = x.loc[:, self.baseline_input_columns]
149
81
 
150
- if return_sub_preds:
151
- prediction_domain = self.target_scaler.inverse_transform(
152
- domain_model_test_data_pred
153
- )
154
- return prediction, prediction_domain
155
- else:
156
- return prediction
82
+ return self.model_.predict(model_test_data)
157
83
 
158
84
  def score(self, truth, prediction):
159
85
  """Evaluation of the prediction's output.
@@ -164,7 +90,6 @@ class Dazls(BaseEstimator):
164
90
 
165
91
  Returns:
166
92
  RMSE and R2 scores
167
-
168
93
  """
169
94
  rmse = (mean_squared_error(truth, prediction)) ** 0.5
170
95
  r2_score_value = r2_score(truth, prediction)
@@ -175,17 +100,13 @@ class Dazls(BaseEstimator):
175
100
 
176
101
  Returns:
177
102
  Summary represented by a string
178
-
179
103
  """
180
104
  summary_str = (
181
105
  f"{self.__name__} model summary:\n\n"
182
- f"Domain Model: {self.domain_model} \n"
183
- f"\tInput columns: {self.domain_model_input_columns} \n"
184
- f"\tScaler: {self.domain_model_scaler} \n\n"
185
- f"Adaptation Model: {self.adaptation_model} \n"
186
- f"\tInput columns: {self.adaptation_model_input_columns} \n"
187
- f"\tScaler: {self.adaptation_model_scaler} \n\n"
188
- f"Target columns: {self.target_columns}"
106
+ f"Model: {self.model_} \n"
107
+ f"\tInput columns: {self.baseline_input_columns} \n"
108
+ f"\tScaler: {self.model_['scaler']} \n\n"
109
+ f"\tRegressor: {self.model_['regressor']} \n\n"
189
110
  )
190
111
 
191
112
  return summary_str
@@ -18,7 +18,7 @@ from openstef.settings import Settings
18
18
 
19
19
  # Set the path for the Dazls stored model
20
20
  DAZLS_STORED = str(
21
- PROJECT_ROOT / "openstef" / "data" / "dazls_model_3.4.7" / "dazls_stored_3.4.7_"
21
+ PROJECT_ROOT / "openstef" / "data" / "dazls_model_3.4.24" / "dazls_stored_3.4.24_"
22
22
  )
23
23
 
24
24
 
@@ -113,24 +113,7 @@ def create_components_forecast_pipeline(
113
113
  # Save and load the model as .sav file (or as .z file)
114
114
  # For the code contact: korte.termijn.prognoses@alliander.com
115
115
  dazls_model = Dazls()
116
- dazls_model.domain_model = joblib.load(DAZLS_STORED + "domain_model.z")
117
- dazls_model.domain_model_scaler = joblib.load(
118
- DAZLS_STORED + "domain_model_scaler.z"
119
- )
120
- dazls_model.domain_model_input_columns = joblib.load(
121
- DAZLS_STORED + "domain_model_features.z"
122
- )
123
-
124
- dazls_model.adaptation_model = joblib.load(DAZLS_STORED + "adaptation_model.z")
125
- dazls_model.adaptation_model_scaler = joblib.load(
126
- DAZLS_STORED + "adaptation_model_scaler.z"
127
- )
128
- dazls_model.adaptation_model_input_columns = joblib.load(
129
- DAZLS_STORED + "adaptation_model_features.z"
130
- )
131
-
132
- dazls_model.target_columns = joblib.load(DAZLS_STORED + "target.z")
133
- dazls_model.target_scaler = joblib.load(DAZLS_STORED + "target_scaler.z")
116
+ dazls_model.model_ = joblib.load(DAZLS_STORED + "baseline_model.z")
134
117
 
135
118
  logger.info("DAZLS model loaded", dazls_model=str(dazls_model))
136
119
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.24
3
+ Version: 3.4.25
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -8,24 +8,6 @@ openstef/data/dutch_holidays_2020-2022.csv,sha256=pS-CjE0igYXd-2dG-MlqyvR2fgYgXk
8
8
  openstef/data/dutch_holidays_2020-2022.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
9
9
  openstef/data/pv_single_coefs.csv,sha256=jadIEYdHvl1lnV_06X_FASkJZ6C3Hecs5xZnH1gPMvI,24779
10
10
  openstef/data/pv_single_coefs.csv.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
11
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z,sha256=BRtD0Wr9DmMJypYxdWOY2xHFe_tg0-Jz9nnlInvswHM,29609700
12
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
13
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z,sha256=J9mF1mqfVwrZoyzJ8VoWPehKIoGtRakfe1a1m5lZt5I,88
14
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_features.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
15
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z,sha256=qukM4z9nZBi_70-1Y5RXpB2tEOwt8oI3KlDVkhnpnVM,879
16
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_adaptation_model_scaler.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
17
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z,sha256=Sissl8ax7pm7Y3zWeoE350GTC3-Dl6iAEQl5_zbZe7g,32608923
18
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
19
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z,sha256=UUwyRZcUl4S884R86bL-8g9llaDHINmW5-WRoMJF0Do,123
20
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_features.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
21
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z,sha256=MddERJN1LmFrgSgzEnIxrpvbL8-dn4iLsyCMXBQDs8o,1173
22
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_domain_model_scaler.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
23
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md,sha256=HwYMHaYLqIZbxKbZEDVstp30P0VENLRdlVQJnmFxFqo,534
24
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_model_card.md.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
25
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z,sha256=7GkwwyQPJosqmGa0LslpfYIf8qgLDMW9Krx8CM_YO10,40
26
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
27
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z,sha256=HFldCZItBFxDkFrtg36RS-zyrHHGKOILXya-_hmluYM,686
28
- openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license,sha256=AxxHusqwIXU5RHl5ZMU65LyXmgtbj6QlcnFaOEN4kEE,145
29
11
  openstef/data_classes/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
30
12
  openstef/data_classes/data_prep.py,sha256=gRSL7UiHvZis8m8z7VoTCZc0Ccffhef5_hmSyApnqK0,3417
31
13
  openstef/data_classes/model_specifications.py,sha256=Uod1W3QzhRqVLb6zvXwxh9wRL3EHCzSvX0oDNd28cFk,1197
@@ -60,7 +42,7 @@ openstef/model/metamodels/missing_values_handler.py,sha256=veyvYZHhKvlYZxaUpxRQ7
60
42
  openstef/model/regressors/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
61
43
  openstef/model/regressors/arima.py,sha256=wt7FVykjSvljpl7vjtliq61SiyjQ7KKtw8PF9x0xf04,7587
62
44
  openstef/model/regressors/custom_regressor.py,sha256=Hsmxahc9nfSWD0aEZ6cm4pxW2noQ8B1SujS17_fmxcU,1768
63
- openstef/model/regressors/dazls.py,sha256=cCYFewJEv3Fn01wdZpaKNSiYmEwzuED7PQrrWzwyTEg,8084
45
+ openstef/model/regressors/dazls.py,sha256=dQMx11kfMZCl4K61n8Dug2CyBhjlmiw3-ilv7KmowqM,3990
64
46
  openstef/model/regressors/lgbm.py,sha256=zCdn1euEdSFxYJzH8XqQFFnb6R4JVUnmineKjX_Gy-g,800
65
47
  openstef/model/regressors/linear.py,sha256=uOvZMLGZH_9nXfmS5honCMfyVeyGXP1Cza9A_BdXlVw,3665
66
48
  openstef/model/regressors/linear_quantile.py,sha256=N-cia8aba39Th6BzOdtcESLuxhY9YtSGaOYIc6STgag,7830
@@ -75,7 +57,7 @@ openstef/monitoring/performance_meter.py,sha256=6aCGjJFXFq-7qwaJyBkF3MLqjgVK6FMF
75
57
  openstef/monitoring/teams.py,sha256=A-tlZeuAgolxFHjgT3gGjraxzW2dmuB-UAOz4xgYNIQ,6668
76
58
  openstef/pipeline/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
77
59
  openstef/pipeline/create_basecase_forecast.py,sha256=YkpiqohETTAETb4GiVlK_btw5dpixJy2LmFZdm10iaI,4623
78
- openstef/pipeline/create_component_forecast.py,sha256=A0dmILy_BuAAf2U_9i2FOj6KItIdZdGzi6hNDk-da4Q,6416
60
+ openstef/pipeline/create_component_forecast.py,sha256=XlE9oo37qwmZPE2Dgg19CDfFPRKgrLuyW069pS035UQ,5668
79
61
  openstef/pipeline/create_forecast.py,sha256=F09civdIumNQwJq2hraea5QTQx7DgvEliXKs4Y3f8Mc,5689
80
62
  openstef/pipeline/optimize_hyperparameters.py,sha256=3SLkcLR7XC4IeN48C-XT_lxlfCqW_D0NoMpZcrB9UUM,11045
81
63
  openstef/pipeline/train_create_forecast_backtest.py,sha256=-kZqCWal5zYLL0k0Sapks1zTmU5unNAooVPaPos1_7E,6050
@@ -101,8 +83,8 @@ openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCt
101
83
  openstef/tasks/utils/taskcontext.py,sha256=L9K14ycwgVxbIVUjH2DIn_QWbnu-OfxcGtQ1K9T6sus,5630
102
84
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
103
85
  openstef/validation/validation.py,sha256=628xaDbAm8B4AYtFOAn8_SXLjejNfULGCfX3hVf_mU0,11119
104
- openstef-3.4.24.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
105
- openstef-3.4.24.dist-info/METADATA,sha256=KC5hcMlnzoZQBzCkGGsTBMP4tjrPOywHGhbQa4ZfkiI,7394
106
- openstef-3.4.24.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
107
- openstef-3.4.24.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
108
- openstef-3.4.24.dist-info/RECORD,,
86
+ openstef-3.4.25.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
87
+ openstef-3.4.25.dist-info/METADATA,sha256=RahtAo0FrqIzmTJhj7dvqCRL53PlDod_bUGASwLxnKU,7394
88
+ openstef-3.4.25.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
89
+ openstef-3.4.25.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
90
+ openstef-3.4.25.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,2 +0,0 @@
1
- x^%�;
2
- �0DS����#U�}� $c��
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,14 +0,0 @@
1
- "
2
- # Model details : dazls_model_test_eval
3
-
4
- ## Description
5
- **Model Name**: dazls_model_test_eval
6
- **Author**: KTP, Alliander
7
- **Model type**: Energy splitting model
8
- **Model Architecture**: KNeighestNeighbours
9
- **Date**: 2024-01-31
10
-
11
- ## Intended use
12
- This is a DAZLs model aimed at determining the energy splits for substations.
13
- Each of these splits are determined based on a set of features that are available in production,
14
- and in this case have their origin in the Dutch energy grid.
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0
@@ -1,3 +0,0 @@
1
- SPDX-FileCopyrightText: 2017-2023 Contributors to the OpenSTEF project <korte.termijn.prognoses@alliander.com>
2
-
3
- SPDX-License-Identifier: MPL-2.0