openstef 3.4.13__py3-none-any.whl → 3.4.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -40,14 +40,14 @@ class PredictionJobDataClass(BaseModel):
40
40
  If unsure what to pick, choose ``"demand"``.
41
41
 
42
42
  """
43
- horizon_minutes: int = 2880
44
- """The horizon of the desired forecast in minutes. Defaults to 2880 minutes (i.e. 2 days)."""
43
+ horizon_minutes: Optional[int] = 2880
44
+ """The horizon of the desired forecast in minutes used in tasks. Defaults to 2880 minutes (i.e. 2 days)."""
45
45
  resolution_minutes: int
46
46
  """The resolution of the desired forecast in minutes."""
47
- lat: float
48
- """Latitude of the forecasted location in degrees."""
49
- lon: float
50
- """Longitude of the forecasted location in degrees."""
47
+ lat: Optional[float] = 52.132633
48
+ """Latitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
49
+ lon: Optional[float] = 5.291266
50
+ """Longitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
51
51
  name: str
52
52
  """Name of the forecast, e.g. the location name."""
53
53
  train_components: Optional[bool]
@@ -71,6 +71,9 @@ def plot_data_series(
71
71
  Returns:
72
72
  A line plot of each passed data series.
73
73
 
74
+ Raises:
75
+ ValueError: If names is None and the number of series is greater than 3.
76
+
74
77
  """
75
78
  series_names = {
76
79
  1: ("series",),
@@ -25,6 +25,9 @@ def get_eval_metric_function(metric_name: str) -> Callable:
25
25
  Returns:
26
26
  Function to calculate the metric.
27
27
 
28
+ Raises:
29
+ KeyError: If the metric is not available.
30
+
28
31
  """
29
32
  evaluation_function = {
30
33
  "rmse": rmse,
@@ -130,6 +133,9 @@ def r_mae_highest(
130
133
 
131
134
  The range is based on the load range of the previous two weeks.
132
135
 
136
+ Raises:
137
+ ValueError: If the length of the realised and forecast arrays are not equal.
138
+
133
139
  """
134
140
  # Check if length of both arrays is equal
135
141
  if len(np.array(realised)) != len(np.array(forecast)):
@@ -395,7 +401,7 @@ def xgb_quantile_obj(
395
401
  Args:
396
402
  preds: numpy.ndarray
397
403
  dmatrix: xgboost.DMatrix
398
- quantile: float
404
+ quantile: float between 0 and 1
399
405
 
400
406
  Returns:
401
407
  Gradient and Hessian
@@ -74,6 +74,9 @@ class ConfidenceIntervalApplicator:
74
74
  Forecast with added standard deviation. DataFrame with columns:
75
75
  "forecast", "stdev"
76
76
 
77
+ Raises:
78
+ ModelWithoutStDev: If the model does not have a valid standard deviation.
79
+
77
80
  """
78
81
  minimal_resolution: int = 15 # Minimal time resolution in minutes
79
82
  standard_deviation = self.model.standard_deviation
@@ -52,6 +52,9 @@ class XGBQuantileOpenstfRegressor(OpenstfRegressor):
52
52
  alpha: Alpha
53
53
  max_delta_step: Maximum delta step
54
54
 
55
+ Raises:
56
+ ValueError in case quantile 0.5 is not in the requested quantiles
57
+
55
58
  """
56
59
  super().__init__()
57
60
  # Check if quantile 0.5 is pressent this is required
@@ -147,6 +147,9 @@ class MLflowSerializer:
147
147
  Args:
148
148
  experiment_name: Name of the experiment, often the id of the predition job.
149
149
 
150
+ Raises:
151
+ LookupError: If model is not found in MLflow.
152
+
150
153
  """
151
154
  try:
152
155
  models_df = self._find_models(
@@ -140,6 +140,9 @@ def split_data_train_validation_test(
140
140
  - Validation data.
141
141
  - Test data.
142
142
 
143
+ Raises:
144
+ ValueError: When the test and validation fractions are too high.
145
+
143
146
  """
144
147
  test_fraction = test_fraction if back_test else 0
145
148
  train_fraction = 1 - (test_fraction + validation_fraction)
@@ -38,6 +38,9 @@ def create_basecase_forecast_pipeline(
38
38
  Returns:
39
39
  Base case forecast
40
40
 
41
+ Raises:
42
+ NoRealisedLoadError: When no realised load for given datetime range.
43
+
41
44
  """
42
45
  logger = structlog.get_logger(__name__)
43
46
 
@@ -40,6 +40,10 @@ def create_forecast_pipeline(
40
40
  Returns:
41
41
  DataFrame with the forecast
42
42
 
43
+ Raises:
44
+ InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
45
+ LookupError: When no model is found for the given prediction job in MLflow.
46
+
43
47
  """
44
48
  prediction_model_pid = pj["id"]
45
49
  # Use the alternative forecast model if it's specify in the pj
@@ -64,7 +68,7 @@ def create_forecast_pipeline_core(
64
68
  Computes the forecasts and confidence intervals given a prediction job and input data.
65
69
  This pipeline has no database or persisitent storage dependencies.
66
70
 
67
- Expected prediction job keys: "resolution_minutes", "horizon_minutes", "id", "type",
71
+ Expected prediction job keys: "resolution_minutes", "id", "type",
68
72
  "name", "quantiles"
69
73
 
70
74
  Args:
@@ -76,6 +80,9 @@ def create_forecast_pipeline_core(
76
80
  Returns:
77
81
  Forecast
78
82
 
83
+ Raises:
84
+ InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
85
+
79
86
  """
80
87
  logger = structlog.get_logger(__name__)
81
88
 
@@ -59,6 +59,9 @@ def optimize_hyperparameters_pipeline(
59
59
 
60
60
  Raises:
61
61
  ValueError: If the input_date is insufficient.
62
+ InputDataInsufficientError: If the input dataframe is empty.
63
+ InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
64
+ OldModelHigherScoreError: When old model is better than new model.
62
65
 
63
66
  Returns:
64
67
  Optimized hyperparameters.
@@ -119,6 +122,10 @@ def optimize_hyperparameters_pipeline_core(
119
122
 
120
123
  Raises:
121
124
  ValueError: If the input_date is insufficient.
125
+ InputDataInsufficientError: If the input dataframe is empty.
126
+ InputDataWrongColumnOrderError: If the load column is missing in the input dataframe.
127
+ OldModelHigherScoreError: When old model is better than new model.
128
+ InputDataOngoingZeroFlatlinerError: When all recent load measurements are zero.
122
129
 
123
130
  Returns:
124
131
  - Best model,
@@ -56,6 +56,11 @@ def train_model_and_forecast_back_test(
56
56
  - Validation data sets (list[pd.DataFrame])
57
57
  - Test data sets (list[pd.DataFrame])
58
58
 
59
+ Raises:
60
+ InputDataInsufficientError: when input data is insufficient.
61
+ InputDataWrongColumnOrderError: when input data has a invalid column order.
62
+ ValueError: when the horizon is a string and the corresponding column in not in the input data
63
+ InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
59
64
  """
60
65
  if pj.backtest_split_func is None:
61
66
  backtest_split_func = backtest_split_default
@@ -124,6 +129,9 @@ def train_model_and_forecast_test_core(
124
129
  - The trained model
125
130
  - The forecast on the test set.
126
131
 
132
+ Raises:
133
+ NotImplementedError: When using invalid model type in the prediction job.
134
+ InputDataWrongColumnOrderError: When 'load' column is not first and 'horizon' column is not last.
127
135
  """
128
136
  model = train_model.train_pipeline_step_train_model(
129
137
  pj, modelspecs, train_data, validation_data
@@ -60,6 +60,13 @@ def train_model_pipeline(
60
60
  - The validation dataset with forecasts
61
61
  - The test dataset with forecasts
62
62
 
63
+ Raises:
64
+ InputDataInsufficientError: when input data is insufficient.
65
+ InputDataWrongColumnOrderError: when input data has a invalid column order.
66
+ 'load' column should be first and 'horizon' column last.
67
+ OldModelHigherScoreError: When old model is better than new model.
68
+ SkipSaveTrainingForecasts: If old model is better or younger than `MAXIMUM_MODEL_AGE`, the model is not saved.
69
+
63
70
  """
64
71
  # Initialize serializer
65
72
  serializer = MLflowSerializer(mlflow_tracking_uri=mlflow_tracking_uri)
@@ -164,6 +171,7 @@ def train_model_pipeline_core(
164
171
  InputDataInsufficientError: when input data is insufficient.
165
172
  InputDataWrongColumnOrderError: when input data has a invalid column order.
166
173
  OldModelHigherScoreError: When old model is better than new model.
174
+ InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
167
175
 
168
176
  Returns:
169
177
  - Fitted_model (OpenstfRegressor)
@@ -257,6 +265,8 @@ def train_pipeline_common(
257
265
  Raises:
258
266
  InputDataInsufficientError: when input data is insufficient.
259
267
  InputDataWrongColumnOrderError: when input data has a invalid column order.
268
+ 'load' column should be first and 'horizon' column last.
269
+ InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
260
270
 
261
271
  """
262
272
  data_with_features = train_pipeline_step_compute_features(
@@ -346,6 +356,7 @@ def train_pipeline_step_compute_features(
346
356
  InputDataInsufficientError: when input data is insufficient.
347
357
  InputDataWrongColumnOrderError: when input data has a invalid column order.
348
358
  ValueError: when the horizon is a string and the corresponding column in not in the input data
359
+ InputDataOngoingZeroFlatlinerError: when all recent load measurements are zero.
349
360
 
350
361
  """
351
362
  if input_data.empty:
@@ -419,6 +430,10 @@ def train_pipeline_step_train_model(
419
430
  Returns:
420
431
  The trained model
421
432
 
433
+ Raises:
434
+ NotImplementedError: When using invalid model type in the prediction job.
435
+ InputDataWrongColumnOrderError: When 'load' column is not first and 'horizon' column is not last.
436
+
422
437
  """
423
438
  # Test if first column is "load" and last column is "horizon"
424
439
  if train_data.columns[0] != "load" or train_data.columns[-1] != "horizon":
@@ -27,6 +27,9 @@ def generate_forecast_datetime_range(
27
27
  Returns:
28
28
  Start and end datetimes of the forecast range.
29
29
 
30
+ Raises:
31
+ ValueError: If the target column does not have null values.
32
+
30
33
  """
31
34
  # By labeling the True/False values (based on the isnull() statement) as clusters,
32
35
  # we find what True value belongs to what cluster and the amount of True clusters.
@@ -51,6 +51,10 @@ def create_components_forecast_task(
51
51
  pj: Prediction job
52
52
  context: Contect object that holds a config manager and a database connection
53
53
 
54
+ Raises:
55
+ ComponentForecastTooShortHorizonError: If the forecast horizon is too short
56
+ (less than 30 minutes in advance)
57
+
54
58
  """
55
59
  logger = structlog.get_logger(__name__)
56
60
  if pj["train_components"] == 0:
@@ -65,6 +65,10 @@ def train_model_task(
65
65
  datetime_start: Start
66
66
  datetime_end: End
67
67
 
68
+ Raises:
69
+ SkipSaveTrainingForecasts: If old model is better or too young, you don't need to save the traing forcast.
70
+ InputDataOngoingZeroFlatlinerError: If all recent load measurements are zero.
71
+
68
72
  """
69
73
  # Check pipeline types
70
74
  if PipelineType.TRAIN not in pj.pipelines_to_run:
@@ -37,6 +37,9 @@ def validate(
37
37
  Returns:
38
38
  Dataframe where repeated values are set to None
39
39
 
40
+ Raises:
41
+ InputDataOngoingZeroFlatlinerError: If all recent load measurements are zero.
42
+
40
43
  """
41
44
  logger = structlog.get_logger(__name__)
42
45
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.13
3
+ Version: 3.4.15
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -58,6 +58,7 @@ SPDX-License-Identifier: MPL-2.0
58
58
  [![Downloads](https://static.pepy.tech/badge/openstef/month)](https://pepy.tech/project/openstef)
59
59
 
60
60
  # OpenSTEF
61
+
61
62
  OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
62
63
 
63
64
  # Table of contents
@@ -27,7 +27,7 @@ openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license,sha25
27
27
  openstef/data_classes/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
28
28
  openstef/data_classes/data_prep.py,sha256=3SLvHDXlL-fBw8IFGBP_pKXTfWjQsKjgVxDyYlgic1o,3417
29
29
  openstef/data_classes/model_specifications.py,sha256=Uod1W3QzhRqVLb6zvXwxh9wRL3EHCzSvX0oDNd28cFk,1197
30
- openstef/data_classes/prediction_job.py,sha256=N2iD1B3LlnBAhvQaLJxIKe6K_0iWpTG0Qt6gHq5Vn6o,4789
30
+ openstef/data_classes/prediction_job.py,sha256=zlbaDphMSYXxArN_kI4G2ZTjw3-VDcCZDSoUoTunvCU,5048
31
31
  openstef/data_classes/split_function.py,sha256=ljQIQQu1t1Y_CVWGAy25jrM6wG9odIVVQVimrT1n-1s,3358
32
32
  openstef/feature_engineering/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
33
33
  openstef/feature_engineering/apply_features.py,sha256=-3fyisOVj9ckIkRe2iYfWutbXSX8iqBkcvt8AYr-gmE,3906
@@ -39,17 +39,17 @@ openstef/feature_engineering/holiday_features.py,sha256=3Ff4Lkm26h8wJVoBplUewt4H
39
39
  openstef/feature_engineering/lag_features.py,sha256=Dr6qS8UhdgEHPZZSe-w6ibtjl_lcbcQohhqdZN9fqEU,5652
40
40
  openstef/feature_engineering/weather_features.py,sha256=wy3KFXUIIwSydFJZpiejsJMwURtDpv9l0HBHu-uLAGQ,15561
41
41
  openstef/metrics/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
42
- openstef/metrics/figure.py,sha256=NPJGI4FygjSnOQuL8qCbB87-T31q6EkewkbVmpLwmnk,9657
43
- openstef/metrics/metrics.py,sha256=c6HGQubArT5G4YxF0KY9HCP19PRHaVfXQ8KEkSwrt0w,13164
42
+ openstef/metrics/figure.py,sha256=KDoezYem9wdS13kUx7M7FOy-4u88Sg3OX1DuhNT6kgQ,9751
43
+ openstef/metrics/metrics.py,sha256=t2BIqflvmwzfa6UqS5jpAtNvailpDgD0J09bxjvGlMc,13341
44
44
  openstef/metrics/reporter.py,sha256=V6pa4IUOzVcZ8OY632g5KoF8hr2MT2ySexrjZCjnuwY,7668
45
45
  openstef/model/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
46
46
  openstef/model/basecase.py,sha256=caI6Q-8y0ymlxGK9Js_H3Vh0q6ruNHlGD5RG0_kE5M0,2878
47
- openstef/model/confidence_interval_applicator.py,sha256=7E1_JFLZ4-hyEhleacMvp5szdmYZS4tpKAjfhGvXXvg,8602
47
+ openstef/model/confidence_interval_applicator.py,sha256=SXUVCnKrhc7lygWqerkBx4eG4tNeLgNEUz-WPqB4Mng,8705
48
48
  openstef/model/fallback.py,sha256=VV9ehgnoMZtWzqKk9H1t8wnERFh5CyC4TvDIuRP_ZDI,2861
49
49
  openstef/model/model_creator.py,sha256=uDLn5fte8nGmxMOGA2xvTkeyslaA4kATuu-w1QOI4FI,4790
50
50
  openstef/model/objective.py,sha256=eqNBYGfhEVGegOm0PbizowuFImKblRqHgxkp9lgaKQc,13500
51
51
  openstef/model/objective_creator.py,sha256=QxHolw60aSvqSKO6VO-uDslwg3VC_T4BZ2cm-sy7E3U,1970
52
- openstef/model/serializer.py,sha256=Q7pKkA-K1bszER_tkOWhvwTQsj6-qZoX5zaXIemRKGs,16934
52
+ openstef/model/serializer.py,sha256=SGhhk-NU-J8khRwDqeBnO3wywS193XrkYRe7WFkfiMU,17009
53
53
  openstef/model/standard_deviation_generator.py,sha256=Od9bzXi2TLb1v8Nz-VhBMZHSopWH6ssaDe8gYLlqO1I,2911
54
54
  openstef/model/metamodels/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
55
55
  openstef/model/metamodels/grouped_regressor.py,sha256=yMN_a6TnQSyFaqlB_6Nifq-ydpb5hs6w_b97IaBbHj4,8337
@@ -62,20 +62,20 @@ openstef/model/regressors/lgbm.py,sha256=zCdn1euEdSFxYJzH8XqQFFnb6R4JVUnmineKjX_
62
62
  openstef/model/regressors/linear.py,sha256=uOvZMLGZH_9nXfmS5honCMfyVeyGXP1Cza9A_BdXlVw,3665
63
63
  openstef/model/regressors/regressor.py,sha256=uJcx59AyCPE9f_yPcAQ59h2ZS7eNsDpIHJrladKvHIw,3461
64
64
  openstef/model/regressors/xgb.py,sha256=HggA1U10srzdysjV560BMMX66kfaxCKAnOZB3JyyT_Y,808
65
- openstef/model/regressors/xgb_quantile.py,sha256=Oenhe0cMLAEXlinHZF588zNTjwR-hB7NB0anQZPwPKU,7710
65
+ openstef/model/regressors/xgb_quantile.py,sha256=PzKIxqN_CnEPFmzXACNuzLSmZSHbooTuiJ5ckJ9vh_E,7805
66
66
  openstef/model_selection/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
67
- openstef/model_selection/model_selection.py,sha256=oGloQBP_FPdNyCs9wzS3l8zFNJxMs1P5XPjVN9qUOsw,11081
67
+ openstef/model_selection/model_selection.py,sha256=R34tJBecZo6IiUwCCRLeBI2ZCX6GP8W7FDBlGFWtmG8,11167
68
68
  openstef/monitoring/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
69
69
  openstef/monitoring/performance_meter.py,sha256=mMQKpDNv_-RcNYdEvEFPvB76lkG8V9gJOKYQqnH5BX4,2851
70
70
  openstef/monitoring/teams.py,sha256=fnZScPD55z9yC0q3YavWj40GEZmL7tsSGhWzG_sMPws,6401
71
71
  openstef/pipeline/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
72
- openstef/pipeline/create_basecase_forecast.py,sha256=7jig8lt-e3xwIWDSk-bMwUC45y2mwKe9-zDZYHiiQMY,4324
72
+ openstef/pipeline/create_basecase_forecast.py,sha256=Ia-no3UZcT5NSef4YMDjFD_SRCmbAxHRF0Iql3IWcUU,4414
73
73
  openstef/pipeline/create_component_forecast.py,sha256=ksX5r7H5IrMrfPVuRK0OWOtsdns1Rrn1L9ZG0Si0TI4,6255
74
- openstef/pipeline/create_forecast.py,sha256=El9xXKN8DeIADy_76-V22wBY8AMSa4KEfYuW00jw85k,5083
75
- openstef/pipeline/optimize_hyperparameters.py,sha256=QlM_TN2sVelfrYFqZfy-gkRJMlt4j3fr65HvcEGhdac,10272
76
- openstef/pipeline/train_create_forecast_backtest.py,sha256=QkkpccW4BW0TC5uq22_juTcp8uvPZ4Qk-ewdnlYpNTE,5492
77
- openstef/pipeline/train_model.py,sha256=ELIHkGjzvIdV4V7IMiy8tw7A_wc1QJ7eXY_rPXOgytU,18533
78
- openstef/pipeline/utils.py,sha256=fkc-oNirJ-JiyuOAL08RFrnPYPwudWal_N-BO6Cw980,2086
74
+ openstef/pipeline/create_forecast.py,sha256=bE1gTSP-HAjFSt-Xdoiy5BxDIo7lYq-Z-gvU7zFrRfw,5350
75
+ openstef/pipeline/optimize_hyperparameters.py,sha256=fCa_aHz0cVt53DL3KXRSHH3X4lHUg1eoXgFzlCwaGpI,10836
76
+ openstef/pipeline/train_create_forecast_backtest.py,sha256=7uNeY8dKtJLha_LkwroyU76oB54R9p3zRlTJAJj4OoI,6048
77
+ openstef/pipeline/train_model.py,sha256=LWvqANH8fpo8blwQ8Rgc1Z7EXvmZC0vTYwaOvSbr7qM,19496
78
+ openstef/pipeline/utils.py,sha256=23mB31p19FoGWelLJzxNmqlzGwEr3fCDBEA37V2kpYY,2167
79
79
  openstef/postprocessing/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
80
80
  openstef/postprocessing/postprocessing.py,sha256=nehd0tDpkdIaWFJggQ-fDizIKdfmqJ3IOGfk0sDnrzk,8409
81
81
  openstef/preprocessing/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
@@ -83,22 +83,22 @@ openstef/preprocessing/preprocessing.py,sha256=bM_cSSSb2vGTD79RGzUrI6KoELbzlCyJw
83
83
  openstef/tasks/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
84
84
  openstef/tasks/calculate_kpi.py,sha256=pC8CJ0UqhySpVVewMN0GIe0ELEmYOf1Wc9xElUe0Q5M,11985
85
85
  openstef/tasks/create_basecase_forecast.py,sha256=Hk9fDljXvo5TfeS3nWHrerWi7y-lQzoJEaqWbqaxHOs,3852
86
- openstef/tasks/create_components_forecast.py,sha256=zLJQ-5w-L3sqxkGw6KaaXVkmzLqjLJoU5mT6QtvkME0,5520
86
+ openstef/tasks/create_components_forecast.py,sha256=65CDYjX7wU0EBmEYa3yiODIUf2Ged83Sw3Px_4MdVE4,5660
87
87
  openstef/tasks/create_forecast.py,sha256=FPILsCqt2lT2QIjseXyKjViZG6SVRoGCxoj9tPiozIg,5575
88
88
  openstef/tasks/create_solar_forecast.py,sha256=bTr7NThTF6Yj405qAqRaJmlBUrL7HATqVVzsi9hMdMw,15049
89
89
  openstef/tasks/create_wind_forecast.py,sha256=RhshkmNSyFWx4Y6yQn02GzHjWTREbN5A5GAeWv0JpcE,2907
90
90
  openstef/tasks/optimize_hyperparameters.py,sha256=s-z8YQJF6Lf3DdYgKHEpAdlbFJ3a-0Gj0Ahsqj1DErc,4758
91
91
  openstef/tasks/run_tracy.py,sha256=mWRg5u74iSaUGHRQzIa-2Weyg6ChuW5w3JBL-7MrNBc,5036
92
92
  openstef/tasks/split_forecast.py,sha256=hBRoIlZ_DK4747EtMpY-HVh_tmTdGa65oYOtrjHRUxQ,9118
93
- openstef/tasks/train_model.py,sha256=-6JzNQIDdBC6j-nrp10KF_eFkTjkadcOGS5S5iG-JXM,7263
93
+ openstef/tasks/train_model.py,sha256=6hJpChfNkhPcfPpbTzCYNwJCc0rCCsu5Hcei7HNyDQo,7477
94
94
  openstef/tasks/utils/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
95
95
  openstef/tasks/utils/dependencies.py,sha256=Jy9dtV_G7lTEa5Cdy--wvMxJuAb0adb3R0X4QDjVteM,3077
96
96
  openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCtwSPihqMjnI5Q,9580
97
97
  openstef/tasks/utils/taskcontext.py,sha256=yI6TntOkZcW8JiNVuw4uJIigEBL0_iIrkPklF4ZeCX4,5401
98
98
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
99
- openstef/validation/validation.py,sha256=SaI-Mff9UOHQPnQ2jodXzZAVZilc-2AXZsPpSjDRqAg,10346
100
- openstef-3.4.13.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
- openstef-3.4.13.dist-info/METADATA,sha256=l5HsBWQbm_94pKxUsJxpOW6QAUBGw2Dd-z3_sdDxDWM,8124
102
- openstef-3.4.13.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
103
- openstef-3.4.13.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
- openstef-3.4.13.dist-info/RECORD,,
99
+ openstef/validation/validation.py,sha256=CCIv-HtiC5ot6IoV5Egei7g-5EhNuCmAQO4a2javd_c,10445
100
+ openstef-3.4.15.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
+ openstef-3.4.15.dist-info/METADATA,sha256=42tKnscPxvtTCHRUvmUvbJ7PeUGSAJRihW3rSxpAzhg,8125
102
+ openstef-3.4.15.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
103
+ openstef-3.4.15.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
+ openstef-3.4.15.dist-info/RECORD,,