openstef 3.4.13__py3-none-any.whl → 3.4.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -40,14 +40,14 @@ class PredictionJobDataClass(BaseModel):
40
40
  If unsure what to pick, choose ``"demand"``.
41
41
 
42
42
  """
43
- horizon_minutes: int = 2880
44
- """The horizon of the desired forecast in minutes. Defaults to 2880 minutes (i.e. 2 days)."""
43
+ horizon_minutes: Optional[int] = 2880
44
+ """The horizon of the desired forecast in minutes used in tasks. Defaults to 2880 minutes (i.e. 2 days)."""
45
45
  resolution_minutes: int
46
46
  """The resolution of the desired forecast in minutes."""
47
- lat: float
48
- """Latitude of the forecasted location in degrees."""
49
- lon: float
50
- """Longitude of the forecasted location in degrees."""
47
+ lat: Optional[float] = 52.132633
48
+ """Latitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
49
+ lon: Optional[float] = 5.291266
50
+ """Longitude of the forecasted location in degrees. Used for fetching weather data in tasks, calculating derrived features and component splitting."""
51
51
  name: str
52
52
  """Name of the forecast, e.g. the location name."""
53
53
  train_components: Optional[bool]
@@ -64,7 +64,7 @@ def create_forecast_pipeline_core(
64
64
  Computes the forecasts and confidence intervals given a prediction job and input data.
65
65
  This pipeline has no database or persisitent storage dependencies.
66
66
 
67
- Expected prediction job keys: "resolution_minutes", "horizon_minutes", "id", "type",
67
+ Expected prediction job keys: "resolution_minutes", "id", "type",
68
68
  "name", "quantiles"
69
69
 
70
70
  Args:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openstef
3
- Version: 3.4.13
3
+ Version: 3.4.14
4
4
  Summary: Open short term energy forecaster
5
5
  Home-page: https://github.com/OpenSTEF/openstef
6
6
  Author: Alliander N.V
@@ -58,6 +58,7 @@ SPDX-License-Identifier: MPL-2.0
58
58
  [![Downloads](https://static.pepy.tech/badge/openstef/month)](https://pepy.tech/project/openstef)
59
59
 
60
60
  # OpenSTEF
61
+
61
62
  OpenSTEF is a Python package designed for generating short-term forecasts in the energy sector. The repository includes all the essential components required for machine learning pipelines that facilitate the forecasting process. To utilize the package, users are required to furnish their own data storage and retrieval interface.
62
63
 
63
64
  # Table of contents
@@ -27,7 +27,7 @@ openstef/data/dazls_model_3.4.7/dazls_stored_3.4.7_target_scaler.z.license,sha25
27
27
  openstef/data_classes/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
28
28
  openstef/data_classes/data_prep.py,sha256=3SLvHDXlL-fBw8IFGBP_pKXTfWjQsKjgVxDyYlgic1o,3417
29
29
  openstef/data_classes/model_specifications.py,sha256=Uod1W3QzhRqVLb6zvXwxh9wRL3EHCzSvX0oDNd28cFk,1197
30
- openstef/data_classes/prediction_job.py,sha256=N2iD1B3LlnBAhvQaLJxIKe6K_0iWpTG0Qt6gHq5Vn6o,4789
30
+ openstef/data_classes/prediction_job.py,sha256=zlbaDphMSYXxArN_kI4G2ZTjw3-VDcCZDSoUoTunvCU,5048
31
31
  openstef/data_classes/split_function.py,sha256=ljQIQQu1t1Y_CVWGAy25jrM6wG9odIVVQVimrT1n-1s,3358
32
32
  openstef/feature_engineering/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
33
33
  openstef/feature_engineering/apply_features.py,sha256=-3fyisOVj9ckIkRe2iYfWutbXSX8iqBkcvt8AYr-gmE,3906
@@ -71,7 +71,7 @@ openstef/monitoring/teams.py,sha256=fnZScPD55z9yC0q3YavWj40GEZmL7tsSGhWzG_sMPws,
71
71
  openstef/pipeline/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
72
72
  openstef/pipeline/create_basecase_forecast.py,sha256=7jig8lt-e3xwIWDSk-bMwUC45y2mwKe9-zDZYHiiQMY,4324
73
73
  openstef/pipeline/create_component_forecast.py,sha256=ksX5r7H5IrMrfPVuRK0OWOtsdns1Rrn1L9ZG0Si0TI4,6255
74
- openstef/pipeline/create_forecast.py,sha256=El9xXKN8DeIADy_76-V22wBY8AMSa4KEfYuW00jw85k,5083
74
+ openstef/pipeline/create_forecast.py,sha256=Zoa4I6zoIR_vEcVepcy6RRw7Mn2nMZfH8qFcqiFLL9o,5064
75
75
  openstef/pipeline/optimize_hyperparameters.py,sha256=QlM_TN2sVelfrYFqZfy-gkRJMlt4j3fr65HvcEGhdac,10272
76
76
  openstef/pipeline/train_create_forecast_backtest.py,sha256=QkkpccW4BW0TC5uq22_juTcp8uvPZ4Qk-ewdnlYpNTE,5492
77
77
  openstef/pipeline/train_model.py,sha256=ELIHkGjzvIdV4V7IMiy8tw7A_wc1QJ7eXY_rPXOgytU,18533
@@ -97,8 +97,8 @@ openstef/tasks/utils/predictionjobloop.py,sha256=Ysy3zF5lzPMz_asYDKeF5m0qgVT3tCt
97
97
  openstef/tasks/utils/taskcontext.py,sha256=yI6TntOkZcW8JiNVuw4uJIigEBL0_iIrkPklF4ZeCX4,5401
98
98
  openstef/validation/__init__.py,sha256=bIyGTSA4V5VoOLTwdaiJJAnozmpSzvQooVYlsf8H4eU,163
99
99
  openstef/validation/validation.py,sha256=SaI-Mff9UOHQPnQ2jodXzZAVZilc-2AXZsPpSjDRqAg,10346
100
- openstef-3.4.13.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
- openstef-3.4.13.dist-info/METADATA,sha256=l5HsBWQbm_94pKxUsJxpOW6QAUBGw2Dd-z3_sdDxDWM,8124
102
- openstef-3.4.13.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
103
- openstef-3.4.13.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
- openstef-3.4.13.dist-info/RECORD,,
100
+ openstef-3.4.14.dist-info/LICENSE,sha256=7Pm2fWFFHHUG5lDHed1vl5CjzxObIXQglnYsEdtjo_k,14907
101
+ openstef-3.4.14.dist-info/METADATA,sha256=xoW67mu78i08UHH2-KDtHmgL3AB7VVbJplEzj8qe2LU,8125
102
+ openstef-3.4.14.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
103
+ openstef-3.4.14.dist-info/top_level.txt,sha256=kD0H4PqrQoncZ957FvqwfBxa89kTrun4Z_RAPs_HhLs,9
104
+ openstef-3.4.14.dist-info/RECORD,,