openscvx 0.3.2.dev170__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of openscvx might be problematic. Click here for more details.
- openscvx/__init__.py +123 -0
- openscvx/_version.py +34 -0
- openscvx/algorithms/__init__.py +92 -0
- openscvx/algorithms/autotuning.py +24 -0
- openscvx/algorithms/base.py +351 -0
- openscvx/algorithms/optimization_results.py +215 -0
- openscvx/algorithms/penalized_trust_region.py +384 -0
- openscvx/config.py +437 -0
- openscvx/discretization/__init__.py +47 -0
- openscvx/discretization/discretization.py +236 -0
- openscvx/expert/__init__.py +23 -0
- openscvx/expert/byof.py +326 -0
- openscvx/expert/lowering.py +419 -0
- openscvx/expert/validation.py +357 -0
- openscvx/integrators/__init__.py +48 -0
- openscvx/integrators/runge_kutta.py +281 -0
- openscvx/lowered/__init__.py +30 -0
- openscvx/lowered/cvxpy_constraints.py +23 -0
- openscvx/lowered/cvxpy_variables.py +124 -0
- openscvx/lowered/dynamics.py +34 -0
- openscvx/lowered/jax_constraints.py +133 -0
- openscvx/lowered/parameters.py +54 -0
- openscvx/lowered/problem.py +70 -0
- openscvx/lowered/unified.py +718 -0
- openscvx/plotting/__init__.py +63 -0
- openscvx/plotting/plotting.py +756 -0
- openscvx/plotting/scp_iteration.py +299 -0
- openscvx/plotting/viser/__init__.py +126 -0
- openscvx/plotting/viser/animated.py +605 -0
- openscvx/plotting/viser/plotly_integration.py +333 -0
- openscvx/plotting/viser/primitives.py +355 -0
- openscvx/plotting/viser/scp.py +459 -0
- openscvx/plotting/viser/server.py +112 -0
- openscvx/problem.py +734 -0
- openscvx/propagation/__init__.py +60 -0
- openscvx/propagation/post_processing.py +104 -0
- openscvx/propagation/propagation.py +248 -0
- openscvx/solvers/__init__.py +51 -0
- openscvx/solvers/cvxpy.py +226 -0
- openscvx/symbolic/__init__.py +9 -0
- openscvx/symbolic/augmentation.py +630 -0
- openscvx/symbolic/builder.py +492 -0
- openscvx/symbolic/constraint_set.py +92 -0
- openscvx/symbolic/expr/__init__.py +222 -0
- openscvx/symbolic/expr/arithmetic.py +517 -0
- openscvx/symbolic/expr/array.py +632 -0
- openscvx/symbolic/expr/constraint.py +796 -0
- openscvx/symbolic/expr/control.py +135 -0
- openscvx/symbolic/expr/expr.py +720 -0
- openscvx/symbolic/expr/lie/__init__.py +87 -0
- openscvx/symbolic/expr/lie/adjoint.py +357 -0
- openscvx/symbolic/expr/lie/se3.py +172 -0
- openscvx/symbolic/expr/lie/so3.py +138 -0
- openscvx/symbolic/expr/linalg.py +279 -0
- openscvx/symbolic/expr/math.py +699 -0
- openscvx/symbolic/expr/spatial.py +209 -0
- openscvx/symbolic/expr/state.py +607 -0
- openscvx/symbolic/expr/stl.py +136 -0
- openscvx/symbolic/expr/variable.py +321 -0
- openscvx/symbolic/hashing.py +112 -0
- openscvx/symbolic/lower.py +760 -0
- openscvx/symbolic/lowerers/__init__.py +106 -0
- openscvx/symbolic/lowerers/cvxpy.py +1302 -0
- openscvx/symbolic/lowerers/jax.py +1382 -0
- openscvx/symbolic/preprocessing.py +757 -0
- openscvx/symbolic/problem.py +110 -0
- openscvx/symbolic/time.py +116 -0
- openscvx/symbolic/unified.py +420 -0
- openscvx/utils/__init__.py +20 -0
- openscvx/utils/cache.py +131 -0
- openscvx/utils/caching.py +210 -0
- openscvx/utils/printing.py +301 -0
- openscvx/utils/profiling.py +37 -0
- openscvx/utils/utils.py +100 -0
- openscvx-0.3.2.dev170.dist-info/METADATA +350 -0
- openscvx-0.3.2.dev170.dist-info/RECORD +79 -0
- openscvx-0.3.2.dev170.dist-info/WHEEL +5 -0
- openscvx-0.3.2.dev170.dist-info/licenses/LICENSE +201 -0
- openscvx-0.3.2.dev170.dist-info/top_level.txt +1 -0
openscvx/config.py
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from openscvx.lowered.unified import UnifiedControl, UnifiedState
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def get_affine_scaling_matrices(n, minimum, maximum):
|
|
10
|
+
S = np.diag(np.maximum(np.ones(n), abs(minimum - maximum) / 2))
|
|
11
|
+
c = (maximum + minimum) / 2
|
|
12
|
+
return S, c
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@dataclass
|
|
16
|
+
class DiscretizationConfig:
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
dis_type: str = "FOH",
|
|
20
|
+
custom_integrator: bool = False,
|
|
21
|
+
solver: str = "Tsit5",
|
|
22
|
+
args: Optional[dict] = None,
|
|
23
|
+
atol: float = 1e-3,
|
|
24
|
+
rtol: float = 1e-6,
|
|
25
|
+
):
|
|
26
|
+
"""
|
|
27
|
+
Configuration class for discretization settings.
|
|
28
|
+
|
|
29
|
+
This class defines the parameters required for discretizing system dynamics.
|
|
30
|
+
|
|
31
|
+
Main arguments:
|
|
32
|
+
These are the arguments most commonly used day-to-day.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
dis_type (str): The type of discretization to use (e.g., "FOH" for
|
|
36
|
+
First-Order Hold). Defaults to "FOH".
|
|
37
|
+
custom_integrator (bool): This enables our custom fixed-step RK45
|
|
38
|
+
algorithm. This tends to be faster than Diffrax but unless you're
|
|
39
|
+
going for speed, it's recommended to stick with Diffrax for
|
|
40
|
+
robustness and other solver options. Defaults to False.
|
|
41
|
+
solver (str): Not used if custom_integrator is enabled. Any choice of
|
|
42
|
+
solver in Diffrax is valid, please refer here,
|
|
43
|
+
[How to Choose a Solver](https://docs.kidger.site/diffrax/usage/
|
|
44
|
+
how-to-choose-a-solver/). Defaults to "Tsit5".
|
|
45
|
+
|
|
46
|
+
Other arguments:
|
|
47
|
+
These arguments are less frequently used, and for most purposes you
|
|
48
|
+
shouldn't need to understand these.
|
|
49
|
+
|
|
50
|
+
Args:
|
|
51
|
+
args (Dict): Additional arguments to pass to the solver which can be
|
|
52
|
+
found [here](https://docs.kidger.site/diffrax/api/diffeqsolve/).
|
|
53
|
+
Defaults to an empty dictionary.
|
|
54
|
+
atol (float): Absolute tolerance for the solver. Defaults to 1e-3.
|
|
55
|
+
rtol (float): Relative tolerance for the solver. Defaults to 1e-6.
|
|
56
|
+
"""
|
|
57
|
+
self.dis_type = dis_type
|
|
58
|
+
self.custom_integrator = custom_integrator
|
|
59
|
+
self.solver = solver
|
|
60
|
+
self.args = args if args is not None else {}
|
|
61
|
+
self.atol = atol
|
|
62
|
+
self.rtol = rtol
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
@dataclass
|
|
66
|
+
class DevConfig:
|
|
67
|
+
def __init__(self, profiling: bool = False, debug: bool = False, printing: bool = True):
|
|
68
|
+
"""
|
|
69
|
+
Configuration class for development settings.
|
|
70
|
+
|
|
71
|
+
This class defines the parameters used for development and debugging
|
|
72
|
+
purposes.
|
|
73
|
+
|
|
74
|
+
Main arguments:
|
|
75
|
+
These are the arguments most commonly used day-to-day.
|
|
76
|
+
|
|
77
|
+
Args:
|
|
78
|
+
profiling (bool): Whether to enable profiling for performance
|
|
79
|
+
analysis. Defaults to False.
|
|
80
|
+
debug (bool): Disables all precompilation so you can place
|
|
81
|
+
breakpoints and inspect values. Defaults to False.
|
|
82
|
+
printing (bool): Whether to enable printing during development.
|
|
83
|
+
Defaults to True.
|
|
84
|
+
"""
|
|
85
|
+
self.profiling = profiling
|
|
86
|
+
self.debug = debug
|
|
87
|
+
self.printing = printing
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@dataclass
|
|
91
|
+
class ConvexSolverConfig:
|
|
92
|
+
def __init__(
|
|
93
|
+
self,
|
|
94
|
+
solver: str = "QOCO",
|
|
95
|
+
solver_args: Optional[dict] = None,
|
|
96
|
+
cvxpygen: bool = False,
|
|
97
|
+
cvxpygen_override: bool = False,
|
|
98
|
+
):
|
|
99
|
+
"""
|
|
100
|
+
Configuration class for convex solver settings.
|
|
101
|
+
|
|
102
|
+
This class defines the parameters required for configuring a convex solver.
|
|
103
|
+
|
|
104
|
+
These are the arguments most commonly used day-to-day. Generally I have
|
|
105
|
+
found [QOCO](https://qoco-org.github.io/qoco/index.html) to be the most
|
|
106
|
+
performant of the CVXPY solvers for these types of problems (I do have a
|
|
107
|
+
bias as the author is from my group) and can handle up to SOCP's.
|
|
108
|
+
[CLARABEL](https://clarabel.org/stable/) is also a great option with
|
|
109
|
+
feasibility checking and can handle a few more problem types.
|
|
110
|
+
[CVXPYGen](https://github.com/cvxgrp/cvxpygen) is also great if your
|
|
111
|
+
problem isn't too large. I have found qocogen to be the most performant
|
|
112
|
+
of the CVXPYGen solvers.
|
|
113
|
+
|
|
114
|
+
Args:
|
|
115
|
+
solver (str): The name of the CVXPY solver to use. A list of options
|
|
116
|
+
can be found [here](https://www.cvxpy.org/tutorial/solvers/
|
|
117
|
+
index.html). Defaults to "QOCO".
|
|
118
|
+
solver_args (dict, optional): Ensure you are using the correct
|
|
119
|
+
arguments for your solver as they are not all common. Additional
|
|
120
|
+
arguments to configure the solver, such as tolerances. Defaults
|
|
121
|
+
to {"abstol": 1e-6, "reltol": 1e-9}.
|
|
122
|
+
cvxpygen (bool): Whether to enable CVXPY code generation for the
|
|
123
|
+
solver. Defaults to False.
|
|
124
|
+
"""
|
|
125
|
+
if solver_args is None:
|
|
126
|
+
solver_args = {"abstol": 1e-06, "reltol": 1e-09, "enforce_dpp": True}
|
|
127
|
+
self.solver = solver
|
|
128
|
+
self.solver_args = (
|
|
129
|
+
solver_args if solver_args is not None else {"abstol": 1e-6, "reltol": 1e-9}
|
|
130
|
+
)
|
|
131
|
+
self.cvxpygen = cvxpygen
|
|
132
|
+
self.cvxpygen_override = cvxpygen_override
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
@dataclass
|
|
136
|
+
class PropagationConfig:
|
|
137
|
+
def __init__(
|
|
138
|
+
self,
|
|
139
|
+
inter_sample: int = 30,
|
|
140
|
+
dt: float = 0.01,
|
|
141
|
+
solver: str = "Dopri8",
|
|
142
|
+
max_tau_len: int = 1000,
|
|
143
|
+
args: Optional[dict] = None,
|
|
144
|
+
atol: float = 1e-3,
|
|
145
|
+
rtol: float = 1e-6,
|
|
146
|
+
):
|
|
147
|
+
"""
|
|
148
|
+
Configuration class for propagation settings.
|
|
149
|
+
|
|
150
|
+
This class defines the parameters required for propagating the nonlinear
|
|
151
|
+
system dynamics using the optimal control sequence.
|
|
152
|
+
|
|
153
|
+
Main arguments:
|
|
154
|
+
These are the arguments most commonly used day-to-day.
|
|
155
|
+
|
|
156
|
+
Other arguments:
|
|
157
|
+
The solver should likely not be changed as it is a high accuracy 8th-order
|
|
158
|
+
Runge-Kutta method.
|
|
159
|
+
|
|
160
|
+
Args:
|
|
161
|
+
inter_sample (int): How dense the propagation within multishot
|
|
162
|
+
discretization should be. Defaults to 30.
|
|
163
|
+
dt (float): The time step for propagation. Defaults to 0.1.
|
|
164
|
+
solver (str): The numerical solver to use for propagation
|
|
165
|
+
(e.g., "Dopri8"). Defaults to "Dopri8".
|
|
166
|
+
max_tau_len (int): The maximum length of the time vector for
|
|
167
|
+
propagation. Defaults to 1000.
|
|
168
|
+
args (Dict, optional): Additional arguments to pass to the solver.
|
|
169
|
+
Defaults to an empty dictionary.
|
|
170
|
+
atol (float): Absolute tolerance for the solver. Defaults to 1e-3.
|
|
171
|
+
rtol (float): Relative tolerance for the solver. Defaults to 1e-6.
|
|
172
|
+
"""
|
|
173
|
+
self.inter_sample = inter_sample
|
|
174
|
+
self.dt = dt
|
|
175
|
+
self.solver = solver
|
|
176
|
+
self.max_tau_len = max_tau_len
|
|
177
|
+
self.args = args if args is not None else {}
|
|
178
|
+
self.atol = atol
|
|
179
|
+
self.rtol = rtol
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@dataclass(init=False)
|
|
183
|
+
class SimConfig:
|
|
184
|
+
# No class-level field declarations
|
|
185
|
+
|
|
186
|
+
def __init__(
|
|
187
|
+
self,
|
|
188
|
+
x: UnifiedState,
|
|
189
|
+
x_prop: UnifiedState,
|
|
190
|
+
u: UnifiedControl,
|
|
191
|
+
total_time: float,
|
|
192
|
+
save_compiled: bool = False,
|
|
193
|
+
ctcs_node_intervals: Optional[list] = None,
|
|
194
|
+
n_states: Optional[int] = None,
|
|
195
|
+
n_states_prop: Optional[int] = None,
|
|
196
|
+
n_controls: Optional[int] = None,
|
|
197
|
+
):
|
|
198
|
+
"""
|
|
199
|
+
Configuration class for simulation settings.
|
|
200
|
+
|
|
201
|
+
This class defines the parameters required for simulating a trajectory
|
|
202
|
+
optimization problem.
|
|
203
|
+
|
|
204
|
+
Main arguments:
|
|
205
|
+
These are the arguments most commonly used day-to-day.
|
|
206
|
+
|
|
207
|
+
Args:
|
|
208
|
+
x (State): State object, must have .min and .max attributes for bounds.
|
|
209
|
+
x_prop (State): Propagation state object, must have .min and .max
|
|
210
|
+
attributes for bounds.
|
|
211
|
+
u (Control): Control object, must have .min and .max attributes for
|
|
212
|
+
bounds.
|
|
213
|
+
total_time (float): The total simulation time.
|
|
214
|
+
idx_x_true (slice): Slice for true state indices.
|
|
215
|
+
idx_x_true_prop (slice): Slice for true propagation state indices.
|
|
216
|
+
idx_u_true (slice): Slice for true control indices.
|
|
217
|
+
idx_t (slice): Slice for time index.
|
|
218
|
+
idx_y (slice): Slice for constraint violation indices.
|
|
219
|
+
idx_y_prop (slice): Slice for propagation constraint violation
|
|
220
|
+
indices.
|
|
221
|
+
idx_s (slice): Slice for time dilation index.
|
|
222
|
+
save_compiled (bool): If True, save and reuse compiled solver
|
|
223
|
+
functions. Defaults to False.
|
|
224
|
+
ctcs_node_intervals (list, optional): Node intervals for CTCS
|
|
225
|
+
constraints.
|
|
226
|
+
n_states (int, optional): The number of state variables. Defaults to
|
|
227
|
+
`None` (inferred from x.max).
|
|
228
|
+
n_states_prop (int, optional): The number of propagation state
|
|
229
|
+
variables. Defaults to `None` (inferred from x_prop.max).
|
|
230
|
+
n_controls (int, optional): The number of control variables. Defaults
|
|
231
|
+
to `None` (inferred from u.max).
|
|
232
|
+
|
|
233
|
+
Note:
|
|
234
|
+
You can specify custom scaling for specific states/controls using
|
|
235
|
+
the `scaling_min` and `scaling_max` attributes on State, Control, and Time objects.
|
|
236
|
+
If not set, the default min/max bounds will be used for scaling.
|
|
237
|
+
"""
|
|
238
|
+
# Assign core arguments to self
|
|
239
|
+
self.x = x
|
|
240
|
+
self.x_prop = x_prop
|
|
241
|
+
self.u = u
|
|
242
|
+
self.total_time = total_time
|
|
243
|
+
self.save_compiled = save_compiled
|
|
244
|
+
self.ctcs_node_intervals = ctcs_node_intervals
|
|
245
|
+
self.n_states = n_states
|
|
246
|
+
self.n_states_prop = n_states_prop
|
|
247
|
+
self.n_controls = n_controls
|
|
248
|
+
|
|
249
|
+
# Call post init logic
|
|
250
|
+
self.__post_init__()
|
|
251
|
+
|
|
252
|
+
def __post_init__(self):
|
|
253
|
+
self.n_states = len(self.x.max)
|
|
254
|
+
self.n_controls = len(self.u.max)
|
|
255
|
+
|
|
256
|
+
# State scaling
|
|
257
|
+
# Use scaling_min/max if provided, otherwise use regular min/max
|
|
258
|
+
min_x = np.array(self.x.min, dtype=float)
|
|
259
|
+
max_x = np.array(self.x.max, dtype=float)
|
|
260
|
+
|
|
261
|
+
# UnifiedState now always provides full-size scaling arrays when any state has scaling
|
|
262
|
+
if self.x.scaling_min is not None:
|
|
263
|
+
lower_x = np.array(self.x.scaling_min, dtype=float)
|
|
264
|
+
else:
|
|
265
|
+
lower_x = min_x
|
|
266
|
+
|
|
267
|
+
if self.x.scaling_max is not None:
|
|
268
|
+
upper_x = np.array(self.x.scaling_max, dtype=float)
|
|
269
|
+
else:
|
|
270
|
+
upper_x = max_x
|
|
271
|
+
|
|
272
|
+
S_x, c_x = get_affine_scaling_matrices(self.n_states, lower_x, upper_x)
|
|
273
|
+
self.S_x = S_x
|
|
274
|
+
self.c_x = c_x
|
|
275
|
+
self.inv_S_x = np.diag(1 / np.diag(self.S_x))
|
|
276
|
+
|
|
277
|
+
# Control scaling
|
|
278
|
+
# Use scaling_min/max if provided, otherwise use regular min/max
|
|
279
|
+
min_u = np.array(self.u.min, dtype=float)
|
|
280
|
+
max_u = np.array(self.u.max, dtype=float)
|
|
281
|
+
|
|
282
|
+
# UnifiedControl now always provides full-size scaling arrays when any control has scaling
|
|
283
|
+
if self.u.scaling_min is not None:
|
|
284
|
+
lower_u = np.array(self.u.scaling_min, dtype=float)
|
|
285
|
+
else:
|
|
286
|
+
lower_u = min_u
|
|
287
|
+
|
|
288
|
+
if self.u.scaling_max is not None:
|
|
289
|
+
upper_u = np.array(self.u.scaling_max, dtype=float)
|
|
290
|
+
else:
|
|
291
|
+
upper_u = max_u
|
|
292
|
+
|
|
293
|
+
S_u, c_u = get_affine_scaling_matrices(self.n_controls, lower_u, upper_u)
|
|
294
|
+
self.S_u = S_u
|
|
295
|
+
self.c_u = c_u
|
|
296
|
+
self.inv_S_u = np.diag(1 / np.diag(self.S_u))
|
|
297
|
+
|
|
298
|
+
# Properties for accessing slices from unified objects
|
|
299
|
+
@property
|
|
300
|
+
def time_slice(self):
|
|
301
|
+
"""Slice for accessing time in the state vector."""
|
|
302
|
+
return self.x.time_slice
|
|
303
|
+
|
|
304
|
+
@property
|
|
305
|
+
def ctcs_slice(self):
|
|
306
|
+
"""Slice for accessing CTCS augmented states."""
|
|
307
|
+
return self.x.ctcs_slice
|
|
308
|
+
|
|
309
|
+
@property
|
|
310
|
+
def ctcs_slice_prop(self):
|
|
311
|
+
"""Slice for accessing CTCS augmented states in propagation."""
|
|
312
|
+
return self.x_prop.ctcs_slice
|
|
313
|
+
|
|
314
|
+
@property
|
|
315
|
+
def time_dilation_slice(self):
|
|
316
|
+
"""Slice for accessing time dilation in the control vector."""
|
|
317
|
+
return self.u.time_dilation_slice
|
|
318
|
+
|
|
319
|
+
@property
|
|
320
|
+
def true_state_slice(self):
|
|
321
|
+
"""Slice for accessing true (non-augmented) states."""
|
|
322
|
+
return self.x._true_slice
|
|
323
|
+
|
|
324
|
+
@property
|
|
325
|
+
def true_state_slice_prop(self):
|
|
326
|
+
"""Slice for accessing true (non-augmented) propagation states."""
|
|
327
|
+
return self.x_prop._true_slice
|
|
328
|
+
|
|
329
|
+
@property
|
|
330
|
+
def true_control_slice(self):
|
|
331
|
+
"""Slice for accessing true (non-augmented) controls."""
|
|
332
|
+
return self.u._true_slice
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
@dataclass
|
|
336
|
+
class ScpConfig:
|
|
337
|
+
def __init__(
|
|
338
|
+
self,
|
|
339
|
+
n: Optional[int] = None,
|
|
340
|
+
k_max: int = 200,
|
|
341
|
+
w_tr: float = 1.0,
|
|
342
|
+
lam_vc: float = 1.0,
|
|
343
|
+
ep_tr: float = 1e-4,
|
|
344
|
+
ep_vb: float = 1e-4,
|
|
345
|
+
ep_vc: float = 1e-8,
|
|
346
|
+
lam_cost: float = 0.0,
|
|
347
|
+
lam_vb: float = 0.0,
|
|
348
|
+
uniform_time_grid: bool = False,
|
|
349
|
+
cost_drop: int = -1,
|
|
350
|
+
cost_relax: float = 1.0,
|
|
351
|
+
w_tr_adapt: float = 1.0,
|
|
352
|
+
w_tr_max: Optional[float] = None,
|
|
353
|
+
w_tr_max_scaling_factor: Optional[float] = None,
|
|
354
|
+
):
|
|
355
|
+
"""
|
|
356
|
+
Configuration class for Sequential Convex Programming (SCP).
|
|
357
|
+
|
|
358
|
+
This class defines the parameters used to configure the SCP solver. You
|
|
359
|
+
will very likely need to modify the weights for your problem. Please
|
|
360
|
+
refer to my guide [here](https://haynec.github.io/openscvx/
|
|
361
|
+
hyperparameter_tuning) for more information.
|
|
362
|
+
|
|
363
|
+
Attributes:
|
|
364
|
+
n (int): The number of discretization nodes. Defaults to `None`.
|
|
365
|
+
k_max (int): The maximum number of SCP iterations. Defaults to 200.
|
|
366
|
+
w_tr (float): The trust region weight. Defaults to 1.0.
|
|
367
|
+
lam_vc (float): The penalty weight for virtual control. Defaults to 1.0.
|
|
368
|
+
ep_tr (float): The trust region convergence tolerance. Defaults to 1e-4.
|
|
369
|
+
ep_vb (float): The boundary constraint convergence tolerance.
|
|
370
|
+
Defaults to 1e-4.
|
|
371
|
+
ep_vc (float): The virtual constraint convergence tolerance.
|
|
372
|
+
Defaults to 1e-8.
|
|
373
|
+
lam_cost (float): The weight for original cost. Defaults to 0.0.
|
|
374
|
+
lam_vb (float): The weight for virtual buffer. This is only used if
|
|
375
|
+
there are nonconvex nodal constraints present. Defaults to 0.0.
|
|
376
|
+
uniform_time_grid (bool): Whether to use a uniform time grid.
|
|
377
|
+
Defaults to `False`.
|
|
378
|
+
cost_drop (int): The number of iterations to allow for cost
|
|
379
|
+
stagnation before termination. Defaults to -1 (disabled).
|
|
380
|
+
cost_relax (float): The relaxation factor for cost reduction.
|
|
381
|
+
Defaults to 1.0.
|
|
382
|
+
w_tr_adapt (float): The adaptation factor for the trust region
|
|
383
|
+
weight. Defaults to 1.0.
|
|
384
|
+
w_tr_max (float): The maximum allowable trust region weight.
|
|
385
|
+
Defaults to `None`.
|
|
386
|
+
w_tr_max_scaling_factor (float): The scaling factor for the maximum
|
|
387
|
+
trust region weight. Defaults to `None`.
|
|
388
|
+
"""
|
|
389
|
+
self.n = n
|
|
390
|
+
self.k_max = k_max
|
|
391
|
+
self.w_tr = w_tr
|
|
392
|
+
self.lam_vc = lam_vc
|
|
393
|
+
self.ep_tr = ep_tr
|
|
394
|
+
self.ep_vb = ep_vb
|
|
395
|
+
self.ep_vc = ep_vc
|
|
396
|
+
self.lam_cost = lam_cost
|
|
397
|
+
self.lam_vb = lam_vb
|
|
398
|
+
self.uniform_time_grid = uniform_time_grid
|
|
399
|
+
self.cost_drop = cost_drop
|
|
400
|
+
self.cost_relax = cost_relax
|
|
401
|
+
self.w_tr_adapt = w_tr_adapt
|
|
402
|
+
self.w_tr_max = w_tr_max
|
|
403
|
+
self.w_tr_max_scaling_factor = w_tr_max_scaling_factor
|
|
404
|
+
|
|
405
|
+
def __post_init__(self):
|
|
406
|
+
keys_to_scale = ["w_tr", "lam_vc", "lam_cost", "lam_vb"]
|
|
407
|
+
# Handle lam_vc which might be scalar or array
|
|
408
|
+
scale_values = []
|
|
409
|
+
for key in keys_to_scale:
|
|
410
|
+
val = getattr(self, key)
|
|
411
|
+
if isinstance(val, np.ndarray):
|
|
412
|
+
scale_values.append(np.max(val))
|
|
413
|
+
else:
|
|
414
|
+
scale_values.append(val)
|
|
415
|
+
scale = max(scale_values)
|
|
416
|
+
for key in keys_to_scale:
|
|
417
|
+
val = getattr(self, key)
|
|
418
|
+
if isinstance(val, np.ndarray):
|
|
419
|
+
setattr(self, key, val / scale)
|
|
420
|
+
else:
|
|
421
|
+
setattr(self, key, val / scale)
|
|
422
|
+
|
|
423
|
+
if self.w_tr_max_scaling_factor is not None and self.w_tr_max is None:
|
|
424
|
+
self.w_tr_max = self.w_tr_max_scaling_factor * self.w_tr
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+
@dataclass
|
|
428
|
+
class Config:
|
|
429
|
+
sim: SimConfig
|
|
430
|
+
scp: ScpConfig
|
|
431
|
+
cvx: ConvexSolverConfig
|
|
432
|
+
dis: DiscretizationConfig
|
|
433
|
+
prp: PropagationConfig
|
|
434
|
+
dev: DevConfig
|
|
435
|
+
|
|
436
|
+
def __post_init__(self):
|
|
437
|
+
pass
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
"""Discretization methods for trajectory optimization.
|
|
2
|
+
|
|
3
|
+
This module provides implementations of discretization schemes that convert
|
|
4
|
+
continuous-time optimal control problems into discrete-time approximations
|
|
5
|
+
suitable for numerical optimization. Discretization is a critical step in
|
|
6
|
+
trajectory optimization that linearizes the nonlinear dynamics around a
|
|
7
|
+
reference trajectory.
|
|
8
|
+
|
|
9
|
+
Planned Architecture (ABC-based):
|
|
10
|
+
|
|
11
|
+
A base class will be introduced to enable pluggable discretization methods.
|
|
12
|
+
This will enable users to implement custom discretization methods.
|
|
13
|
+
Future discretizers will implement the Discretizer interface:
|
|
14
|
+
|
|
15
|
+
```python
|
|
16
|
+
# discretization/base.py (planned):
|
|
17
|
+
class Discretizer(ABC):
|
|
18
|
+
def __init__(self, integrator: Integrator):
|
|
19
|
+
'''Initialize with a numerical integrator.'''
|
|
20
|
+
self.integrator = integrator
|
|
21
|
+
|
|
22
|
+
@abstractmethod
|
|
23
|
+
def discretize(self, dynamics, x, u, dt) -> tuple[A_d, B_d, C_d]:
|
|
24
|
+
'''Discretize continuous dynamics around trajectory (x, u).
|
|
25
|
+
|
|
26
|
+
Args:
|
|
27
|
+
dynamics: Continuous-time dynamics object
|
|
28
|
+
x: State trajectory
|
|
29
|
+
u: Control trajectory
|
|
30
|
+
dt: Time step
|
|
31
|
+
|
|
32
|
+
Returns:
|
|
33
|
+
A_d: Discretized state transition matrix
|
|
34
|
+
B_d: Discretized control influence matrix (current node)
|
|
35
|
+
C_d: Discretized control influence matrix (next node)
|
|
36
|
+
'''
|
|
37
|
+
...
|
|
38
|
+
```
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
from .discretization import calculate_discretization, dVdt, get_discretization_solver
|
|
42
|
+
|
|
43
|
+
__all__ = [
|
|
44
|
+
"calculate_discretization",
|
|
45
|
+
"get_discretization_solver",
|
|
46
|
+
"dVdt",
|
|
47
|
+
]
|