openlit 1.5.0__py3-none-any.whl → 1.6.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +3 -0
- openlit/instrumentation/ollama/__init__.py +104 -0
- openlit/instrumentation/ollama/async_ollama.py +564 -0
- openlit/instrumentation/ollama/ollama.py +564 -0
- openlit/semcov/__init__.py +1 -0
- {openlit-1.5.0.dist-info → openlit-1.6.0.dist-info}/METADATA +2 -1
- {openlit-1.5.0.dist-info → openlit-1.6.0.dist-info}/RECORD +9 -6
- {openlit-1.5.0.dist-info → openlit-1.6.0.dist-info}/LICENSE +0 -0
- {openlit-1.5.0.dist-info → openlit-1.6.0.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -20,6 +20,7 @@ from openlit.instrumentation.mistral import MistralInstrumentor
|
|
20
20
|
from openlit.instrumentation.bedrock import BedrockInstrumentor
|
21
21
|
from openlit.instrumentation.vertexai import VertexAIInstrumentor
|
22
22
|
from openlit.instrumentation.groq import GroqInstrumentor
|
23
|
+
from openlit.instrumentation.ollama import OllamaInstrumentor
|
23
24
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
24
25
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
25
26
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
@@ -154,6 +155,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
154
155
|
"bedrock": "boto3",
|
155
156
|
"vertexai": "vertexai",
|
156
157
|
"groq": "groq",
|
158
|
+
"ollama": "ollama",
|
157
159
|
"langchain": "langchain",
|
158
160
|
"llama_index": "llama_index",
|
159
161
|
"haystack": "haystack",
|
@@ -206,6 +208,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
206
208
|
"bedrock": BedrockInstrumentor(),
|
207
209
|
"vertexai": VertexAIInstrumentor(),
|
208
210
|
"groq": GroqInstrumentor(),
|
211
|
+
"ollama": OllamaInstrumentor(),
|
209
212
|
"langchain": LangChainInstrumentor(),
|
210
213
|
"llama_index": LlamaIndexInstrumentor(),
|
211
214
|
"haystack": HaystackInstrumentor(),
|
@@ -0,0 +1,104 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Ollama Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.ollama.ollama import (
|
10
|
+
chat, embeddings, generate
|
11
|
+
)
|
12
|
+
from openlit.instrumentation.ollama.async_ollama import (
|
13
|
+
async_chat, async_embeddings, async_generate
|
14
|
+
)
|
15
|
+
|
16
|
+
_instruments = ("ollama >= 0.2.0",)
|
17
|
+
|
18
|
+
class OllamaInstrumentor(BaseInstrumentor):
|
19
|
+
"""
|
20
|
+
An instrumentor for Ollama's client library.
|
21
|
+
"""
|
22
|
+
|
23
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
24
|
+
return _instruments
|
25
|
+
|
26
|
+
def _instrument(self, **kwargs):
|
27
|
+
application_name = kwargs.get("application_name", "default_application")
|
28
|
+
environment = kwargs.get("environment", "default_environment")
|
29
|
+
tracer = kwargs.get("tracer")
|
30
|
+
metrics = kwargs.get("metrics_dict")
|
31
|
+
pricing_info = kwargs.get("pricing_info", {})
|
32
|
+
trace_content = kwargs.get("trace_content", False)
|
33
|
+
disable_metrics = kwargs.get("disable_metrics")
|
34
|
+
version = importlib.metadata.version("ollama")
|
35
|
+
|
36
|
+
# sync chat
|
37
|
+
wrap_function_wrapper(
|
38
|
+
"ollama",
|
39
|
+
"chat",
|
40
|
+
chat("ollama.chat", version, environment, application_name,
|
41
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
42
|
+
)
|
43
|
+
wrap_function_wrapper(
|
44
|
+
"ollama",
|
45
|
+
"Client.chat",
|
46
|
+
chat("ollama.chat", version, environment, application_name,
|
47
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
48
|
+
)
|
49
|
+
|
50
|
+
# sync embeddings
|
51
|
+
wrap_function_wrapper(
|
52
|
+
"ollama",
|
53
|
+
"embeddings",
|
54
|
+
embeddings("ollama.embeddings", version, environment, application_name,
|
55
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
56
|
+
)
|
57
|
+
wrap_function_wrapper(
|
58
|
+
"ollama",
|
59
|
+
"Client.embeddings",
|
60
|
+
embeddings("ollama.embeddings", version, environment, application_name,
|
61
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
62
|
+
)
|
63
|
+
|
64
|
+
# sync generate
|
65
|
+
wrap_function_wrapper(
|
66
|
+
"ollama",
|
67
|
+
"generate",
|
68
|
+
generate("ollama.generate", version, environment, application_name,
|
69
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
70
|
+
)
|
71
|
+
wrap_function_wrapper(
|
72
|
+
"ollama",
|
73
|
+
"Client.generate",
|
74
|
+
generate("ollama.generate", version, environment, application_name,
|
75
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
76
|
+
)
|
77
|
+
|
78
|
+
# async chat
|
79
|
+
wrap_function_wrapper(
|
80
|
+
"ollama",
|
81
|
+
"AsyncClient.chat",
|
82
|
+
async_chat("ollama.chat", version, environment, application_name,
|
83
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
84
|
+
)
|
85
|
+
|
86
|
+
# async embeddings
|
87
|
+
wrap_function_wrapper(
|
88
|
+
"ollama",
|
89
|
+
"AsyncClient.embeddings",
|
90
|
+
async_embeddings("ollama.embeddings", version, environment, application_name,
|
91
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
92
|
+
)
|
93
|
+
|
94
|
+
# aync generate
|
95
|
+
wrap_function_wrapper(
|
96
|
+
"ollama",
|
97
|
+
"AsyncClient.generate",
|
98
|
+
async_generate("ollama.generate", version, environment, application_name,
|
99
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
100
|
+
)
|
101
|
+
|
102
|
+
def _uninstrument(self, **kwargs):
|
103
|
+
# Proper uninstrumentation logic to revert patched methods
|
104
|
+
pass
|
@@ -0,0 +1,564 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import handle_exception, general_tokens
|
10
|
+
from openlit.semcov import SemanticConvetion
|
11
|
+
|
12
|
+
# Initialize logger for logging potential issues and operations
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def async_chat(gen_ai_endpoint, version, environment, application_name,
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
|
+
"""
|
18
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
|
+
version: Version of the monitoring package.
|
23
|
+
environment: Deployment environment (e.g., production, staging).
|
24
|
+
application_name: Name of the application using the Ollama API.
|
25
|
+
tracer: OpenTelemetry tracer for creating spans.
|
26
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
27
|
+
trace_content: Flag indicating whether to trace the actual content.
|
28
|
+
|
29
|
+
Returns:
|
30
|
+
A function that wraps the chat method to add telemetry.
|
31
|
+
"""
|
32
|
+
|
33
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
34
|
+
"""
|
35
|
+
Wraps the 'chat' API call to add telemetry.
|
36
|
+
|
37
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
|
+
gracefully, adding details to the trace for observability.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
wrapped: The original 'chat' method to be wrapped.
|
42
|
+
instance: The instance of the class where the original method is defined.
|
43
|
+
args: Positional arguments for the 'chat' method.
|
44
|
+
kwargs: Keyword arguments for the 'chat' method.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The response from the original 'chat' method.
|
48
|
+
"""
|
49
|
+
|
50
|
+
# Check if streaming is enabled for the API call
|
51
|
+
streaming = kwargs.get("stream", False)
|
52
|
+
|
53
|
+
# pylint: disable=no-else-return
|
54
|
+
if streaming:
|
55
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
+
async def stream_generator():
|
57
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
58
|
+
# Placeholder for aggregating streaming response
|
59
|
+
llmresponse = ""
|
60
|
+
|
61
|
+
# Loop through streaming events capturing relevant details
|
62
|
+
async for chunk in await wrapped(*args, **kwargs):
|
63
|
+
# Collect aggregated response from events
|
64
|
+
content = chunk['message']['content']
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
if chunk['done'] is True:
|
68
|
+
completion_tokens = chunk["eval_count"]
|
69
|
+
|
70
|
+
yield chunk
|
71
|
+
|
72
|
+
# Handling exception ensure observability without disrupting operation
|
73
|
+
try:
|
74
|
+
# Format 'messages' into a single string
|
75
|
+
message_prompt = kwargs.get("messages", "")
|
76
|
+
formatted_messages = []
|
77
|
+
for message in message_prompt:
|
78
|
+
role = message["role"]
|
79
|
+
content = message["content"]
|
80
|
+
|
81
|
+
if isinstance(content, list):
|
82
|
+
content_str = ", ".join(
|
83
|
+
# pylint: disable=line-too-long
|
84
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
85
|
+
if "type" in item else f'text: {item["text"]}'
|
86
|
+
for item in content
|
87
|
+
)
|
88
|
+
formatted_messages.append(f"{role}: {content_str}")
|
89
|
+
else:
|
90
|
+
formatted_messages.append(f"{role}: {content}")
|
91
|
+
prompt = "\n".join(formatted_messages)
|
92
|
+
|
93
|
+
# Calculate cost of the operation
|
94
|
+
cost = 0
|
95
|
+
prompt_tokens = general_tokens(prompt)
|
96
|
+
total_tokens = prompt_tokens + completion_tokens
|
97
|
+
|
98
|
+
# Set Span attributes
|
99
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
100
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
101
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
102
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
103
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
104
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
105
|
+
gen_ai_endpoint)
|
106
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
107
|
+
environment)
|
108
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
109
|
+
application_name)
|
110
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
111
|
+
kwargs.get("model", "llama3"))
|
112
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
113
|
+
True)
|
114
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
115
|
+
prompt_tokens)
|
116
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
117
|
+
completion_tokens)
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
119
|
+
total_tokens)
|
120
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
121
|
+
cost)
|
122
|
+
if trace_content:
|
123
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
124
|
+
prompt)
|
125
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
126
|
+
llmresponse)
|
127
|
+
|
128
|
+
span.set_status(Status(StatusCode.OK))
|
129
|
+
|
130
|
+
if disable_metrics is False:
|
131
|
+
attributes = {
|
132
|
+
TELEMETRY_SDK_NAME:
|
133
|
+
"openlit",
|
134
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
135
|
+
application_name,
|
136
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
138
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
139
|
+
environment,
|
140
|
+
SemanticConvetion.GEN_AI_TYPE:
|
141
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
142
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
143
|
+
kwargs.get("model", "llama3")
|
144
|
+
}
|
145
|
+
|
146
|
+
metrics["genai_requests"].add(1, attributes)
|
147
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
148
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
149
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
150
|
+
metrics["genai_cost"].record(cost, attributes)
|
151
|
+
|
152
|
+
except Exception as e:
|
153
|
+
handle_exception(span, e)
|
154
|
+
logger.error("Error in trace creation: %s", e)
|
155
|
+
|
156
|
+
return stream_generator()
|
157
|
+
|
158
|
+
# Handling for non-streaming responses
|
159
|
+
else:
|
160
|
+
# pylint: disable=line-too-long
|
161
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
162
|
+
response = await wrapped(*args, **kwargs)
|
163
|
+
|
164
|
+
try:
|
165
|
+
# Format 'messages' into a single string
|
166
|
+
message_prompt = kwargs.get("messages", "")
|
167
|
+
formatted_messages = []
|
168
|
+
for message in message_prompt:
|
169
|
+
role = message["role"]
|
170
|
+
content = message["content"]
|
171
|
+
|
172
|
+
if isinstance(content, list):
|
173
|
+
content_str = ", ".join(
|
174
|
+
# pylint: disable=line-too-long
|
175
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
176
|
+
if "type" in item else f'text: {item["text"]}'
|
177
|
+
for item in content
|
178
|
+
)
|
179
|
+
formatted_messages.append(f"{role}: {content_str}")
|
180
|
+
else:
|
181
|
+
formatted_messages.append(f"{role}: {content}")
|
182
|
+
prompt = "\n".join(formatted_messages)
|
183
|
+
|
184
|
+
# Set base span attribues
|
185
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
187
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
189
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
191
|
+
gen_ai_endpoint)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
193
|
+
environment)
|
194
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
195
|
+
application_name)
|
196
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
197
|
+
kwargs.get("model", "llama3"))
|
198
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
199
|
+
False)
|
200
|
+
if trace_content:
|
201
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
202
|
+
prompt)
|
203
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
204
|
+
response['message']['content'])
|
205
|
+
|
206
|
+
# Calculate cost of the operation
|
207
|
+
cost = 0
|
208
|
+
prompt_tokens = general_tokens(prompt)
|
209
|
+
completion_tokens = response["eval_count"]
|
210
|
+
total_tokens = prompt_tokens + completion_tokens
|
211
|
+
|
212
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
213
|
+
prompt_tokens)
|
214
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
215
|
+
completion_tokens)
|
216
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
217
|
+
total_tokens)
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
219
|
+
response["done_reason"])
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
221
|
+
cost)
|
222
|
+
|
223
|
+
span.set_status(Status(StatusCode.OK))
|
224
|
+
|
225
|
+
if disable_metrics is False:
|
226
|
+
attributes = {
|
227
|
+
TELEMETRY_SDK_NAME:
|
228
|
+
"openlit",
|
229
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
230
|
+
application_name,
|
231
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
232
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
233
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
234
|
+
environment,
|
235
|
+
SemanticConvetion.GEN_AI_TYPE:
|
236
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
237
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
238
|
+
kwargs.get("model", "llama3")
|
239
|
+
}
|
240
|
+
|
241
|
+
metrics["genai_requests"].add(1, attributes)
|
242
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
243
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
244
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
245
|
+
metrics["genai_cost"].record(cost, attributes)
|
246
|
+
|
247
|
+
# Return original response
|
248
|
+
return response
|
249
|
+
|
250
|
+
except Exception as e:
|
251
|
+
handle_exception(span, e)
|
252
|
+
logger.error("Error in trace creation: %s", e)
|
253
|
+
|
254
|
+
# Return original response
|
255
|
+
return response
|
256
|
+
|
257
|
+
return wrapper
|
258
|
+
|
259
|
+
def async_generate(gen_ai_endpoint, version, environment, application_name,
|
260
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
261
|
+
"""
|
262
|
+
Generates a telemetry wrapper for generate to collect metrics.
|
263
|
+
|
264
|
+
Args:
|
265
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
266
|
+
version: Version of the monitoring package.
|
267
|
+
environment: Deployment environment (e.g., production, staging).
|
268
|
+
application_name: Name of the application using the Ollama API.
|
269
|
+
tracer: OpenTelemetry tracer for creating spans.
|
270
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
271
|
+
trace_content: Flag indicating whether to trace the actual content.
|
272
|
+
|
273
|
+
Returns:
|
274
|
+
A function that wraps the generate method to add telemetry.
|
275
|
+
"""
|
276
|
+
|
277
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
278
|
+
"""
|
279
|
+
Wraps the 'generate' API call to add telemetry.
|
280
|
+
|
281
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
282
|
+
gracefully, adding details to the trace for observability.
|
283
|
+
|
284
|
+
Args:
|
285
|
+
wrapped: The original 'generate' method to be wrapped.
|
286
|
+
instance: The instance of the class where the original method is defined.
|
287
|
+
args: Positional arguments for the 'generate' method.
|
288
|
+
kwargs: Keyword arguments for the 'generate' method.
|
289
|
+
|
290
|
+
Returns:
|
291
|
+
The response from the original 'generate' method.
|
292
|
+
"""
|
293
|
+
|
294
|
+
# Check if streaming is enabled for the API call
|
295
|
+
streaming = kwargs.get("stream", False)
|
296
|
+
|
297
|
+
# pylint: disable=no-else-return
|
298
|
+
if streaming:
|
299
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
300
|
+
async def stream_generator():
|
301
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
302
|
+
# Placeholder for aggregating streaming response
|
303
|
+
llmresponse = ""
|
304
|
+
|
305
|
+
# Loop through streaming events capturing relevant details
|
306
|
+
async for chunk in await wrapped(*args, **kwargs):
|
307
|
+
# Collect aggregated response from events
|
308
|
+
content = chunk['response']
|
309
|
+
llmresponse += content
|
310
|
+
|
311
|
+
if chunk['done'] is True:
|
312
|
+
completion_tokens = chunk["eval_count"]
|
313
|
+
|
314
|
+
yield chunk
|
315
|
+
|
316
|
+
# Handling exception ensure observability without disrupting operation
|
317
|
+
try:
|
318
|
+
# Calculate cost of the operation
|
319
|
+
cost = 0
|
320
|
+
prompt_tokens = general_tokens(kwargs.get("prompt", ""))
|
321
|
+
total_tokens = prompt_tokens + completion_tokens
|
322
|
+
|
323
|
+
# Set Span attributes
|
324
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
325
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
326
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
327
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
328
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
329
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
330
|
+
gen_ai_endpoint)
|
331
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
332
|
+
environment)
|
333
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
334
|
+
application_name)
|
335
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
336
|
+
kwargs.get("model", "llama3"))
|
337
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
338
|
+
True)
|
339
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
340
|
+
prompt_tokens)
|
341
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
342
|
+
completion_tokens)
|
343
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
344
|
+
total_tokens)
|
345
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
346
|
+
cost)
|
347
|
+
if trace_content:
|
348
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
349
|
+
kwargs.get("prompt", ""))
|
350
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
351
|
+
llmresponse)
|
352
|
+
|
353
|
+
span.set_status(Status(StatusCode.OK))
|
354
|
+
|
355
|
+
if disable_metrics is False:
|
356
|
+
attributes = {
|
357
|
+
TELEMETRY_SDK_NAME:
|
358
|
+
"openlit",
|
359
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
360
|
+
application_name,
|
361
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
362
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
363
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
364
|
+
environment,
|
365
|
+
SemanticConvetion.GEN_AI_TYPE:
|
366
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
367
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
368
|
+
kwargs.get("model", "llama3")
|
369
|
+
}
|
370
|
+
|
371
|
+
metrics["genai_requests"].add(1, attributes)
|
372
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
373
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
374
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
375
|
+
metrics["genai_cost"].record(cost, attributes)
|
376
|
+
|
377
|
+
except Exception as e:
|
378
|
+
handle_exception(span, e)
|
379
|
+
logger.error("Error in trace creation: %s", e)
|
380
|
+
|
381
|
+
return stream_generator()
|
382
|
+
|
383
|
+
# Handling for non-streaming responses
|
384
|
+
else:
|
385
|
+
# pylint: disable=line-too-long
|
386
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
387
|
+
response = await wrapped(*args, **kwargs)
|
388
|
+
|
389
|
+
try:
|
390
|
+
# Set base span attribues
|
391
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
392
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
393
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
394
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
395
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
396
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
397
|
+
gen_ai_endpoint)
|
398
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
399
|
+
environment)
|
400
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
401
|
+
application_name)
|
402
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
403
|
+
kwargs.get("model", "llama3"))
|
404
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
405
|
+
False)
|
406
|
+
if trace_content:
|
407
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
408
|
+
kwargs.get("prompt", ""))
|
409
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
410
|
+
response['response'])
|
411
|
+
|
412
|
+
# Calculate cost of the operation
|
413
|
+
cost = 0
|
414
|
+
prompt_tokens = response["prompt_eval_count"]
|
415
|
+
completion_tokens = response["eval_count"]
|
416
|
+
total_tokens = prompt_tokens + completion_tokens
|
417
|
+
|
418
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
419
|
+
prompt_tokens)
|
420
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
421
|
+
completion_tokens)
|
422
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
423
|
+
total_tokens)
|
424
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
425
|
+
response["done_reason"])
|
426
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
427
|
+
cost)
|
428
|
+
|
429
|
+
span.set_status(Status(StatusCode.OK))
|
430
|
+
|
431
|
+
if disable_metrics is False:
|
432
|
+
attributes = {
|
433
|
+
TELEMETRY_SDK_NAME:
|
434
|
+
"openlit",
|
435
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
436
|
+
application_name,
|
437
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
438
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
439
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
440
|
+
environment,
|
441
|
+
SemanticConvetion.GEN_AI_TYPE:
|
442
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
443
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
444
|
+
kwargs.get("model", "llama3")
|
445
|
+
}
|
446
|
+
|
447
|
+
metrics["genai_requests"].add(1, attributes)
|
448
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
449
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
450
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
451
|
+
metrics["genai_cost"].record(cost, attributes)
|
452
|
+
|
453
|
+
# Return original response
|
454
|
+
return response
|
455
|
+
|
456
|
+
except Exception as e:
|
457
|
+
handle_exception(span, e)
|
458
|
+
logger.error("Error in trace creation: %s", e)
|
459
|
+
|
460
|
+
# Return original response
|
461
|
+
return response
|
462
|
+
|
463
|
+
return wrapper
|
464
|
+
|
465
|
+
def async_embeddings(gen_ai_endpoint, version, environment, application_name,
|
466
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
467
|
+
"""
|
468
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
469
|
+
|
470
|
+
Args:
|
471
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
472
|
+
version: Version of the monitoring package.
|
473
|
+
environment: Deployment environment (e.g., production, staging).
|
474
|
+
application_name: Name of the application using the Ollama API.
|
475
|
+
tracer: OpenTelemetry tracer for creating spans.
|
476
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
477
|
+
trace_content: Flag indicating whether to trace the actual content.
|
478
|
+
|
479
|
+
Returns:
|
480
|
+
A function that wraps the embeddings method to add telemetry.
|
481
|
+
"""
|
482
|
+
|
483
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
484
|
+
"""
|
485
|
+
Wraps the 'embeddings' API call to add telemetry.
|
486
|
+
|
487
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
488
|
+
gracefully, adding details to the trace for observability.
|
489
|
+
|
490
|
+
Args:
|
491
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
492
|
+
instance: The instance of the class where the original method is defined.
|
493
|
+
args: Positional arguments for the 'embeddings' method.
|
494
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
495
|
+
|
496
|
+
Returns:
|
497
|
+
The response from the original 'embeddings' method.
|
498
|
+
"""
|
499
|
+
|
500
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
501
|
+
response = await wrapped(*args, **kwargs)
|
502
|
+
|
503
|
+
try:
|
504
|
+
# Calculate cost of the operation
|
505
|
+
cost = 0
|
506
|
+
prompt_tokens = general_tokens(kwargs.get('prompt', ""))
|
507
|
+
# Set Span attributes
|
508
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
509
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
510
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
511
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
512
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
513
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
514
|
+
gen_ai_endpoint)
|
515
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
516
|
+
environment)
|
517
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
518
|
+
application_name)
|
519
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
520
|
+
kwargs.get('model', "llama3"))
|
521
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
522
|
+
prompt_tokens)
|
523
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
524
|
+
prompt_tokens)
|
525
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
526
|
+
cost)
|
527
|
+
if trace_content:
|
528
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
529
|
+
kwargs.get('prompt', ""))
|
530
|
+
|
531
|
+
span.set_status(Status(StatusCode.OK))
|
532
|
+
|
533
|
+
if disable_metrics is False:
|
534
|
+
attributes = {
|
535
|
+
TELEMETRY_SDK_NAME:
|
536
|
+
"openlit",
|
537
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
538
|
+
application_name,
|
539
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
540
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
541
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
542
|
+
environment,
|
543
|
+
SemanticConvetion.GEN_AI_TYPE:
|
544
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
545
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
546
|
+
kwargs.get('model', "llama3")
|
547
|
+
}
|
548
|
+
|
549
|
+
metrics["genai_requests"].add(1, attributes)
|
550
|
+
metrics["genai_total_tokens"].add(prompt_tokens, attributes)
|
551
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
552
|
+
metrics["genai_cost"].record(cost, attributes)
|
553
|
+
|
554
|
+
# Return original response
|
555
|
+
return response
|
556
|
+
|
557
|
+
except Exception as e:
|
558
|
+
handle_exception(span, e)
|
559
|
+
logger.error("Error in trace creation: %s", e)
|
560
|
+
|
561
|
+
# Return original response
|
562
|
+
return response
|
563
|
+
|
564
|
+
return wrapper
|
@@ -0,0 +1,564 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import handle_exception, general_tokens
|
10
|
+
from openlit.semcov import SemanticConvetion
|
11
|
+
|
12
|
+
# Initialize logger for logging potential issues and operations
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
|
+
"""
|
18
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
|
+
version: Version of the monitoring package.
|
23
|
+
environment: Deployment environment (e.g., production, staging).
|
24
|
+
application_name: Name of the application using the Ollama API.
|
25
|
+
tracer: OpenTelemetry tracer for creating spans.
|
26
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
27
|
+
trace_content: Flag indicating whether to trace the actual content.
|
28
|
+
|
29
|
+
Returns:
|
30
|
+
A function that wraps the chat method to add telemetry.
|
31
|
+
"""
|
32
|
+
|
33
|
+
def wrapper(wrapped, instance, args, kwargs):
|
34
|
+
"""
|
35
|
+
Wraps the 'chat' API call to add telemetry.
|
36
|
+
|
37
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
|
+
gracefully, adding details to the trace for observability.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
wrapped: The original 'chat' method to be wrapped.
|
42
|
+
instance: The instance of the class where the original method is defined.
|
43
|
+
args: Positional arguments for the 'chat' method.
|
44
|
+
kwargs: Keyword arguments for the 'chat' method.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The response from the original 'chat' method.
|
48
|
+
"""
|
49
|
+
|
50
|
+
# Check if streaming is enabled for the API call
|
51
|
+
streaming = kwargs.get("stream", False)
|
52
|
+
|
53
|
+
# pylint: disable=no-else-return
|
54
|
+
if streaming:
|
55
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
+
def stream_generator():
|
57
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
58
|
+
# Placeholder for aggregating streaming response
|
59
|
+
llmresponse = ""
|
60
|
+
|
61
|
+
# Loop through streaming events capturing relevant details
|
62
|
+
for chunk in wrapped(*args, **kwargs):
|
63
|
+
# Collect aggregated response from events
|
64
|
+
content = chunk['message']['content']
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
if chunk['done'] is True:
|
68
|
+
completion_tokens = chunk["eval_count"]
|
69
|
+
|
70
|
+
yield chunk
|
71
|
+
|
72
|
+
# Handling exception ensure observability without disrupting operation
|
73
|
+
try:
|
74
|
+
# Format 'messages' into a single string
|
75
|
+
message_prompt = kwargs.get("messages", "")
|
76
|
+
formatted_messages = []
|
77
|
+
for message in message_prompt:
|
78
|
+
role = message["role"]
|
79
|
+
content = message["content"]
|
80
|
+
|
81
|
+
if isinstance(content, list):
|
82
|
+
content_str = ", ".join(
|
83
|
+
# pylint: disable=line-too-long
|
84
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
85
|
+
if "type" in item else f'text: {item["text"]}'
|
86
|
+
for item in content
|
87
|
+
)
|
88
|
+
formatted_messages.append(f"{role}: {content_str}")
|
89
|
+
else:
|
90
|
+
formatted_messages.append(f"{role}: {content}")
|
91
|
+
prompt = "\n".join(formatted_messages)
|
92
|
+
|
93
|
+
# Calculate cost of the operation
|
94
|
+
cost = 0
|
95
|
+
prompt_tokens = general_tokens(prompt)
|
96
|
+
total_tokens = prompt_tokens + completion_tokens
|
97
|
+
|
98
|
+
# Set Span attributes
|
99
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
100
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
101
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
102
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
103
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
104
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
105
|
+
gen_ai_endpoint)
|
106
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
107
|
+
environment)
|
108
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
109
|
+
application_name)
|
110
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
111
|
+
kwargs.get("model", "llama3"))
|
112
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
113
|
+
True)
|
114
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
115
|
+
prompt_tokens)
|
116
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
117
|
+
completion_tokens)
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
119
|
+
total_tokens)
|
120
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
121
|
+
cost)
|
122
|
+
if trace_content:
|
123
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
124
|
+
prompt)
|
125
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
126
|
+
llmresponse)
|
127
|
+
|
128
|
+
span.set_status(Status(StatusCode.OK))
|
129
|
+
|
130
|
+
if disable_metrics is False:
|
131
|
+
attributes = {
|
132
|
+
TELEMETRY_SDK_NAME:
|
133
|
+
"openlit",
|
134
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
135
|
+
application_name,
|
136
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
138
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
139
|
+
environment,
|
140
|
+
SemanticConvetion.GEN_AI_TYPE:
|
141
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
142
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
143
|
+
kwargs.get("model", "llama3")
|
144
|
+
}
|
145
|
+
|
146
|
+
metrics["genai_requests"].add(1, attributes)
|
147
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
148
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
149
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
150
|
+
metrics["genai_cost"].record(cost, attributes)
|
151
|
+
|
152
|
+
except Exception as e:
|
153
|
+
handle_exception(span, e)
|
154
|
+
logger.error("Error in trace creation: %s", e)
|
155
|
+
|
156
|
+
return stream_generator()
|
157
|
+
|
158
|
+
# Handling for non-streaming responses
|
159
|
+
else:
|
160
|
+
# pylint: disable=line-too-long
|
161
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
162
|
+
response = wrapped(*args, **kwargs)
|
163
|
+
|
164
|
+
try:
|
165
|
+
# Format 'messages' into a single string
|
166
|
+
message_prompt = kwargs.get("messages", "")
|
167
|
+
formatted_messages = []
|
168
|
+
for message in message_prompt:
|
169
|
+
role = message["role"]
|
170
|
+
content = message["content"]
|
171
|
+
|
172
|
+
if isinstance(content, list):
|
173
|
+
content_str = ", ".join(
|
174
|
+
# pylint: disable=line-too-long
|
175
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
176
|
+
if "type" in item else f'text: {item["text"]}'
|
177
|
+
for item in content
|
178
|
+
)
|
179
|
+
formatted_messages.append(f"{role}: {content_str}")
|
180
|
+
else:
|
181
|
+
formatted_messages.append(f"{role}: {content}")
|
182
|
+
prompt = "\n".join(formatted_messages)
|
183
|
+
|
184
|
+
# Set base span attribues
|
185
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
187
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
189
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
191
|
+
gen_ai_endpoint)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
193
|
+
environment)
|
194
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
195
|
+
application_name)
|
196
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
197
|
+
kwargs.get("model", "llama3"))
|
198
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
199
|
+
False)
|
200
|
+
if trace_content:
|
201
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
202
|
+
prompt)
|
203
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
204
|
+
response['message']['content'])
|
205
|
+
|
206
|
+
# Calculate cost of the operation
|
207
|
+
cost = 0
|
208
|
+
prompt_tokens = general_tokens(prompt)
|
209
|
+
completion_tokens = response["eval_count"]
|
210
|
+
total_tokens = prompt_tokens + completion_tokens
|
211
|
+
|
212
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
213
|
+
prompt_tokens)
|
214
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
215
|
+
completion_tokens)
|
216
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
217
|
+
total_tokens)
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
219
|
+
response["done_reason"])
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
221
|
+
cost)
|
222
|
+
|
223
|
+
span.set_status(Status(StatusCode.OK))
|
224
|
+
|
225
|
+
if disable_metrics is False:
|
226
|
+
attributes = {
|
227
|
+
TELEMETRY_SDK_NAME:
|
228
|
+
"openlit",
|
229
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
230
|
+
application_name,
|
231
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
232
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
233
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
234
|
+
environment,
|
235
|
+
SemanticConvetion.GEN_AI_TYPE:
|
236
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
237
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
238
|
+
kwargs.get("model", "llama3")
|
239
|
+
}
|
240
|
+
|
241
|
+
metrics["genai_requests"].add(1, attributes)
|
242
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
243
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
244
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
245
|
+
metrics["genai_cost"].record(cost, attributes)
|
246
|
+
|
247
|
+
# Return original response
|
248
|
+
return response
|
249
|
+
|
250
|
+
except Exception as e:
|
251
|
+
handle_exception(span, e)
|
252
|
+
logger.error("Error in trace creation: %s", e)
|
253
|
+
|
254
|
+
# Return original response
|
255
|
+
return response
|
256
|
+
|
257
|
+
return wrapper
|
258
|
+
|
259
|
+
def generate(gen_ai_endpoint, version, environment, application_name,
|
260
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
261
|
+
"""
|
262
|
+
Generates a telemetry wrapper for generate to collect metrics.
|
263
|
+
|
264
|
+
Args:
|
265
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
266
|
+
version: Version of the monitoring package.
|
267
|
+
environment: Deployment environment (e.g., production, staging).
|
268
|
+
application_name: Name of the application using the Ollama API.
|
269
|
+
tracer: OpenTelemetry tracer for creating spans.
|
270
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
271
|
+
trace_content: Flag indicating whether to trace the actual content.
|
272
|
+
|
273
|
+
Returns:
|
274
|
+
A function that wraps the generate method to add telemetry.
|
275
|
+
"""
|
276
|
+
|
277
|
+
def wrapper(wrapped, instance, args, kwargs):
|
278
|
+
"""
|
279
|
+
Wraps the 'generate' API call to add telemetry.
|
280
|
+
|
281
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
282
|
+
gracefully, adding details to the trace for observability.
|
283
|
+
|
284
|
+
Args:
|
285
|
+
wrapped: The original 'generate' method to be wrapped.
|
286
|
+
instance: The instance of the class where the original method is defined.
|
287
|
+
args: Positional arguments for the 'generate' method.
|
288
|
+
kwargs: Keyword arguments for the 'generate' method.
|
289
|
+
|
290
|
+
Returns:
|
291
|
+
The response from the original 'generate' method.
|
292
|
+
"""
|
293
|
+
|
294
|
+
# Check if streaming is enabled for the API call
|
295
|
+
streaming = kwargs.get("stream", False)
|
296
|
+
|
297
|
+
# pylint: disable=no-else-return
|
298
|
+
if streaming:
|
299
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
300
|
+
def stream_generator():
|
301
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
302
|
+
# Placeholder for aggregating streaming response
|
303
|
+
llmresponse = ""
|
304
|
+
|
305
|
+
# Loop through streaming events capturing relevant details
|
306
|
+
for chunk in wrapped(*args, **kwargs):
|
307
|
+
# Collect aggregated response from events
|
308
|
+
content = chunk['response']
|
309
|
+
llmresponse += content
|
310
|
+
|
311
|
+
if chunk['done'] is True:
|
312
|
+
completion_tokens = chunk["eval_count"]
|
313
|
+
|
314
|
+
yield chunk
|
315
|
+
|
316
|
+
# Handling exception ensure observability without disrupting operation
|
317
|
+
try:
|
318
|
+
# Calculate cost of the operation
|
319
|
+
cost = 0
|
320
|
+
prompt_tokens = general_tokens(kwargs.get("prompt", ""))
|
321
|
+
total_tokens = prompt_tokens + completion_tokens
|
322
|
+
|
323
|
+
# Set Span attributes
|
324
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
325
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
326
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
327
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
328
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
329
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
330
|
+
gen_ai_endpoint)
|
331
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
332
|
+
environment)
|
333
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
334
|
+
application_name)
|
335
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
336
|
+
kwargs.get("model", "llama3"))
|
337
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
338
|
+
True)
|
339
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
340
|
+
prompt_tokens)
|
341
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
342
|
+
completion_tokens)
|
343
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
344
|
+
total_tokens)
|
345
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
346
|
+
cost)
|
347
|
+
if trace_content:
|
348
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
349
|
+
kwargs.get("prompt", ""))
|
350
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
351
|
+
llmresponse)
|
352
|
+
|
353
|
+
span.set_status(Status(StatusCode.OK))
|
354
|
+
|
355
|
+
if disable_metrics is False:
|
356
|
+
attributes = {
|
357
|
+
TELEMETRY_SDK_NAME:
|
358
|
+
"openlit",
|
359
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
360
|
+
application_name,
|
361
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
362
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
363
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
364
|
+
environment,
|
365
|
+
SemanticConvetion.GEN_AI_TYPE:
|
366
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
367
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
368
|
+
kwargs.get("model", "llama3")
|
369
|
+
}
|
370
|
+
|
371
|
+
metrics["genai_requests"].add(1, attributes)
|
372
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
373
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
374
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
375
|
+
metrics["genai_cost"].record(cost, attributes)
|
376
|
+
|
377
|
+
except Exception as e:
|
378
|
+
handle_exception(span, e)
|
379
|
+
logger.error("Error in trace creation: %s", e)
|
380
|
+
|
381
|
+
return stream_generator()
|
382
|
+
|
383
|
+
# Handling for non-streaming responses
|
384
|
+
else:
|
385
|
+
# pylint: disable=line-too-long
|
386
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
387
|
+
response = wrapped(*args, **kwargs)
|
388
|
+
|
389
|
+
try:
|
390
|
+
# Set base span attribues
|
391
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
392
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
393
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
394
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
395
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
396
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
397
|
+
gen_ai_endpoint)
|
398
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
399
|
+
environment)
|
400
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
401
|
+
application_name)
|
402
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
403
|
+
kwargs.get("model", "llama3"))
|
404
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
405
|
+
False)
|
406
|
+
if trace_content:
|
407
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
408
|
+
kwargs.get("prompt", ""))
|
409
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
410
|
+
response['response'])
|
411
|
+
|
412
|
+
# Calculate cost of the operation
|
413
|
+
cost = 0
|
414
|
+
prompt_tokens = response["prompt_eval_count"]
|
415
|
+
completion_tokens = response["eval_count"]
|
416
|
+
total_tokens = prompt_tokens + completion_tokens
|
417
|
+
|
418
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
419
|
+
prompt_tokens)
|
420
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
421
|
+
completion_tokens)
|
422
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
423
|
+
total_tokens)
|
424
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
425
|
+
response["done_reason"])
|
426
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
427
|
+
cost)
|
428
|
+
|
429
|
+
span.set_status(Status(StatusCode.OK))
|
430
|
+
|
431
|
+
if disable_metrics is False:
|
432
|
+
attributes = {
|
433
|
+
TELEMETRY_SDK_NAME:
|
434
|
+
"openlit",
|
435
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
436
|
+
application_name,
|
437
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
438
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
439
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
440
|
+
environment,
|
441
|
+
SemanticConvetion.GEN_AI_TYPE:
|
442
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
443
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
444
|
+
kwargs.get("model", "llama3")
|
445
|
+
}
|
446
|
+
|
447
|
+
metrics["genai_requests"].add(1, attributes)
|
448
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
449
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
450
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
451
|
+
metrics["genai_cost"].record(cost, attributes)
|
452
|
+
|
453
|
+
# Return original response
|
454
|
+
return response
|
455
|
+
|
456
|
+
except Exception as e:
|
457
|
+
handle_exception(span, e)
|
458
|
+
logger.error("Error in trace creation: %s", e)
|
459
|
+
|
460
|
+
# Return original response
|
461
|
+
return response
|
462
|
+
|
463
|
+
return wrapper
|
464
|
+
|
465
|
+
def embeddings(gen_ai_endpoint, version, environment, application_name,
|
466
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
467
|
+
"""
|
468
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
469
|
+
|
470
|
+
Args:
|
471
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
472
|
+
version: Version of the monitoring package.
|
473
|
+
environment: Deployment environment (e.g., production, staging).
|
474
|
+
application_name: Name of the application using the Ollama API.
|
475
|
+
tracer: OpenTelemetry tracer for creating spans.
|
476
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
477
|
+
trace_content: Flag indicating whether to trace the actual content.
|
478
|
+
|
479
|
+
Returns:
|
480
|
+
A function that wraps the embeddings method to add telemetry.
|
481
|
+
"""
|
482
|
+
|
483
|
+
def wrapper(wrapped, instance, args, kwargs):
|
484
|
+
"""
|
485
|
+
Wraps the 'embeddings' API call to add telemetry.
|
486
|
+
|
487
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
488
|
+
gracefully, adding details to the trace for observability.
|
489
|
+
|
490
|
+
Args:
|
491
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
492
|
+
instance: The instance of the class where the original method is defined.
|
493
|
+
args: Positional arguments for the 'embeddings' method.
|
494
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
495
|
+
|
496
|
+
Returns:
|
497
|
+
The response from the original 'embeddings' method.
|
498
|
+
"""
|
499
|
+
|
500
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
501
|
+
response = wrapped(*args, **kwargs)
|
502
|
+
|
503
|
+
try:
|
504
|
+
# Calculate cost of the operation
|
505
|
+
cost = 0
|
506
|
+
prompt_tokens = general_tokens(kwargs.get('prompt', ""))
|
507
|
+
# Set Span attributes
|
508
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
509
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
510
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
|
511
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
512
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
513
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
514
|
+
gen_ai_endpoint)
|
515
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
516
|
+
environment)
|
517
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
518
|
+
application_name)
|
519
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
520
|
+
kwargs.get('model', "llama3"))
|
521
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
522
|
+
prompt_tokens)
|
523
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
524
|
+
prompt_tokens)
|
525
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
526
|
+
cost)
|
527
|
+
if trace_content:
|
528
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
529
|
+
kwargs.get('prompt', ""))
|
530
|
+
|
531
|
+
span.set_status(Status(StatusCode.OK))
|
532
|
+
|
533
|
+
if disable_metrics is False:
|
534
|
+
attributes = {
|
535
|
+
TELEMETRY_SDK_NAME:
|
536
|
+
"openlit",
|
537
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
538
|
+
application_name,
|
539
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
540
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
541
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
542
|
+
environment,
|
543
|
+
SemanticConvetion.GEN_AI_TYPE:
|
544
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
545
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
546
|
+
kwargs.get('model', "llama3")
|
547
|
+
}
|
548
|
+
|
549
|
+
metrics["genai_requests"].add(1, attributes)
|
550
|
+
metrics["genai_total_tokens"].add(prompt_tokens, attributes)
|
551
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
552
|
+
metrics["genai_cost"].record(cost, attributes)
|
553
|
+
|
554
|
+
# Return original response
|
555
|
+
return response
|
556
|
+
|
557
|
+
except Exception as e:
|
558
|
+
handle_exception(span, e)
|
559
|
+
logger.error("Error in trace creation: %s", e)
|
560
|
+
|
561
|
+
# Return original response
|
562
|
+
return response
|
563
|
+
|
564
|
+
return wrapper
|
openlit/semcov/__init__.py
CHANGED
@@ -88,6 +88,7 @@ class SemanticConvetion:
|
|
88
88
|
GEN_AI_SYSTEM_BEDROCK = "bedrock"
|
89
89
|
GEN_AI_SYSTEM_VERTEXAI = "vertexai"
|
90
90
|
GEN_AI_SYSTEM_GROQ = "groq"
|
91
|
+
GEN_AI_SYSTEM_OLLAMA = "ollama"
|
91
92
|
GEN_AI_SYSTEM_LANGCHAIN = "langchain"
|
92
93
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
93
94
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.6.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT
|
@@ -50,6 +50,7 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
50
50
|
|
51
51
|
### LLMs
|
52
52
|
- [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai)
|
53
|
+
- [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama)
|
53
54
|
- [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic)
|
54
55
|
- [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere)
|
55
56
|
- [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
openlit/__helpers.py,sha256=EEbLEUKuCiBp0WiieAvUnGcaU5D7grFgNVDCBgMKjQE,4651
|
2
|
-
openlit/__init__.py,sha256=
|
2
|
+
openlit/__init__.py,sha256=6D83ebOY_LRaOtppUrgJdJfjosF3Ao4FtomEhH21pYY,9781
|
3
3
|
openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
|
4
4
|
openlit/instrumentation/anthropic/anthropic.py,sha256=CYBui5eEfWdSfFF0xtCQjh1xO-gCVJc_V9Hli0szVZE,16026
|
5
5
|
openlit/instrumentation/anthropic/async_anthropic.py,sha256=NW84kTQ3BkUx1zZuMRps_J7zTYkmq5BxOrqSjqWInBs,16068
|
@@ -21,6 +21,9 @@ openlit/instrumentation/llamaindex/llamaindex.py,sha256=uiIigbwhonSbJWA7LpgOVI1R
|
|
21
21
|
openlit/instrumentation/mistral/__init__.py,sha256=zJCIpFWRbsYrvooOJYuqwyuKeSOQLWbyXWCObL-Snks,3156
|
22
22
|
openlit/instrumentation/mistral/async_mistral.py,sha256=PXpiLwkonTtAPVOUh9pXMSYeabwH0GFG_HRDWrEKhMM,21361
|
23
23
|
openlit/instrumentation/mistral/mistral.py,sha256=nbAyMlPiuA9hihePkM_nnxAjahZSndT-B-qXRO5VIhk,21212
|
24
|
+
openlit/instrumentation/ollama/__init__.py,sha256=cOax8PiypDuo_FC4WvDCYBRo7lH5nV9xU92h7k-eZbg,3812
|
25
|
+
openlit/instrumentation/ollama/async_ollama.py,sha256=ESk1zZTj2hPmkWIH5F2owuoo0apleDSSx5VORlO3e3w,28991
|
26
|
+
openlit/instrumentation/ollama/ollama.py,sha256=PLGF9RB3TRNZ9GSGqeGVvKFBtgUK8Hc8xwvk-3NPeGI,28901
|
24
27
|
openlit/instrumentation/openai/__init__.py,sha256=AZ2cPr3TMKkgGdMl_yXMeSi7bWhtmMqOW1iHdzHHGHA,16265
|
25
28
|
openlit/instrumentation/openai/async_azure_openai.py,sha256=QE_5KHaCHAndkf7Y2Iq66mZUc0I1qtqIJ6iYPnwiuXA,46297
|
26
29
|
openlit/instrumentation/openai/async_openai.py,sha256=qfJG_gIkSz3Gjau0zQ_G3tvkqkOd-md5LBK6wIjvH0U,45841
|
@@ -37,8 +40,8 @@ openlit/instrumentation/vertexai/async_vertexai.py,sha256=PMHYyLf1J4gZpC_-KZ_ZVx
|
|
37
40
|
openlit/instrumentation/vertexai/vertexai.py,sha256=UvpNKBHPoV9idVMfGigZnmWuEQiyqSwZn0zK9-U7Lzw,52125
|
38
41
|
openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
|
39
42
|
openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
|
40
|
-
openlit/semcov/__init__.py,sha256=
|
41
|
-
openlit-1.
|
42
|
-
openlit-1.
|
43
|
-
openlit-1.
|
44
|
-
openlit-1.
|
43
|
+
openlit/semcov/__init__.py,sha256=3Whg8caSmGi-rF2PVkJohpCf5O3QjpgN7ai8r4XBIVI,6204
|
44
|
+
openlit-1.6.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
45
|
+
openlit-1.6.0.dist-info/METADATA,sha256=4qtHtjElIivkXWyJFXfUt-0_tTaidonqmJbT7Uvq8rc,12213
|
46
|
+
openlit-1.6.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
47
|
+
openlit-1.6.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|