openlit 1.34.5__py3-none-any.whl → 1.34.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/gpt4all/__init__.py +3 -6
- openlit/instrumentation/gpt4all/gpt4all.py +75 -383
- openlit/instrumentation/gpt4all/utils.py +281 -0
- openlit/instrumentation/openai/async_openai.py +1 -1
- openlit/instrumentation/premai/__init__.py +2 -3
- openlit/instrumentation/premai/premai.py +84 -454
- openlit/instrumentation/premai/utils.py +326 -0
- openlit/instrumentation/reka/__init__.py +5 -7
- openlit/instrumentation/reka/async_reka.py +25 -163
- openlit/instrumentation/reka/reka.py +24 -162
- openlit/instrumentation/reka/utils.py +193 -0
- openlit/instrumentation/together/utils.py +6 -6
- {openlit-1.34.5.dist-info → openlit-1.34.8.dist-info}/METADATA +1 -1
- {openlit-1.34.5.dist-info → openlit-1.34.8.dist-info}/RECORD +16 -13
- {openlit-1.34.5.dist-info → openlit-1.34.8.dist-info}/LICENSE +0 -0
- {openlit-1.34.5.dist-info → openlit-1.34.8.dist-info}/WHEEL +0 -0
@@ -0,0 +1,281 @@
|
|
1
|
+
"""
|
2
|
+
GPT4All OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import Status, StatusCode
|
8
|
+
|
9
|
+
from openlit.__helpers import (
|
10
|
+
calculate_ttft,
|
11
|
+
calculate_tbt,
|
12
|
+
general_tokens,
|
13
|
+
create_metrics_attributes,
|
14
|
+
get_chat_model_cost,
|
15
|
+
get_embed_model_cost,
|
16
|
+
)
|
17
|
+
from openlit.semcov import SemanticConvention
|
18
|
+
|
19
|
+
def format_content(prompt):
|
20
|
+
"""
|
21
|
+
Process a prompt to extract content.
|
22
|
+
"""
|
23
|
+
return str(prompt) if prompt else ""
|
24
|
+
|
25
|
+
def process_chunk(scope, chunk):
|
26
|
+
"""
|
27
|
+
Process a chunk of response data and update state.
|
28
|
+
"""
|
29
|
+
|
30
|
+
end_time = time.time()
|
31
|
+
# Record the timestamp for the current chunk
|
32
|
+
scope._timestamps.append(end_time)
|
33
|
+
|
34
|
+
if len(scope._timestamps) == 1:
|
35
|
+
# Calculate time to first chunk
|
36
|
+
scope._ttft = calculate_ttft(scope._timestamps, scope._start_time)
|
37
|
+
|
38
|
+
scope._llmresponse += chunk
|
39
|
+
scope._end_time = time.time()
|
40
|
+
|
41
|
+
def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
|
42
|
+
request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
|
43
|
+
"""
|
44
|
+
Set common span attributes for both generate and embed operations.
|
45
|
+
"""
|
46
|
+
|
47
|
+
scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
48
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
|
49
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
|
50
|
+
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
|
51
|
+
scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
|
52
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
|
53
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_model)
|
54
|
+
scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
55
|
+
scope._span.set_attribute(SERVICE_NAME, application_name)
|
56
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
|
57
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, tbt)
|
58
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, ttft)
|
59
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
|
60
|
+
|
61
|
+
def record_completion_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
|
62
|
+
request_model, response_model, environment, application_name, start_time, end_time,
|
63
|
+
input_tokens, output_tokens, cost, tbt=None, ttft=None):
|
64
|
+
"""
|
65
|
+
Record completion-specific metrics for the operation.
|
66
|
+
"""
|
67
|
+
|
68
|
+
attributes = create_metrics_attributes(
|
69
|
+
operation=gen_ai_operation,
|
70
|
+
system=gen_ai_system,
|
71
|
+
server_address=server_address,
|
72
|
+
server_port=server_port,
|
73
|
+
request_model=request_model,
|
74
|
+
response_model=response_model,
|
75
|
+
service_name=application_name,
|
76
|
+
deployment_environment=environment,
|
77
|
+
)
|
78
|
+
metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
|
79
|
+
metrics["genai_requests"].add(1, attributes)
|
80
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
81
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
82
|
+
metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
|
83
|
+
metrics["genai_cost"].record(cost, attributes)
|
84
|
+
if tbt is not None:
|
85
|
+
metrics["genai_server_tbt"].record(tbt, attributes)
|
86
|
+
if ttft is not None:
|
87
|
+
metrics["genai_server_ttft"].record(ttft, attributes)
|
88
|
+
|
89
|
+
def record_embedding_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
|
90
|
+
request_model, response_model, environment, application_name, start_time, end_time,
|
91
|
+
input_tokens, cost):
|
92
|
+
"""
|
93
|
+
Record embedding-specific metrics for the operation.
|
94
|
+
"""
|
95
|
+
|
96
|
+
attributes = create_metrics_attributes(
|
97
|
+
operation=gen_ai_operation,
|
98
|
+
system=gen_ai_system,
|
99
|
+
server_address=server_address,
|
100
|
+
server_port=server_port,
|
101
|
+
request_model=request_model,
|
102
|
+
response_model=response_model,
|
103
|
+
service_name=application_name,
|
104
|
+
deployment_environment=environment,
|
105
|
+
)
|
106
|
+
metrics["genai_client_usage_tokens"].record(input_tokens, attributes)
|
107
|
+
metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
|
108
|
+
metrics["genai_requests"].add(1, attributes)
|
109
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
110
|
+
metrics["genai_cost"].record(cost, attributes)
|
111
|
+
|
112
|
+
def common_generate_logic(scope, pricing_info, environment, application_name, metrics,
|
113
|
+
capture_message_content, disable_metrics, version, is_stream):
|
114
|
+
"""
|
115
|
+
Process generate request and generate Telemetry
|
116
|
+
"""
|
117
|
+
|
118
|
+
if len(scope._timestamps) > 1:
|
119
|
+
scope._tbt = calculate_tbt(scope._timestamps)
|
120
|
+
|
121
|
+
prompt = format_content(scope._kwargs.get("prompt") or (scope._args[0] if scope._args else "") or "")
|
122
|
+
request_model = scope._request_model
|
123
|
+
|
124
|
+
# Calculate tokens using input prompt and aggregated response
|
125
|
+
input_tokens = general_tokens(prompt)
|
126
|
+
output_tokens = general_tokens(scope._llmresponse)
|
127
|
+
|
128
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
129
|
+
|
130
|
+
# Common Span Attributes
|
131
|
+
common_span_attributes(scope,
|
132
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
|
133
|
+
scope._server_address, scope._server_port, request_model, request_model,
|
134
|
+
environment, application_name, is_stream, scope._tbt, scope._ttft, version)
|
135
|
+
|
136
|
+
# Span Attributes for Request parameters
|
137
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, scope._kwargs.get("repeat_penalty", 1.18))
|
138
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get("max_tokens", 200))
|
139
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, scope._kwargs.get("presence_penalty", 0.0))
|
140
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get("temp", 0.7))
|
141
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, scope._kwargs.get("top_p", 0.4))
|
142
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_K, scope._kwargs.get("top_k", 40))
|
143
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text" if isinstance(scope._llmresponse, str) else "json")
|
144
|
+
|
145
|
+
# Span Attributes for Cost and Tokens
|
146
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
|
147
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
|
148
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens + output_tokens)
|
149
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
150
|
+
|
151
|
+
# Span Attributes for Tools
|
152
|
+
if scope._tools:
|
153
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function","")).get("name","")
|
154
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id","")))
|
155
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function","").get("arguments","")))
|
156
|
+
|
157
|
+
# Span Attributes for Content
|
158
|
+
if capture_message_content:
|
159
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_PROMPT, prompt)
|
160
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, scope._llmresponse)
|
161
|
+
|
162
|
+
# To be removed one the change to span_attributes (from span events) is complete
|
163
|
+
scope._span.add_event(
|
164
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
165
|
+
attributes={
|
166
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
167
|
+
},
|
168
|
+
)
|
169
|
+
scope._span.add_event(
|
170
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
171
|
+
attributes={
|
172
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
|
173
|
+
},
|
174
|
+
)
|
175
|
+
|
176
|
+
scope._span.set_status(Status(StatusCode.OK))
|
177
|
+
|
178
|
+
# Metrics
|
179
|
+
if not disable_metrics:
|
180
|
+
record_completion_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
|
181
|
+
scope._server_address, scope._server_port, request_model, request_model, environment,
|
182
|
+
application_name, scope._start_time, scope._end_time, input_tokens, output_tokens,
|
183
|
+
cost, scope._tbt, scope._ttft)
|
184
|
+
|
185
|
+
def common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
|
186
|
+
capture_message_content, disable_metrics, version):
|
187
|
+
"""
|
188
|
+
Process embedding request and generate Telemetry
|
189
|
+
"""
|
190
|
+
|
191
|
+
prompt = format_content(scope._kwargs.get("text") or "")
|
192
|
+
request_model = scope._request_model
|
193
|
+
|
194
|
+
input_tokens = general_tokens(prompt)
|
195
|
+
|
196
|
+
cost = get_embed_model_cost(request_model, pricing_info, input_tokens)
|
197
|
+
|
198
|
+
# Common Span Attributes
|
199
|
+
common_span_attributes(scope,
|
200
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
|
201
|
+
scope._server_address, scope._server_port, request_model, request_model,
|
202
|
+
environment, application_name, False, scope._tbt, scope._ttft, version)
|
203
|
+
|
204
|
+
# Embedding-specific span attributes
|
205
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
|
206
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens)
|
207
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
208
|
+
|
209
|
+
# Span Attributes for Content
|
210
|
+
if capture_message_content:
|
211
|
+
scope._span.add_event(
|
212
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
213
|
+
attributes={
|
214
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: str(scope._kwargs.get("input", "")),
|
215
|
+
},
|
216
|
+
)
|
217
|
+
|
218
|
+
scope._span.set_status(Status(StatusCode.OK))
|
219
|
+
|
220
|
+
# Metrics
|
221
|
+
if not disable_metrics:
|
222
|
+
record_embedding_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
|
223
|
+
scope._server_address, scope._server_port, request_model, request_model, environment,
|
224
|
+
application_name, scope._start_time, scope._end_time, input_tokens, cost)
|
225
|
+
|
226
|
+
def process_streaming_generate_response(scope, pricing_info, environment, application_name, metrics,
|
227
|
+
capture_message_content=False, disable_metrics=False, version=""):
|
228
|
+
"""
|
229
|
+
Process generate request and generate Telemetry
|
230
|
+
"""
|
231
|
+
common_generate_logic(scope, pricing_info, environment, application_name, metrics,
|
232
|
+
capture_message_content, disable_metrics, version, is_stream=True)
|
233
|
+
|
234
|
+
def process_generate_response(response, request_model, pricing_info, server_port, server_address,
|
235
|
+
environment, application_name, metrics, start_time, span, args, kwargs, capture_message_content=False,
|
236
|
+
disable_metrics=False, version="1.0.0"):
|
237
|
+
"""
|
238
|
+
Process generate request and generate Telemetry
|
239
|
+
"""
|
240
|
+
|
241
|
+
scope = type("GenericScope", (), {})()
|
242
|
+
|
243
|
+
scope._start_time = start_time
|
244
|
+
scope._end_time = time.time()
|
245
|
+
scope._span = span
|
246
|
+
scope._llmresponse = str(response)
|
247
|
+
scope._request_model = request_model
|
248
|
+
scope._timestamps = []
|
249
|
+
scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
|
250
|
+
scope._server_address, scope._server_port = server_address, server_port
|
251
|
+
scope._kwargs = kwargs
|
252
|
+
scope._args = args
|
253
|
+
scope._tools = None
|
254
|
+
|
255
|
+
common_generate_logic(scope, pricing_info, environment, application_name, metrics,
|
256
|
+
capture_message_content, disable_metrics, version, is_stream=False)
|
257
|
+
|
258
|
+
return response
|
259
|
+
|
260
|
+
def process_embedding_response(response, request_model, pricing_info, server_port, server_address,
|
261
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
262
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
263
|
+
"""
|
264
|
+
Process embedding request and generate Telemetry
|
265
|
+
"""
|
266
|
+
|
267
|
+
scope = type("GenericScope", (), {})()
|
268
|
+
|
269
|
+
scope._start_time = start_time
|
270
|
+
scope._end_time = time.time()
|
271
|
+
scope._span = span
|
272
|
+
scope._request_model = request_model
|
273
|
+
scope._timestamps = []
|
274
|
+
scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
|
275
|
+
scope._server_address, scope._server_port = server_address, server_port
|
276
|
+
scope._kwargs = kwargs
|
277
|
+
|
278
|
+
common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
|
279
|
+
capture_message_content, disable_metrics, version)
|
280
|
+
|
281
|
+
return response
|
@@ -733,7 +733,7 @@ def async_chat_completions(version, environment, application_name,
|
|
733
733
|
formatted_messages = []
|
734
734
|
for message in message_prompt:
|
735
735
|
role = message["role"]
|
736
|
-
content = message
|
736
|
+
content = message.get("content", "")
|
737
737
|
|
738
738
|
if isinstance(content, list):
|
739
739
|
content_str = ", ".join(
|
@@ -1,4 +1,3 @@
|
|
1
|
-
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
1
|
"""Initializer of Auto Instrumentation of Prem AI Functions"""
|
3
2
|
|
4
3
|
from typing import Collection
|
@@ -21,8 +20,8 @@ class PremAIInstrumentor(BaseInstrumentor):
|
|
21
20
|
return _instruments
|
22
21
|
|
23
22
|
def _instrument(self, **kwargs):
|
24
|
-
application_name = kwargs.get("application_name", "
|
25
|
-
environment = kwargs.get("environment", "
|
23
|
+
application_name = kwargs.get("application_name", "default")
|
24
|
+
environment = kwargs.get("environment", "default")
|
26
25
|
tracer = kwargs.get("tracer")
|
27
26
|
metrics = kwargs.get("metrics_dict")
|
28
27
|
pricing_info = kwargs.get("pricing_info", {})
|