openlit 1.34.5__py3-none-any.whl → 1.34.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,281 @@
1
+ """
2
+ GPT4All OpenTelemetry instrumentation utility functions
3
+ """
4
+ import time
5
+
6
+ from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
+ from opentelemetry.trace import Status, StatusCode
8
+
9
+ from openlit.__helpers import (
10
+ calculate_ttft,
11
+ calculate_tbt,
12
+ general_tokens,
13
+ create_metrics_attributes,
14
+ get_chat_model_cost,
15
+ get_embed_model_cost,
16
+ )
17
+ from openlit.semcov import SemanticConvention
18
+
19
+ def format_content(prompt):
20
+ """
21
+ Process a prompt to extract content.
22
+ """
23
+ return str(prompt) if prompt else ""
24
+
25
+ def process_chunk(scope, chunk):
26
+ """
27
+ Process a chunk of response data and update state.
28
+ """
29
+
30
+ end_time = time.time()
31
+ # Record the timestamp for the current chunk
32
+ scope._timestamps.append(end_time)
33
+
34
+ if len(scope._timestamps) == 1:
35
+ # Calculate time to first chunk
36
+ scope._ttft = calculate_ttft(scope._timestamps, scope._start_time)
37
+
38
+ scope._llmresponse += chunk
39
+ scope._end_time = time.time()
40
+
41
+ def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
42
+ request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
43
+ """
44
+ Set common span attributes for both generate and embed operations.
45
+ """
46
+
47
+ scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
48
+ scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
49
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
50
+ scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
51
+ scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
52
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
53
+ scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_model)
54
+ scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
55
+ scope._span.set_attribute(SERVICE_NAME, application_name)
56
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
57
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, tbt)
58
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, ttft)
59
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
60
+
61
+ def record_completion_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
62
+ request_model, response_model, environment, application_name, start_time, end_time,
63
+ input_tokens, output_tokens, cost, tbt=None, ttft=None):
64
+ """
65
+ Record completion-specific metrics for the operation.
66
+ """
67
+
68
+ attributes = create_metrics_attributes(
69
+ operation=gen_ai_operation,
70
+ system=gen_ai_system,
71
+ server_address=server_address,
72
+ server_port=server_port,
73
+ request_model=request_model,
74
+ response_model=response_model,
75
+ service_name=application_name,
76
+ deployment_environment=environment,
77
+ )
78
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
79
+ metrics["genai_requests"].add(1, attributes)
80
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
81
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
82
+ metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
83
+ metrics["genai_cost"].record(cost, attributes)
84
+ if tbt is not None:
85
+ metrics["genai_server_tbt"].record(tbt, attributes)
86
+ if ttft is not None:
87
+ metrics["genai_server_ttft"].record(ttft, attributes)
88
+
89
+ def record_embedding_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
90
+ request_model, response_model, environment, application_name, start_time, end_time,
91
+ input_tokens, cost):
92
+ """
93
+ Record embedding-specific metrics for the operation.
94
+ """
95
+
96
+ attributes = create_metrics_attributes(
97
+ operation=gen_ai_operation,
98
+ system=gen_ai_system,
99
+ server_address=server_address,
100
+ server_port=server_port,
101
+ request_model=request_model,
102
+ response_model=response_model,
103
+ service_name=application_name,
104
+ deployment_environment=environment,
105
+ )
106
+ metrics["genai_client_usage_tokens"].record(input_tokens, attributes)
107
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
108
+ metrics["genai_requests"].add(1, attributes)
109
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
110
+ metrics["genai_cost"].record(cost, attributes)
111
+
112
+ def common_generate_logic(scope, pricing_info, environment, application_name, metrics,
113
+ capture_message_content, disable_metrics, version, is_stream):
114
+ """
115
+ Process generate request and generate Telemetry
116
+ """
117
+
118
+ if len(scope._timestamps) > 1:
119
+ scope._tbt = calculate_tbt(scope._timestamps)
120
+
121
+ prompt = format_content(scope._kwargs.get("prompt") or (scope._args[0] if scope._args else "") or "")
122
+ request_model = scope._request_model
123
+
124
+ # Calculate tokens using input prompt and aggregated response
125
+ input_tokens = general_tokens(prompt)
126
+ output_tokens = general_tokens(scope._llmresponse)
127
+
128
+ cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
129
+
130
+ # Common Span Attributes
131
+ common_span_attributes(scope,
132
+ SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
133
+ scope._server_address, scope._server_port, request_model, request_model,
134
+ environment, application_name, is_stream, scope._tbt, scope._ttft, version)
135
+
136
+ # Span Attributes for Request parameters
137
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, scope._kwargs.get("repeat_penalty", 1.18))
138
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get("max_tokens", 200))
139
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, scope._kwargs.get("presence_penalty", 0.0))
140
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get("temp", 0.7))
141
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, scope._kwargs.get("top_p", 0.4))
142
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_K, scope._kwargs.get("top_k", 40))
143
+ scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text" if isinstance(scope._llmresponse, str) else "json")
144
+
145
+ # Span Attributes for Cost and Tokens
146
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
147
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
148
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens + output_tokens)
149
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
150
+
151
+ # Span Attributes for Tools
152
+ if scope._tools:
153
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function","")).get("name","")
154
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id","")))
155
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function","").get("arguments","")))
156
+
157
+ # Span Attributes for Content
158
+ if capture_message_content:
159
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_PROMPT, prompt)
160
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, scope._llmresponse)
161
+
162
+ # To be removed one the change to span_attributes (from span events) is complete
163
+ scope._span.add_event(
164
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
165
+ attributes={
166
+ SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
167
+ },
168
+ )
169
+ scope._span.add_event(
170
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
171
+ attributes={
172
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
173
+ },
174
+ )
175
+
176
+ scope._span.set_status(Status(StatusCode.OK))
177
+
178
+ # Metrics
179
+ if not disable_metrics:
180
+ record_completion_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
181
+ scope._server_address, scope._server_port, request_model, request_model, environment,
182
+ application_name, scope._start_time, scope._end_time, input_tokens, output_tokens,
183
+ cost, scope._tbt, scope._ttft)
184
+
185
+ def common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
186
+ capture_message_content, disable_metrics, version):
187
+ """
188
+ Process embedding request and generate Telemetry
189
+ """
190
+
191
+ prompt = format_content(scope._kwargs.get("text") or "")
192
+ request_model = scope._request_model
193
+
194
+ input_tokens = general_tokens(prompt)
195
+
196
+ cost = get_embed_model_cost(request_model, pricing_info, input_tokens)
197
+
198
+ # Common Span Attributes
199
+ common_span_attributes(scope,
200
+ SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
201
+ scope._server_address, scope._server_port, request_model, request_model,
202
+ environment, application_name, False, scope._tbt, scope._ttft, version)
203
+
204
+ # Embedding-specific span attributes
205
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
206
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens)
207
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
208
+
209
+ # Span Attributes for Content
210
+ if capture_message_content:
211
+ scope._span.add_event(
212
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
213
+ attributes={
214
+ SemanticConvention.GEN_AI_CONTENT_PROMPT: str(scope._kwargs.get("input", "")),
215
+ },
216
+ )
217
+
218
+ scope._span.set_status(Status(StatusCode.OK))
219
+
220
+ # Metrics
221
+ if not disable_metrics:
222
+ record_embedding_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_GPT4ALL,
223
+ scope._server_address, scope._server_port, request_model, request_model, environment,
224
+ application_name, scope._start_time, scope._end_time, input_tokens, cost)
225
+
226
+ def process_streaming_generate_response(scope, pricing_info, environment, application_name, metrics,
227
+ capture_message_content=False, disable_metrics=False, version=""):
228
+ """
229
+ Process generate request and generate Telemetry
230
+ """
231
+ common_generate_logic(scope, pricing_info, environment, application_name, metrics,
232
+ capture_message_content, disable_metrics, version, is_stream=True)
233
+
234
+ def process_generate_response(response, request_model, pricing_info, server_port, server_address,
235
+ environment, application_name, metrics, start_time, span, args, kwargs, capture_message_content=False,
236
+ disable_metrics=False, version="1.0.0"):
237
+ """
238
+ Process generate request and generate Telemetry
239
+ """
240
+
241
+ scope = type("GenericScope", (), {})()
242
+
243
+ scope._start_time = start_time
244
+ scope._end_time = time.time()
245
+ scope._span = span
246
+ scope._llmresponse = str(response)
247
+ scope._request_model = request_model
248
+ scope._timestamps = []
249
+ scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
250
+ scope._server_address, scope._server_port = server_address, server_port
251
+ scope._kwargs = kwargs
252
+ scope._args = args
253
+ scope._tools = None
254
+
255
+ common_generate_logic(scope, pricing_info, environment, application_name, metrics,
256
+ capture_message_content, disable_metrics, version, is_stream=False)
257
+
258
+ return response
259
+
260
+ def process_embedding_response(response, request_model, pricing_info, server_port, server_address,
261
+ environment, application_name, metrics, start_time, span, capture_message_content=False,
262
+ disable_metrics=False, version="1.0.0", **kwargs):
263
+ """
264
+ Process embedding request and generate Telemetry
265
+ """
266
+
267
+ scope = type("GenericScope", (), {})()
268
+
269
+ scope._start_time = start_time
270
+ scope._end_time = time.time()
271
+ scope._span = span
272
+ scope._request_model = request_model
273
+ scope._timestamps = []
274
+ scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
275
+ scope._server_address, scope._server_port = server_address, server_port
276
+ scope._kwargs = kwargs
277
+
278
+ common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
279
+ capture_message_content, disable_metrics, version)
280
+
281
+ return response
@@ -733,7 +733,7 @@ def async_chat_completions(version, environment, application_name,
733
733
  formatted_messages = []
734
734
  for message in message_prompt:
735
735
  role = message["role"]
736
- content = message["content"]
736
+ content = message.get("content", "")
737
737
 
738
738
  if isinstance(content, list):
739
739
  content_str = ", ".join(
@@ -1,4 +1,3 @@
1
- # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
1
  """Initializer of Auto Instrumentation of Prem AI Functions"""
3
2
 
4
3
  from typing import Collection
@@ -21,8 +20,8 @@ class PremAIInstrumentor(BaseInstrumentor):
21
20
  return _instruments
22
21
 
23
22
  def _instrument(self, **kwargs):
24
- application_name = kwargs.get("application_name", "default_application")
25
- environment = kwargs.get("environment", "default_environment")
23
+ application_name = kwargs.get("application_name", "default")
24
+ environment = kwargs.get("environment", "default")
26
25
  tracer = kwargs.get("tracer")
27
26
  metrics = kwargs.get("metrics_dict")
28
27
  pricing_info = kwargs.get("pricing_info", {})