openlit 1.34.5__py3-none-any.whl → 1.34.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/openai/async_openai.py +1 -1
- openlit/instrumentation/premai/__init__.py +0 -1
- openlit/instrumentation/premai/premai.py +84 -454
- openlit/instrumentation/premai/utils.py +325 -0
- openlit/instrumentation/reka/__init__.py +5 -7
- openlit/instrumentation/reka/async_reka.py +25 -163
- openlit/instrumentation/reka/reka.py +24 -162
- openlit/instrumentation/reka/utils.py +193 -0
- openlit/instrumentation/together/utils.py +3 -3
- {openlit-1.34.5.dist-info → openlit-1.34.7.dist-info}/METADATA +1 -1
- {openlit-1.34.5.dist-info → openlit-1.34.7.dist-info}/RECORD +13 -11
- {openlit-1.34.5.dist-info → openlit-1.34.7.dist-info}/LICENSE +0 -0
- {openlit-1.34.5.dist-info → openlit-1.34.7.dist-info}/WHEEL +0 -0
@@ -0,0 +1,325 @@
|
|
1
|
+
"""
|
2
|
+
PremAI OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import Status, StatusCode
|
8
|
+
|
9
|
+
from openlit.__helpers import (
|
10
|
+
response_as_dict,
|
11
|
+
calculate_ttft,
|
12
|
+
calculate_tbt,
|
13
|
+
get_chat_model_cost,
|
14
|
+
get_embed_model_cost,
|
15
|
+
general_tokens,
|
16
|
+
create_metrics_attributes,
|
17
|
+
)
|
18
|
+
from openlit.semcov import SemanticConvention
|
19
|
+
|
20
|
+
def format_content(messages):
|
21
|
+
"""
|
22
|
+
Process a list of messages to extract content.
|
23
|
+
"""
|
24
|
+
|
25
|
+
formatted_messages = []
|
26
|
+
for message in messages:
|
27
|
+
role = message["role"]
|
28
|
+
content = message["content"]
|
29
|
+
|
30
|
+
if isinstance(content, list):
|
31
|
+
content_str = ", ".join(
|
32
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
33
|
+
if "type" in item else f'text: {item["text"]}'
|
34
|
+
for item in content
|
35
|
+
)
|
36
|
+
formatted_messages.append(f"{role}: {content_str}")
|
37
|
+
else:
|
38
|
+
formatted_messages.append(f"{role}: {content}")
|
39
|
+
|
40
|
+
return "\n".join(formatted_messages)
|
41
|
+
|
42
|
+
def process_chunk(scope, chunk):
|
43
|
+
"""
|
44
|
+
Process a chunk of response data and update state.
|
45
|
+
"""
|
46
|
+
|
47
|
+
end_time = time.time()
|
48
|
+
# Record the timestamp for the current chunk
|
49
|
+
scope._timestamps.append(end_time)
|
50
|
+
|
51
|
+
if len(scope._timestamps) == 1:
|
52
|
+
# Calculate time to first chunk
|
53
|
+
scope._ttft = calculate_ttft(scope._timestamps, scope._start_time)
|
54
|
+
|
55
|
+
chunked = response_as_dict(chunk)
|
56
|
+
# Collect message IDs and aggregated response from events
|
57
|
+
if chunked.choices:
|
58
|
+
first_choice = chunked.get("choices")[0]
|
59
|
+
|
60
|
+
if first_choice.get("delta").get("content"):
|
61
|
+
scope._llmresponse += first_choice.get("delta").get("content")
|
62
|
+
|
63
|
+
if chunked.get("choices")[0].get("finish_reason"):
|
64
|
+
scope._finish_reason = chunked.get("choices")[0].get("finish_reason")
|
65
|
+
scope._response_id = chunked.get("id")
|
66
|
+
scope._response_model = chunked.get("model")
|
67
|
+
|
68
|
+
def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
|
69
|
+
request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
|
70
|
+
"""
|
71
|
+
Set common span attributes for both chat and RAG operations.
|
72
|
+
"""
|
73
|
+
|
74
|
+
scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
75
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
|
76
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
|
77
|
+
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
|
78
|
+
scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
|
79
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
|
80
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, scope._response_model)
|
81
|
+
scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
82
|
+
scope._span.set_attribute(SERVICE_NAME, application_name)
|
83
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
|
84
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, scope._tbt)
|
85
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, scope._ttft)
|
86
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
|
87
|
+
|
88
|
+
def record_completion_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
|
89
|
+
request_model, response_model, environment, application_name, start_time, end_time,
|
90
|
+
input_tokens, output_tokens, cost, tbt=None, ttft=None):
|
91
|
+
"""
|
92
|
+
Record completion-specific metrics for the operation.
|
93
|
+
"""
|
94
|
+
|
95
|
+
attributes = create_metrics_attributes(
|
96
|
+
operation=gen_ai_operation,
|
97
|
+
system=gen_ai_system,
|
98
|
+
server_address=server_address,
|
99
|
+
server_port=server_port,
|
100
|
+
request_model=request_model,
|
101
|
+
response_model=response_model,
|
102
|
+
service_name=application_name,
|
103
|
+
deployment_environment=environment,
|
104
|
+
)
|
105
|
+
metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
|
106
|
+
metrics["genai_requests"].add(1, attributes)
|
107
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
108
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
109
|
+
metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
|
110
|
+
metrics["genai_cost"].record(cost, attributes)
|
111
|
+
if tbt is not None:
|
112
|
+
metrics["genai_server_tbt"].record(tbt, attributes)
|
113
|
+
if ttft is not None:
|
114
|
+
metrics["genai_server_ttft"].record(ttft, attributes)
|
115
|
+
|
116
|
+
def record_embedding_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
|
117
|
+
request_model, response_model, environment, application_name, start_time, end_time,
|
118
|
+
input_tokens, cost):
|
119
|
+
"""
|
120
|
+
Record embedding-specific metrics for the operation.
|
121
|
+
"""
|
122
|
+
|
123
|
+
attributes = create_metrics_attributes(
|
124
|
+
operation=gen_ai_operation,
|
125
|
+
system=gen_ai_system,
|
126
|
+
server_address=server_address,
|
127
|
+
server_port=server_port,
|
128
|
+
request_model=request_model,
|
129
|
+
response_model=response_model,
|
130
|
+
service_name=application_name,
|
131
|
+
deployment_environment=environment,
|
132
|
+
)
|
133
|
+
metrics["genai_client_usage_tokens"].record(input_tokens, attributes)
|
134
|
+
metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
|
135
|
+
metrics["genai_requests"].add(1, attributes)
|
136
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
137
|
+
metrics["genai_cost"].record(cost, attributes)
|
138
|
+
|
139
|
+
def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
140
|
+
capture_message_content, disable_metrics, version, is_stream):
|
141
|
+
"""
|
142
|
+
Process chat request and generate Telemetry
|
143
|
+
"""
|
144
|
+
|
145
|
+
if len(scope._timestamps) > 1:
|
146
|
+
scope._tbt = calculate_tbt(scope._timestamps)
|
147
|
+
|
148
|
+
prompt = format_content(scope._kwargs.get("messages", ""))
|
149
|
+
request_model = scope._kwargs.get("model", "llama3.2-3b")
|
150
|
+
|
151
|
+
# Calculate tokens using input prompt and aggregated response
|
152
|
+
if is_stream:
|
153
|
+
input_tokens = general_tokens(prompt)
|
154
|
+
output_tokens = general_tokens(scope._llmresponse)
|
155
|
+
else:
|
156
|
+
input_tokens = scope._input_tokens
|
157
|
+
output_tokens = scope._output_tokens
|
158
|
+
|
159
|
+
cost = get_chat_model_cost(request_model, pricing_info, input_tokens, output_tokens)
|
160
|
+
|
161
|
+
# Common Span Attributes
|
162
|
+
common_span_attributes(scope,
|
163
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,SemanticConvention.GEN_AI_SYSTEM_PREMAI,
|
164
|
+
scope._server_address, scope._server_port, request_model, scope._response_model,
|
165
|
+
environment, application_name, is_stream, scope._tbt, scope._ttft, version)
|
166
|
+
|
167
|
+
# Span Attributes for Response parameters
|
168
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON, [scope._finish_reason])
|
169
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, scope._kwargs.get("seed", ""))
|
170
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, scope._kwargs.get("frequency_penalty", 0.0))
|
171
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get("max_tokens", -1))
|
172
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, scope._kwargs.get("presence_penalty", 0.0))
|
173
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, scope._kwargs.get("stop", []))
|
174
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get("temperature", 1.0))
|
175
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, scope._kwargs.get("top_p", 1.0))
|
176
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, scope._kwargs.get("user", ""))
|
177
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, scope._response_id)
|
178
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text" if isinstance(scope._llmresponse, str) else "json")
|
179
|
+
|
180
|
+
# Span Attributes for Cost and Tokens
|
181
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
|
182
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
|
183
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, input_tokens + output_tokens)
|
184
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
185
|
+
|
186
|
+
# Span Attributes for Tools
|
187
|
+
if scope._tools:
|
188
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function","")).get("name","")
|
189
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id","")))
|
190
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function","").get("arguments","")))
|
191
|
+
|
192
|
+
# Span Attributes for Content
|
193
|
+
if capture_message_content:
|
194
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_PROMPT, prompt)
|
195
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, scope._llmresponse)
|
196
|
+
|
197
|
+
# To be removed one the change to span_attributes (from span events) is complete
|
198
|
+
scope._span.add_event(
|
199
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
200
|
+
attributes={
|
201
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
202
|
+
},
|
203
|
+
)
|
204
|
+
scope._span.add_event(
|
205
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
206
|
+
attributes={
|
207
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
|
208
|
+
},
|
209
|
+
)
|
210
|
+
|
211
|
+
scope._span.set_status(Status(StatusCode.OK))
|
212
|
+
|
213
|
+
# Metrics
|
214
|
+
if not disable_metrics:
|
215
|
+
record_completion_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_PREMAI,
|
216
|
+
scope._server_address, scope._server_port, request_model, scope._response_model, environment,
|
217
|
+
application_name, scope._start_time, scope._end_time, input_tokens, output_tokens,
|
218
|
+
cost, scope._tbt, scope._ttft)
|
219
|
+
|
220
|
+
def common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
|
221
|
+
capture_message_content, disable_metrics, version):
|
222
|
+
"""
|
223
|
+
Process embedding request and generate Telemetry
|
224
|
+
"""
|
225
|
+
|
226
|
+
request_model = scope._kwargs.get("model", "text-embedding-ada-002")
|
227
|
+
|
228
|
+
cost = get_embed_model_cost(request_model, pricing_info, scope._input_tokens)
|
229
|
+
|
230
|
+
# Common Span Attributes
|
231
|
+
common_span_attributes(scope,
|
232
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_PREMAI,
|
233
|
+
scope._server_address, scope._server_port, request_model, scope._response_model,
|
234
|
+
environment, application_name, False, scope._tbt, scope._ttft, version)
|
235
|
+
|
236
|
+
# Embedding-specific span attributes
|
237
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_ENCODING_FORMATS, [scope._kwargs.get("encoding_format", "float")])
|
238
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, scope._kwargs.get("user", ""))
|
239
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
240
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens)
|
241
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
242
|
+
|
243
|
+
# Span Attributes for Content
|
244
|
+
if capture_message_content:
|
245
|
+
scope._span.add_event(
|
246
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
247
|
+
attributes={
|
248
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: str(scope._kwargs.get("input", "")),
|
249
|
+
},
|
250
|
+
)
|
251
|
+
|
252
|
+
scope._span.set_status(Status(StatusCode.OK))
|
253
|
+
|
254
|
+
# Metrics
|
255
|
+
if not disable_metrics:
|
256
|
+
record_embedding_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING, SemanticConvention.GEN_AI_SYSTEM_PREMAI,
|
257
|
+
scope._server_address, scope._server_port, request_model, scope._response_model, environment,
|
258
|
+
application_name, scope._start_time, scope._end_time, scope._input_tokens, cost)
|
259
|
+
|
260
|
+
def process_streaming_chat_response(scope, pricing_info, environment, application_name, metrics,
|
261
|
+
capture_message_content=False, disable_metrics=False, version=""):
|
262
|
+
"""
|
263
|
+
Process chat request and generate Telemetry
|
264
|
+
"""
|
265
|
+
common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
266
|
+
capture_message_content, disable_metrics, version, is_stream=True)
|
267
|
+
|
268
|
+
def process_chat_response(response, request_model, pricing_info, server_port, server_address,
|
269
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
270
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
271
|
+
"""
|
272
|
+
Process chat request and generate Telemetry
|
273
|
+
"""
|
274
|
+
|
275
|
+
scope = type("GenericScope", (), {})()
|
276
|
+
response_dict = response_as_dict(response)
|
277
|
+
|
278
|
+
scope._start_time = start_time
|
279
|
+
scope._end_time = time.time()
|
280
|
+
scope._span = span
|
281
|
+
scope._llmresponse = str(response_dict.get("choices")[0].get("message").get("content"))
|
282
|
+
scope._response_id = response_dict.get("additional_properties", {}).get("id")
|
283
|
+
scope._response_model = response_dict.get("model")
|
284
|
+
scope._input_tokens = response_dict.get("usage").get("prompt_tokens")
|
285
|
+
scope._output_tokens = response_dict.get("usage").get("completion_tokens")
|
286
|
+
scope._timestamps = []
|
287
|
+
scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
|
288
|
+
scope._server_address, scope._server_port = server_address, server_port
|
289
|
+
scope._kwargs = kwargs
|
290
|
+
scope._finish_reason = str(response_dict.get("choices")[0].get("finish_reason"))
|
291
|
+
|
292
|
+
if scope._kwargs.get("tools"):
|
293
|
+
scope._tools = response_dict.get("choices")[0].get("message").get("tool_calls")
|
294
|
+
else:
|
295
|
+
scope._tools = None
|
296
|
+
|
297
|
+
common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
298
|
+
capture_message_content, disable_metrics, version, is_stream=False)
|
299
|
+
|
300
|
+
return response
|
301
|
+
|
302
|
+
def process_embedding_response(response, request_model, pricing_info, server_port, server_address,
|
303
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
304
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
305
|
+
"""
|
306
|
+
Process embedding request and generate Telemetry
|
307
|
+
"""
|
308
|
+
|
309
|
+
scope = type("GenericScope", (), {})()
|
310
|
+
response_dict = response_as_dict(response)
|
311
|
+
|
312
|
+
scope._start_time = start_time
|
313
|
+
scope._end_time = time.time()
|
314
|
+
scope._span = span
|
315
|
+
scope._response_model = response_dict.get("model")
|
316
|
+
scope._input_tokens = response_dict.get("usage").get("prompt_tokens")
|
317
|
+
scope._timestamps = []
|
318
|
+
scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
|
319
|
+
scope._server_address, scope._server_port = server_address, server_port
|
320
|
+
scope._kwargs = kwargs
|
321
|
+
|
322
|
+
common_embedding_logic(scope, pricing_info, environment, application_name, metrics,
|
323
|
+
capture_message_content, disable_metrics, version)
|
324
|
+
|
325
|
+
return response
|
@@ -1,4 +1,3 @@
|
|
1
|
-
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
1
|
"""Initializer of Auto Instrumentation of Reka Functions"""
|
3
2
|
|
4
3
|
from typing import Collection
|
@@ -17,15 +16,15 @@ _instruments = ("reka-api >= 3.2.0",)
|
|
17
16
|
|
18
17
|
class RekaInstrumentor(BaseInstrumentor):
|
19
18
|
"""
|
20
|
-
An instrumentor for Reka
|
19
|
+
An instrumentor for Reka client library.
|
21
20
|
"""
|
22
21
|
|
23
22
|
def instrumentation_dependencies(self) -> Collection[str]:
|
24
23
|
return _instruments
|
25
24
|
|
26
25
|
def _instrument(self, **kwargs):
|
27
|
-
application_name = kwargs.get("application_name", "
|
28
|
-
environment = kwargs.get("environment", "
|
26
|
+
application_name = kwargs.get("application_name", "default")
|
27
|
+
environment = kwargs.get("environment", "default")
|
29
28
|
tracer = kwargs.get("tracer")
|
30
29
|
metrics = kwargs.get("metrics_dict")
|
31
30
|
pricing_info = kwargs.get("pricing_info", {})
|
@@ -33,7 +32,7 @@ class RekaInstrumentor(BaseInstrumentor):
|
|
33
32
|
disable_metrics = kwargs.get("disable_metrics")
|
34
33
|
version = importlib.metadata.version("reka-api")
|
35
34
|
|
36
|
-
#
|
35
|
+
# Chat completions
|
37
36
|
wrap_function_wrapper(
|
38
37
|
"reka.chat.client",
|
39
38
|
"ChatClient.create",
|
@@ -41,7 +40,7 @@ class RekaInstrumentor(BaseInstrumentor):
|
|
41
40
|
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
42
41
|
)
|
43
42
|
|
44
|
-
#
|
43
|
+
# Chat completions
|
45
44
|
wrap_function_wrapper(
|
46
45
|
"reka.chat.client",
|
47
46
|
"AsyncChatClient.create",
|
@@ -50,5 +49,4 @@ class RekaInstrumentor(BaseInstrumentor):
|
|
50
49
|
)
|
51
50
|
|
52
51
|
def _uninstrument(self, **kwargs):
|
53
|
-
# Proper uninstrumentation logic to revert patched methods
|
54
52
|
pass
|
@@ -2,53 +2,26 @@
|
|
2
2
|
Module for monitoring Reka API calls.
|
3
3
|
"""
|
4
4
|
|
5
|
-
import logging
|
6
5
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
6
|
+
from opentelemetry.trace import SpanKind
|
9
7
|
from openlit.__helpers import (
|
10
|
-
get_chat_model_cost,
|
11
8
|
handle_exception,
|
12
|
-
create_metrics_attributes,
|
13
9
|
set_server_address_and_port
|
14
10
|
)
|
11
|
+
from openlit.instrumentation.reka.utils import (
|
12
|
+
process_chat_response
|
13
|
+
)
|
15
14
|
from openlit.semcov import SemanticConvention
|
16
15
|
|
17
|
-
# Initialize logger for logging potential issues and operations
|
18
|
-
logger = logging.getLogger(__name__)
|
19
|
-
|
20
16
|
def async_chat(version, environment, application_name,
|
21
|
-
|
17
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
22
18
|
"""
|
23
|
-
Generates a telemetry wrapper for
|
24
|
-
|
25
|
-
Args:
|
26
|
-
version: Version of the monitoring package.
|
27
|
-
environment: Deployment environment (e.g., production, staging).
|
28
|
-
application_name: Name of the application using the Reka API.
|
29
|
-
tracer: OpenTelemetry tracer for creating spans.
|
30
|
-
pricing_info: Information used for calculating the cost of Reka usage.
|
31
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
32
|
-
|
33
|
-
Returns:
|
34
|
-
A function that wraps the chat method to add telemetry.
|
19
|
+
Generates a telemetry wrapper for GenAI function call
|
35
20
|
"""
|
36
21
|
|
37
22
|
async def wrapper(wrapped, instance, args, kwargs):
|
38
23
|
"""
|
39
|
-
Wraps the
|
40
|
-
|
41
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
42
|
-
gracefully, adding details to the trace for observability.
|
43
|
-
|
44
|
-
Args:
|
45
|
-
wrapped: The original 'chat' method to be wrapped.
|
46
|
-
instance: The instance of the class where the original method is defined.
|
47
|
-
args: Positional arguments for the 'chat' method.
|
48
|
-
kwargs: Keyword arguments for the 'chat' method.
|
49
|
-
|
50
|
-
Returns:
|
51
|
-
The response from the original 'chat' method.
|
24
|
+
Wraps the GenAI function call.
|
52
25
|
"""
|
53
26
|
|
54
27
|
server_address, server_port = set_server_address_and_port(instance, "api.reka.ai", 443)
|
@@ -56,142 +29,31 @@ def async_chat(version, environment, application_name,
|
|
56
29
|
|
57
30
|
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
58
31
|
|
59
|
-
with tracer.start_as_current_span(span_name, kind=
|
32
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
60
33
|
start_time = time.time()
|
61
34
|
response = await wrapped(*args, **kwargs)
|
62
|
-
end_time = time.time()
|
63
35
|
|
64
36
|
try:
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
prompt = "\n".join(formatted_messages)
|
82
|
-
|
83
|
-
input_tokens = response.usage.input_tokens
|
84
|
-
output_tokens = response.usage.output_tokens
|
85
|
-
|
86
|
-
# Calculate cost of the operation
|
87
|
-
cost = get_chat_model_cost(request_model,
|
88
|
-
pricing_info, input_tokens, output_tokens)
|
89
|
-
|
90
|
-
# Set Span attributes (OTel Semconv)
|
91
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
92
|
-
span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
|
93
|
-
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
94
|
-
span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
|
95
|
-
SemanticConvention.GEN_AI_SYSTEM_REKAAI)
|
96
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
|
97
|
-
request_model)
|
98
|
-
span.set_attribute(SemanticConvention.SERVER_PORT,
|
99
|
-
server_port)
|
100
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED,
|
101
|
-
kwargs.get("seed", ""))
|
102
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS,
|
103
|
-
kwargs.get("max_tokens", -1))
|
104
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES,
|
105
|
-
kwargs.get("stop", []))
|
106
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
107
|
-
kwargs.get("presence_penalty", 0.0))
|
108
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE,
|
109
|
-
kwargs.get("temperature", 0.4))
|
110
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_K,
|
111
|
-
kwargs.get("top_k", 1.0))
|
112
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P,
|
113
|
-
kwargs.get("top_p", 1.0))
|
114
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
|
115
|
-
[response.responses[0].finish_reason])
|
116
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID,
|
117
|
-
response.id)
|
118
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
119
|
-
response.model)
|
120
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
121
|
-
input_tokens)
|
122
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
123
|
-
output_tokens)
|
124
|
-
span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
125
|
-
server_address)
|
126
|
-
span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
127
|
-
'text')
|
128
|
-
|
129
|
-
# Set Span attributes (Extra)
|
130
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
131
|
-
environment)
|
132
|
-
span.set_attribute(SERVICE_NAME,
|
133
|
-
application_name)
|
134
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
135
|
-
False)
|
136
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
137
|
-
input_tokens + output_tokens)
|
138
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
139
|
-
cost)
|
140
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
141
|
-
end_time - start_time)
|
142
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
143
|
-
version)
|
144
|
-
|
145
|
-
if capture_message_content:
|
146
|
-
span.add_event(
|
147
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
148
|
-
attributes={
|
149
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
150
|
-
},
|
151
|
-
)
|
152
|
-
span.add_event(
|
153
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
154
|
-
attributes={
|
155
|
-
SemanticConvention.GEN_AI_CONTENT_COMPLETION: response.responses[0].message.content,
|
156
|
-
},
|
157
|
-
)
|
158
|
-
|
159
|
-
span.set_status(Status(StatusCode.OK))
|
160
|
-
|
161
|
-
if disable_metrics is False:
|
162
|
-
attributes = create_metrics_attributes(
|
163
|
-
service_name=application_name,
|
164
|
-
deployment_environment=environment,
|
165
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
166
|
-
system=SemanticConvention.GEN_AI_SYSTEM_REKAAI,
|
167
|
-
request_model=request_model,
|
168
|
-
server_address=server_address,
|
169
|
-
server_port=server_port,
|
170
|
-
response_model=response.model,
|
171
|
-
)
|
172
|
-
|
173
|
-
metrics["genai_client_usage_tokens"].record(
|
174
|
-
input_tokens + output_tokens, attributes
|
175
|
-
)
|
176
|
-
metrics["genai_client_operation_duration"].record(
|
177
|
-
end_time - start_time, attributes
|
178
|
-
)
|
179
|
-
metrics["genai_server_ttft"].record(
|
180
|
-
end_time - start_time, attributes
|
181
|
-
)
|
182
|
-
metrics["genai_requests"].add(1, attributes)
|
183
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
184
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
185
|
-
metrics["genai_cost"].record(cost, attributes)
|
186
|
-
|
187
|
-
# Return original response
|
188
|
-
return response
|
37
|
+
response = process_chat_response(
|
38
|
+
response=response,
|
39
|
+
request_model=request_model,
|
40
|
+
pricing_info=pricing_info,
|
41
|
+
server_port=server_port,
|
42
|
+
server_address=server_address,
|
43
|
+
environment=environment,
|
44
|
+
application_name=application_name,
|
45
|
+
metrics=metrics,
|
46
|
+
start_time=start_time,
|
47
|
+
span=span,
|
48
|
+
capture_message_content=capture_message_content,
|
49
|
+
disable_metrics=disable_metrics,
|
50
|
+
version=version,
|
51
|
+
**kwargs
|
52
|
+
)
|
189
53
|
|
190
54
|
except Exception as e:
|
191
55
|
handle_exception(span, e)
|
192
|
-
logger.error("Error in trace creation: %s", e)
|
193
56
|
|
194
|
-
|
195
|
-
return response
|
57
|
+
return response
|
196
58
|
|
197
59
|
return wrapper
|