openlit 1.34.4__py3-none-any.whl → 1.34.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/google_ai_studio/__init__.py +2 -4
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +0 -6
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +0 -6
- openlit/instrumentation/google_ai_studio/utils.py +1 -2
- openlit/instrumentation/together/__init__.py +3 -5
- openlit/instrumentation/together/async_together.py +70 -476
- openlit/instrumentation/together/together.py +69 -475
- openlit/instrumentation/together/utils.py +320 -0
- {openlit-1.34.4.dist-info → openlit-1.34.5.dist-info}/METADATA +1 -1
- {openlit-1.34.4.dist-info → openlit-1.34.5.dist-info}/RECORD +12 -11
- {openlit-1.34.4.dist-info → openlit-1.34.5.dist-info}/LICENSE +0 -0
- {openlit-1.34.4.dist-info → openlit-1.34.5.dist-info}/WHEEL +0 -0
@@ -0,0 +1,320 @@
|
|
1
|
+
"""
|
2
|
+
Google AI Studio OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import Status, StatusCode
|
8
|
+
|
9
|
+
from openlit.__helpers import (
|
10
|
+
calculate_ttft,
|
11
|
+
response_as_dict,
|
12
|
+
calculate_tbt,
|
13
|
+
get_chat_model_cost,
|
14
|
+
get_image_model_cost,
|
15
|
+
create_metrics_attributes,
|
16
|
+
)
|
17
|
+
from openlit.semcov import SemanticConvention
|
18
|
+
|
19
|
+
def format_content(messages):
|
20
|
+
"""
|
21
|
+
Process a list of messages to extract content.
|
22
|
+
"""
|
23
|
+
|
24
|
+
formatted_messages = []
|
25
|
+
for message in messages:
|
26
|
+
role = message["role"]
|
27
|
+
content = message["content"]
|
28
|
+
|
29
|
+
if isinstance(content, list):
|
30
|
+
content_str = ", ".join(
|
31
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
32
|
+
if "type" in item else f'text: {item["text"]}'
|
33
|
+
for item in content
|
34
|
+
)
|
35
|
+
formatted_messages.append(f"{role}: {content_str}")
|
36
|
+
else:
|
37
|
+
formatted_messages.append(f"{role}: {content}")
|
38
|
+
|
39
|
+
return "\n".join(formatted_messages)
|
40
|
+
|
41
|
+
def process_chunk(scope, chunk):
|
42
|
+
"""
|
43
|
+
Process a chunk of response data and update state.
|
44
|
+
"""
|
45
|
+
|
46
|
+
end_time = time.time()
|
47
|
+
# Record the timestamp for the current chunk
|
48
|
+
scope._timestamps.append(end_time)
|
49
|
+
|
50
|
+
if len(scope._timestamps) == 1:
|
51
|
+
# Calculate time to first chunk
|
52
|
+
scope._ttft = calculate_ttft(scope._timestamps, scope._start_time)
|
53
|
+
|
54
|
+
chunked = response_as_dict(chunk)
|
55
|
+
# Collect message IDs and aggregated response from events
|
56
|
+
if (len(chunked.get("choices")) > 0 and ("delta" in chunked.get("choices")[0] and
|
57
|
+
"content" in chunked.get("choices")[0].get("delta"))):
|
58
|
+
|
59
|
+
content = chunked.get("choices")[0].get("delta").get("content")
|
60
|
+
if content:
|
61
|
+
scope._llmresponse += content
|
62
|
+
|
63
|
+
if chunked.get("usage"):
|
64
|
+
scope._response_id = chunked.get("id")
|
65
|
+
scope._response_model = chunked.get("model")
|
66
|
+
scope._input_tokens = chunked.get("usage").get("prompt_tokens")
|
67
|
+
scope._output_tokens = chunked.get("usage").get("completion_tokens")
|
68
|
+
scope._finish_reason = str(chunked.get("finish_reason"))
|
69
|
+
scope._end_time = time.time()
|
70
|
+
|
71
|
+
def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
|
72
|
+
request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
|
73
|
+
"""
|
74
|
+
Set common span attributes for both chat and RAG operations.
|
75
|
+
"""
|
76
|
+
|
77
|
+
scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
78
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
|
79
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
|
80
|
+
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
|
81
|
+
scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
|
82
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
|
83
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, scope._response_model)
|
84
|
+
scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
85
|
+
scope._span.set_attribute(SERVICE_NAME, application_name)
|
86
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
|
87
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, scope._tbt)
|
88
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, scope._ttft)
|
89
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
|
90
|
+
|
91
|
+
def record_common_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
|
92
|
+
request_model, response_model, environment, application_name, start_time, end_time,
|
93
|
+
input_tokens, output_tokens, cost, tbt=None, ttft=None):
|
94
|
+
"""
|
95
|
+
Record common metrics for the operation.
|
96
|
+
"""
|
97
|
+
|
98
|
+
attributes = create_metrics_attributes(
|
99
|
+
operation=gen_ai_operation,
|
100
|
+
system=gen_ai_system,
|
101
|
+
server_address=server_address,
|
102
|
+
server_port=server_port,
|
103
|
+
request_model=request_model,
|
104
|
+
response_model=response_model,
|
105
|
+
service_name=application_name,
|
106
|
+
deployment_environment=environment,
|
107
|
+
)
|
108
|
+
metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
|
109
|
+
metrics["genai_requests"].add(1, attributes)
|
110
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
111
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
112
|
+
metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
|
113
|
+
metrics["genai_cost"].record(cost, attributes)
|
114
|
+
if tbt:
|
115
|
+
metrics["genai_server_tbt"].record(tbt, attributes)
|
116
|
+
if ttft:
|
117
|
+
metrics["genai_server_ttft"].record(ttft, attributes)
|
118
|
+
|
119
|
+
def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
120
|
+
capture_message_content, disable_metrics, version, is_stream):
|
121
|
+
"""
|
122
|
+
Process chat request and generate Telemetry
|
123
|
+
"""
|
124
|
+
|
125
|
+
if len(scope._timestamps) > 1:
|
126
|
+
scope._tbt = calculate_tbt(scope._timestamps)
|
127
|
+
|
128
|
+
prompt = format_content(scope._kwargs.get("messages", ""))
|
129
|
+
request_model = scope._kwargs.get("model", "jamba-1.5-mini")
|
130
|
+
|
131
|
+
cost = get_chat_model_cost(request_model, pricing_info, scope._input_tokens, scope._output_tokens)
|
132
|
+
|
133
|
+
# Common Span Attributes
|
134
|
+
common_span_attributes(scope,
|
135
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,SemanticConvention.GEN_AI_SYSTEM_TOGETHER,
|
136
|
+
scope._server_address, scope._server_port, request_model, scope._response_model,
|
137
|
+
environment, application_name, is_stream, scope._tbt, scope._ttft, version)
|
138
|
+
|
139
|
+
# Span Attributes for Response parameters
|
140
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON, [scope._finish_reason])
|
141
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, scope._kwargs.get("seed", ""))
|
142
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, scope._kwargs.get("frequency_penalty", 0.0))
|
143
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get("max_tokens", -1))
|
144
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, scope._kwargs.get("presence_penalty", 0.0))
|
145
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, scope._kwargs.get("stop", []))
|
146
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get("temperature", 1.0))
|
147
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, scope._kwargs.get("top_p", 1.0))
|
148
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, scope._response_id)
|
149
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text" if isinstance(scope._llmresponse, str) else "json")
|
150
|
+
|
151
|
+
# Span Attributes for Cost and Tokens
|
152
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
153
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
|
154
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens + scope._output_tokens)
|
155
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
156
|
+
|
157
|
+
# Span Attributes for Tools
|
158
|
+
if scope._tools:
|
159
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function","")).get("name","")
|
160
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id","")))
|
161
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function","").get("arguments","")))
|
162
|
+
|
163
|
+
# Span Attributes for Content
|
164
|
+
if capture_message_content:
|
165
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_PROMPT, prompt)
|
166
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, scope._llmresponse)
|
167
|
+
|
168
|
+
# To be removed one the change to span_attributes (from span events) is complete
|
169
|
+
scope._span.add_event(
|
170
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
171
|
+
attributes={
|
172
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
173
|
+
},
|
174
|
+
)
|
175
|
+
scope._span.add_event(
|
176
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
177
|
+
attributes={
|
178
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
|
179
|
+
},
|
180
|
+
)
|
181
|
+
|
182
|
+
scope._span.set_status(Status(StatusCode.OK))
|
183
|
+
|
184
|
+
# Metrics
|
185
|
+
if not disable_metrics:
|
186
|
+
record_common_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_TOGETHER,
|
187
|
+
scope._server_address, scope._server_port, request_model, scope._response_model, environment,
|
188
|
+
application_name, scope._start_time, scope._end_time, scope._input_tokens, scope._output_tokens,
|
189
|
+
cost, scope._tbt, scope._ttft)
|
190
|
+
|
191
|
+
def process_streaming_chat_response(scope, pricing_info, environment, application_name, metrics,
|
192
|
+
capture_message_content=False, disable_metrics=False, version=""):
|
193
|
+
"""
|
194
|
+
Process chat request and generate Telemetry
|
195
|
+
"""
|
196
|
+
common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
197
|
+
capture_message_content, disable_metrics, version, is_stream=True)
|
198
|
+
|
199
|
+
def process_chat_response(response, request_model, pricing_info, server_port, server_address,
|
200
|
+
environment, application_name, metrics, start_time, span, capture_message_content=False,
|
201
|
+
disable_metrics=False, version="1.0.0", **kwargs):
|
202
|
+
"""
|
203
|
+
Process chat request and generate Telemetry
|
204
|
+
"""
|
205
|
+
|
206
|
+
scope = type("GenericScope", (), {})()
|
207
|
+
response_dict = response_as_dict(response)
|
208
|
+
|
209
|
+
scope._start_time = start_time
|
210
|
+
scope._end_time = time.time()
|
211
|
+
scope._span = span
|
212
|
+
scope._llmresponse = " ".join(
|
213
|
+
(choice.get("message", {}).get("content") or "")
|
214
|
+
for choice in response_dict.get("choices", [])
|
215
|
+
)
|
216
|
+
scope._response_id = response_dict.get("id")
|
217
|
+
scope._response_model = response_dict.get("model")
|
218
|
+
scope._input_tokens = response_dict.get("usage").get("prompt_tokens")
|
219
|
+
scope._output_tokens = response_dict.get("usage").get("completion_tokens")
|
220
|
+
scope._timestamps = []
|
221
|
+
scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
|
222
|
+
scope._server_address, scope._server_port = server_address, server_port
|
223
|
+
scope._kwargs = kwargs
|
224
|
+
scope._finish_reason = str(response_dict.get("choices")[0].get("finish_reason"))
|
225
|
+
|
226
|
+
if scope._kwargs.get("tools"):
|
227
|
+
scope._tools = response_dict.get("choices")[0].get("message").get("tool_calls")
|
228
|
+
else:
|
229
|
+
scope._tools = None
|
230
|
+
|
231
|
+
common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
232
|
+
capture_message_content, disable_metrics, version, is_stream=False)
|
233
|
+
|
234
|
+
return response
|
235
|
+
|
236
|
+
def common_image_logic(scope, pricing_info, environment, application_name, metrics,
|
237
|
+
capture_message_content, disable_metrics, version):
|
238
|
+
"""
|
239
|
+
Process image generation request and generate Telemetry
|
240
|
+
"""
|
241
|
+
|
242
|
+
# Find Image format
|
243
|
+
if "response_format" in scope._kwargs and scope._kwargs["response_format"] == "b64_json":
|
244
|
+
image_format = "b64_json"
|
245
|
+
else:
|
246
|
+
image_format = "url"
|
247
|
+
|
248
|
+
image_size = str(scope._kwargs.get("width", "1024")) + "x" + str(scope._kwargs.get("height", "1024"))
|
249
|
+
request_model = scope._kwargs.get("model", "dall-e-2")
|
250
|
+
|
251
|
+
# Calculate cost of the operation
|
252
|
+
cost = get_image_model_cost(request_model, pricing_info, image_size,
|
253
|
+
scope._kwargs.get("quality", "standard"))
|
254
|
+
|
255
|
+
# Common Span Attributes
|
256
|
+
common_span_attributes(scope,
|
257
|
+
SemanticConvention.GEN_AI_OPERATION_TYPE_IMAGE, SemanticConvention.GEN_AI_SYSTEM_TOGETHER,
|
258
|
+
scope._server_address, scope._server_port, request_model, scope._response_model,
|
259
|
+
environment, application_name, False, scope._tbt, scope._ttft, version)
|
260
|
+
|
261
|
+
# Image-specific span attributes
|
262
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, scope._response_id)
|
263
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "image")
|
264
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IMAGE_SIZE, image_size)
|
265
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, len(scope._response_data) * cost)
|
266
|
+
|
267
|
+
# Content attributes
|
268
|
+
if capture_message_content:
|
269
|
+
scope._span.add_event(
|
270
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
271
|
+
attributes={
|
272
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: scope._kwargs.get("prompt", ""),
|
273
|
+
},
|
274
|
+
)
|
275
|
+
|
276
|
+
for images_count, item in enumerate(scope._response_data):
|
277
|
+
attribute_name = f"{SemanticConvention.GEN_AI_RESPONSE_IMAGE}.{images_count}"
|
278
|
+
scope._span.add_event(
|
279
|
+
name=attribute_name,
|
280
|
+
attributes={
|
281
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: getattr(item, image_format),
|
282
|
+
},
|
283
|
+
)
|
284
|
+
|
285
|
+
scope._span.set_status(Status(StatusCode.OK))
|
286
|
+
|
287
|
+
# Metrics
|
288
|
+
if not disable_metrics:
|
289
|
+
record_common_metrics(
|
290
|
+
metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_IMAGE,
|
291
|
+
SemanticConvention.GEN_AI_SYSTEM_TOGETHER, scope._server_address, scope._server_port,
|
292
|
+
request_model, scope._response_model, environment, application_name,
|
293
|
+
scope._start_time, scope._end_time, 0, 0, len(scope._response_data) * cost
|
294
|
+
)
|
295
|
+
|
296
|
+
def process_image_response(response, request_model, pricing_info, server_address, server_port,
|
297
|
+
environment, application_name, metrics, start_time, end_time, span, capture_message_content,
|
298
|
+
disable_metrics, version, **kwargs):
|
299
|
+
"""
|
300
|
+
Process image generation request and generate Telemetry
|
301
|
+
"""
|
302
|
+
|
303
|
+
scope = type("GenericScope", (), {})()
|
304
|
+
|
305
|
+
scope._start_time = start_time
|
306
|
+
scope._end_time = end_time
|
307
|
+
scope._span = span
|
308
|
+
scope._response_id = response.id
|
309
|
+
scope._response_model = response.model
|
310
|
+
scope._response_data = response.data
|
311
|
+
scope._server_address = server_address
|
312
|
+
scope._server_port = server_port
|
313
|
+
scope._kwargs = kwargs
|
314
|
+
scope._tbt = 0
|
315
|
+
scope._ttft = end_time - start_time
|
316
|
+
|
317
|
+
common_image_logic(scope, pricing_info, environment, application_name, metrics,
|
318
|
+
capture_message_content, disable_metrics, version)
|
319
|
+
|
320
|
+
return response
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.34.
|
3
|
+
Version: 1.34.5
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
License: Apache-2.0
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -56,10 +56,10 @@ openlit/instrumentation/embedchain/__init__.py,sha256=x2_qvJTwWog_mH6IY987Bp9mWx
|
|
56
56
|
openlit/instrumentation/embedchain/embedchain.py,sha256=f4hyOr1Xr0RC4PNHRu46aV-jmEh-lIeKN8XLjgY7aWM,7929
|
57
57
|
openlit/instrumentation/firecrawl/__init__.py,sha256=kyVsAiDBC2djifqT2w1cPRAotiEyEabNvnBeSQxi9N8,1876
|
58
58
|
openlit/instrumentation/firecrawl/firecrawl.py,sha256=4X38UrLYeGm3uez-edYA6qEc0nKC3p77yfKgKBBud0A,3826
|
59
|
-
openlit/instrumentation/google_ai_studio/__init__.py,sha256=
|
60
|
-
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=
|
61
|
-
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=
|
62
|
-
openlit/instrumentation/google_ai_studio/utils.py,sha256
|
59
|
+
openlit/instrumentation/google_ai_studio/__init__.py,sha256=VLNOlaTFzjOpuUzloynvADewiTmaEu1wx8FerEbmsvg,2510
|
60
|
+
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=UL5AdTwkzdTKUomTfETMgYjUl00qL7BB8U0izuXfKFo,5527
|
61
|
+
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=nanOoXz-1uJtdh39aD438_yMk0no3AM7VVNKzDganHo,5429
|
62
|
+
openlit/instrumentation/google_ai_studio/utils.py,sha256=-X5sHk216ajJrl4cP35f5vT8YAZaIE4yLKI7nWEKHkQ,11140
|
63
63
|
openlit/instrumentation/gpt4all/__init__.py,sha256=cO8mi3hhPDXcNwb9AwQ3-wQ_ydnOeBRwb0cptlQmAM4,1805
|
64
64
|
openlit/instrumentation/gpt4all/gpt4all.py,sha256=EYp0njZ1kF56rTAjYZVtufA5W4xTWGzSIntjJ4MEfl4,24185
|
65
65
|
openlit/instrumentation/gpu/__init__.py,sha256=QQCFVEbRfdeTjmdFe-UeEiy19vEEWSIBpj2B1wYGhUs,11036
|
@@ -115,9 +115,10 @@ openlit/instrumentation/qdrant/qdrant.py,sha256=pafjlAzMPzYLRYFfTtWXsLKYVQls-grk
|
|
115
115
|
openlit/instrumentation/reka/__init__.py,sha256=39ZKj44PPUue8feG3bivAejfL66yD23pCJQ8hHnQKbY,1884
|
116
116
|
openlit/instrumentation/reka/async_reka.py,sha256=GlUGTMy8LgA6qSwM0YyXlSM1Z-hYxyH9rMqIbw2pSRU,9446
|
117
117
|
openlit/instrumentation/reka/reka.py,sha256=L6gH7j94tcYlc_FCkQP6SrxH7yBr4uSgtN8Bzm_mu6k,9428
|
118
|
-
openlit/instrumentation/together/__init__.py,sha256=
|
119
|
-
openlit/instrumentation/together/async_together.py,sha256=
|
120
|
-
openlit/instrumentation/together/together.py,sha256=
|
118
|
+
openlit/instrumentation/together/__init__.py,sha256=0UmUqQtppyK3oopb4lTjX2LITgVCR8VtH46IAV1rpA8,2484
|
119
|
+
openlit/instrumentation/together/async_together.py,sha256=0-h5fKw6rIwN_fvWVpGuvVqizIuM9xFCzz8Z4oGgOj0,6822
|
120
|
+
openlit/instrumentation/together/together.py,sha256=nY6mzHmHgoMbbnB_9eL0EBQjP0ltJVdkQj4pbamHAj0,6723
|
121
|
+
openlit/instrumentation/together/utils.py,sha256=TtRzPMXHBBFzB_9X-9dcxZvvDWrAY7TbqVn_zZovjQk,14370
|
121
122
|
openlit/instrumentation/transformers/__init__.py,sha256=9Ubss5nlumcypxprxff8Fv3sst7II27SsvCzqkBX9Kg,1457
|
122
123
|
openlit/instrumentation/transformers/transformers.py,sha256=y--t7PXhUfPC81w-aEE7qowMah3os9gnKBQ5bN4QLGc,1980
|
123
124
|
openlit/instrumentation/transformers/utils.py,sha256=3f-ewpUpduaBrTVIFJKaabACjz-6Vf8K7NEU0EzQ4Nk,8042
|
@@ -131,7 +132,7 @@ openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
|
|
131
132
|
openlit/otel/metrics.py,sha256=GM2PDloBGRhBTkHHkYaqmOwIAQkY124ZhW4sEqW1Fgk,7086
|
132
133
|
openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
|
133
134
|
openlit/semcov/__init__.py,sha256=ptyo37PY-FHDx_PShEvbdns71cD4YvvXw15bCRXKCKM,13461
|
134
|
-
openlit-1.34.
|
135
|
-
openlit-1.34.
|
136
|
-
openlit-1.34.
|
137
|
-
openlit-1.34.
|
135
|
+
openlit-1.34.5.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
136
|
+
openlit-1.34.5.dist-info/METADATA,sha256=cuZKF-emjaVNJ5L7tfP9fNDgt_EnO1JQty7xZ2TyHXc,23469
|
137
|
+
openlit-1.34.5.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
138
|
+
openlit-1.34.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|