openlit 1.34.2__py3-none-any.whl → 1.34.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5,9 +5,10 @@ import importlib.metadata
5
5
  from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
6
  from wrapt import wrap_function_wrapper
7
7
 
8
- from openlit.instrumentation.openai.openai import chat_completions, embedding, responses
8
+ from openlit.instrumentation.openai.openai import chat_completions, embedding, responses, chat_completions_parse
9
9
  from openlit.instrumentation.openai.openai import image_generate, image_variatons, audio_create
10
- from openlit.instrumentation.openai.async_openai import async_chat_completions, async_embedding
10
+ from openlit.instrumentation.openai.async_openai import (async_chat_completions, async_embedding,
11
+ async_chat_completions_parse)
11
12
  from openlit.instrumentation.openai.async_openai import async_image_generate, async_image_variatons
12
13
  from openlit.instrumentation.openai.async_openai import async_audio_create, async_responses
13
14
 
@@ -127,6 +128,20 @@ class OpenAIInstrumentor(BaseInstrumentor):
127
128
  metrics, disable_metrics),
128
129
  )
129
130
 
131
+ wrap_function_wrapper(
132
+ "openai.resources.beta.chat.completions",
133
+ "Completions.parse",
134
+ chat_completions_parse(version, environment, application_name, tracer, pricing_info,
135
+ capture_message_content, metrics, disable_metrics),
136
+ )
137
+
138
+ wrap_function_wrapper(
139
+ "openai.resources.beta.chat.completions",
140
+ "AsyncCompletions.parse",
141
+ async_chat_completions_parse(version, environment, application_name, tracer, pricing_info,
142
+ capture_message_content, metrics, disable_metrics),
143
+ )
144
+
130
145
  @staticmethod
131
146
  def _uninstrument(self, **kwargs):
132
147
  pass
@@ -882,6 +882,167 @@ def async_chat_completions(version, environment, application_name,
882
882
 
883
883
  return wrapper
884
884
 
885
+ def async_chat_completions_parse(version, environment, application_name, tracer, pricing_info, capture_message_content,
886
+ metrics, disable_metrics):
887
+ """
888
+ Generates a telemetry wrapper for chat completions parse to collect metrics.
889
+
890
+ Args:
891
+ version: Version of the monitoring package.
892
+ environment: Deployment environment (e.g., production, staging).
893
+ application_name: Name of the application using the OpenAI API.
894
+ tracer: OpenTelemetry tracer for creating spans.
895
+ pricing_info: Information used for calculating the cost of OpenAI usage.
896
+ capture_message_content: Flag indicating whether to trace the actual content.
897
+
898
+ Returns:
899
+ A function that wraps the chat completions parse method to add telemetry.
900
+ """
901
+
902
+ async def wrapper(wrapped, instance, args, kwargs):
903
+ """
904
+ Wraps the 'chat.completions.parse' API call to add telemetry.
905
+
906
+ This collects metrics such as execution time, cost, and token usage, and handles errors
907
+ gracefully, adding details to the trace for observability.
908
+
909
+ Args:
910
+ wrapped: The original 'chat.completions' method to be wrapped.
911
+ instance: The instance of the class where the original method is defined.
912
+ args: Positional arguments for the 'chat.completions' method.
913
+ kwargs: Keyword arguments for the 'chat.completions' method.
914
+
915
+ Returns:
916
+ The response from the original 'chat.completions.parse' method.
917
+ """
918
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
919
+ request_model = kwargs.get("model", "gpt-4o")
920
+ span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
921
+
922
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
923
+ start_time = time.time()
924
+ try:
925
+ # Execute the original 'parse' method
926
+ response = await wrapped(*args, **kwargs)
927
+ end_time = time.time()
928
+
929
+ response_dict = response_as_dict(response)
930
+
931
+ # Format 'messages' from kwargs to calculate input tokens
932
+ message_prompt = kwargs.get("messages", "")
933
+ formatted_messages = []
934
+ for message in message_prompt:
935
+ role = message.get("role")
936
+ content = message.get("content")
937
+ if content:
938
+ formatted_messages.append(f"{role}: {content}")
939
+ prompt = "\n".join(formatted_messages)
940
+
941
+ input_tokens = response_dict.get('usage').get('prompt_tokens')
942
+ output_tokens = response_dict.get('usage').get('completion_tokens')
943
+
944
+ # Calculate cost
945
+ cost = get_chat_model_cost(request_model,
946
+ pricing_info, input_tokens,
947
+ output_tokens)
948
+
949
+ # Set base span attribues (OTel Semconv)
950
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
951
+ span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
952
+ span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_OPENAI)
953
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
954
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, str(kwargs.get("seed", "")))
955
+ span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
956
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
957
+ str(kwargs.get("frequency_penalty", 0.0)))
958
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, str(kwargs.get("max_tokens", -1)))
959
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
960
+ str(kwargs.get("presence_penalty", 0.0)))
961
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, str(kwargs.get("stop", [])))
962
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, str(kwargs.get("temperature", 1.0)))
963
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, str(kwargs.get("top_p", 1.0)))
964
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, response_dict.get("id"))
965
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_dict.get('model'))
966
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
967
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
968
+ span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
969
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SERVICE_TIER,
970
+ str(kwargs.get("service_tier", "auto")))
971
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SERVICE_TIER,
972
+ response_dict.get('service_tier', 'auto'))
973
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
974
+ str(response_dict.get('system_fingerprint', '')))
975
+
976
+ # Set base span attribues (Extras)
977
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
978
+ span.set_attribute(SERVICE_NAME, application_name)
979
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, kwargs.get("user", ""))
980
+ span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
981
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, False)
982
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS, input_tokens + output_tokens)
983
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
984
+ span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
985
+
986
+ if capture_message_content:
987
+ span.add_event(
988
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
989
+ attributes={SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt},
990
+ )
991
+
992
+ for i in range(kwargs.get('n', 1)):
993
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
994
+ [response_dict.get('choices')[i].get('finish_reason')])
995
+ if capture_message_content:
996
+ span.add_event(
997
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
998
+ attributes={
999
+ # pylint: disable=line-too-long
1000
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: str(
1001
+ response_dict.get('choices')[i].get('message').get('content')),
1002
+ },
1003
+ )
1004
+ if kwargs.get('tools'):
1005
+ span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALLS,
1006
+ str(response_dict.get('choices')[i].get('message').get('tool_calls')))
1007
+
1008
+ if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
1009
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1010
+ "text")
1011
+ elif response_dict.get('choices')[i].get('message').get('content') is not None:
1012
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1013
+ "json")
1014
+
1015
+ span.set_status(Status(StatusCode.OK))
1016
+
1017
+ if not disable_metrics:
1018
+ attributes = create_metrics_attributes(
1019
+ service_name=application_name,
1020
+ deployment_environment=environment,
1021
+ operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
1022
+ system=SemanticConvention.GEN_AI_SYSTEM_OPENAI,
1023
+ request_model=request_model,
1024
+ server_address=server_address,
1025
+ server_port=server_port,
1026
+ response_model=response_dict.get('model'),
1027
+ )
1028
+ metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
1029
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
1030
+ metrics["genai_server_ttft"].record( end_time - start_time, attributes)
1031
+ metrics["genai_requests"].add(1, attributes)
1032
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
1033
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
1034
+ metrics["genai_cost"].record(cost, attributes)
1035
+
1036
+ return response
1037
+
1038
+ except Exception as e:
1039
+ handle_exception(span, e)
1040
+ logger.error("Error in 'parse' trace creation: %s", e)
1041
+ # Re-raise the exception to not interfere with the application flow
1042
+ raise
1043
+
1044
+ return wrapper
1045
+
885
1046
  def async_embedding(version, environment, application_name,
886
1047
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
887
1048
  """
@@ -882,6 +882,167 @@ def chat_completions(version, environment, application_name,
882
882
 
883
883
  return wrapper
884
884
 
885
+ def chat_completions_parse(version, environment, application_name, tracer, pricing_info, capture_message_content,
886
+ metrics, disable_metrics):
887
+ """
888
+ Generates a telemetry wrapper for chat completions parse to collect metrics.
889
+
890
+ Args:
891
+ version: Version of the monitoring package.
892
+ environment: Deployment environment (e.g., production, staging).
893
+ application_name: Name of the application using the OpenAI API.
894
+ tracer: OpenTelemetry tracer for creating spans.
895
+ pricing_info: Information used for calculating the cost of OpenAI usage.
896
+ capture_message_content: Flag indicating whether to trace the actual content.
897
+
898
+ Returns:
899
+ A function that wraps the chat completions parse method to add telemetry.
900
+ """
901
+
902
+ def wrapper(wrapped, instance, args, kwargs):
903
+ """
904
+ Wraps the 'chat.completions.parse' API call to add telemetry.
905
+
906
+ This collects metrics such as execution time, cost, and token usage, and handles errors
907
+ gracefully, adding details to the trace for observability.
908
+
909
+ Args:
910
+ wrapped: The original 'chat.completions' method to be wrapped.
911
+ instance: The instance of the class where the original method is defined.
912
+ args: Positional arguments for the 'chat.completions' method.
913
+ kwargs: Keyword arguments for the 'chat.completions' method.
914
+
915
+ Returns:
916
+ The response from the original 'chat.completions.parse' method.
917
+ """
918
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
919
+ request_model = kwargs.get("model", "gpt-4o")
920
+ span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
921
+
922
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
923
+ start_time = time.time()
924
+ try:
925
+ # Execute the original 'parse' method
926
+ response = wrapped(*args, **kwargs)
927
+ end_time = time.time()
928
+
929
+ response_dict = response_as_dict(response)
930
+
931
+ # Format 'messages' from kwargs to calculate input tokens
932
+ message_prompt = kwargs.get("messages", "")
933
+ formatted_messages = []
934
+ for message in message_prompt:
935
+ role = message.get("role")
936
+ content = message.get("content")
937
+ if content:
938
+ formatted_messages.append(f"{role}: {content}")
939
+ prompt = "\n".join(formatted_messages)
940
+
941
+ input_tokens = response_dict.get('usage').get('prompt_tokens')
942
+ output_tokens = response_dict.get('usage').get('completion_tokens')
943
+
944
+ # Calculate cost
945
+ cost = get_chat_model_cost(request_model,
946
+ pricing_info, input_tokens,
947
+ output_tokens)
948
+
949
+ # Set base span attribues (OTel Semconv)
950
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
951
+ span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
952
+ span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_OPENAI)
953
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
954
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, str(kwargs.get("seed", "")))
955
+ span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
956
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
957
+ str(kwargs.get("frequency_penalty", 0.0)))
958
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, str(kwargs.get("max_tokens", -1)))
959
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
960
+ str(kwargs.get("presence_penalty", 0.0)))
961
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, str(kwargs.get("stop", [])))
962
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, str(kwargs.get("temperature", 1.0)))
963
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, str(kwargs.get("top_p", 1.0)))
964
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, response_dict.get("id"))
965
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_dict.get('model'))
966
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
967
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
968
+ span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
969
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SERVICE_TIER,
970
+ str(kwargs.get("service_tier", "auto")))
971
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SERVICE_TIER,
972
+ response_dict.get('service_tier', 'auto'))
973
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
974
+ str(response_dict.get('system_fingerprint', '')))
975
+
976
+ # Set base span attribues (Extras)
977
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
978
+ span.set_attribute(SERVICE_NAME, application_name)
979
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, kwargs.get("user", ""))
980
+ span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
981
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, False)
982
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS, input_tokens + output_tokens)
983
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
984
+ span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
985
+
986
+ if capture_message_content:
987
+ span.add_event(
988
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
989
+ attributes={SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt},
990
+ )
991
+
992
+ for i in range(kwargs.get('n', 1)):
993
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
994
+ [response_dict.get('choices')[i].get('finish_reason')])
995
+ if capture_message_content:
996
+ span.add_event(
997
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
998
+ attributes={
999
+ # pylint: disable=line-too-long
1000
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: str(
1001
+ response_dict.get('choices')[i].get('message').get('content')),
1002
+ },
1003
+ )
1004
+ if kwargs.get('tools'):
1005
+ span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALLS,
1006
+ str(response_dict.get('choices')[i].get('message').get('tool_calls')))
1007
+
1008
+ if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
1009
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1010
+ "text")
1011
+ elif response_dict.get('choices')[i].get('message').get('content') is not None:
1012
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1013
+ "json")
1014
+
1015
+ span.set_status(Status(StatusCode.OK))
1016
+
1017
+ if not disable_metrics:
1018
+ attributes = create_metrics_attributes(
1019
+ service_name=application_name,
1020
+ deployment_environment=environment,
1021
+ operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
1022
+ system=SemanticConvention.GEN_AI_SYSTEM_OPENAI,
1023
+ request_model=request_model,
1024
+ server_address=server_address,
1025
+ server_port=server_port,
1026
+ response_model=response_dict.get('model'),
1027
+ )
1028
+ metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
1029
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
1030
+ metrics["genai_server_ttft"].record( end_time - start_time, attributes)
1031
+ metrics["genai_requests"].add(1, attributes)
1032
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
1033
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
1034
+ metrics["genai_cost"].record(cost, attributes)
1035
+
1036
+ return response
1037
+
1038
+ except Exception as e:
1039
+ handle_exception(span, e)
1040
+ logger.error("Error in 'parse' trace creation: %s", e)
1041
+ # Re-raise the exception to not interfere with the application flow
1042
+ raise
1043
+
1044
+ return wrapper
1045
+
885
1046
  def embedding(version, environment, application_name,
886
1047
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
887
1048
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openlit
3
- Version: 1.34.2
3
+ Version: 1.34.3
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  License: Apache-2.0
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -95,9 +95,9 @@ openlit/instrumentation/ollama/__init__.py,sha256=v7VhVxHw_c6QtMznxe6a7z6QrYHZsH
95
95
  openlit/instrumentation/ollama/async_ollama.py,sha256=zJPDr2ROh1nvFGoxgdTbe04Zr1KhmgJUYFPeuRLQGLk,6667
96
96
  openlit/instrumentation/ollama/ollama.py,sha256=MNUltiP9XVT4azmO_-E2vjhFaoHQyJ0Z6c-HnB0_jCE,6563
97
97
  openlit/instrumentation/ollama/utils.py,sha256=41uvYaYkGwWfRyHYqhOOwrFy6cMzBlG1urJYUat9Q24,14819
98
- openlit/instrumentation/openai/__init__.py,sha256=FiL4OHDhs957spa3k9sNC_VLt0-txtwbnujQwnevQ5I,5564
99
- openlit/instrumentation/openai/async_openai.py,sha256=gxA9Fs_b0hsOlJh8F55zi0TqgarJUlZA6eK1-ghvy90,71945
100
- openlit/instrumentation/openai/openai.py,sha256=Gky-NPUhjXhGOG4nWKkuKGTEKWJSgebzHb5dmqJp7fU,71754
98
+ openlit/instrumentation/openai/__init__.py,sha256=y9Ox5aYWTb2nAa_d0ic3Mkv4wEKmUGqslW9nHKg6NnY,6320
99
+ openlit/instrumentation/openai/async_openai.py,sha256=JkpVcyOhGvPzhqxzeP01MwwfaYhddNsSUQqgfF8hU8I,81390
100
+ openlit/instrumentation/openai/openai.py,sha256=5fgRyK5dUN2zUdrN0vBSZFnSEAXf2dKS0qnq_85-mQE,81175
101
101
  openlit/instrumentation/openai_agents/__init__.py,sha256=tRTSIrUtkXc_lfQnVanXmQLd2Sy9RqBNTHF5FhhZx7o,1530
102
102
  openlit/instrumentation/openai_agents/openai_agents.py,sha256=kRWPgjofcOviMi3w7CsRvJO3SCjqPmuq-PM800vIM7g,2678
103
103
  openlit/instrumentation/phidata/__init__.py,sha256=tqls5-UI6FzbjxYgq_qqAfALhWJm8dHn2NtgqiQA4f8,1557
@@ -131,7 +131,7 @@ openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
131
131
  openlit/otel/metrics.py,sha256=GM2PDloBGRhBTkHHkYaqmOwIAQkY124ZhW4sEqW1Fgk,7086
132
132
  openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
133
133
  openlit/semcov/__init__.py,sha256=ptyo37PY-FHDx_PShEvbdns71cD4YvvXw15bCRXKCKM,13461
134
- openlit-1.34.2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
135
- openlit-1.34.2.dist-info/METADATA,sha256=WpHx9DGPjkfepoQxJVxsc6LtuwK9gzJNqFijGAs-JAc,23469
136
- openlit-1.34.2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
137
- openlit-1.34.2.dist-info/RECORD,,
134
+ openlit-1.34.3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
135
+ openlit-1.34.3.dist-info/METADATA,sha256=8_jDnUBC1cxAr2DNwkg5IXbNQX2qru-_nC7OpwC6Jh8,23469
136
+ openlit-1.34.3.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
137
+ openlit-1.34.3.dist-info/RECORD,,