openlit 1.34.1__py3-none-any.whl → 1.34.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -59,14 +59,12 @@ def async_generate(version, environment, application_name,
59
59
  version=version,
60
60
  )
61
61
 
62
- return response
63
-
64
62
  except Exception as e:
65
63
  handle_exception(span, e)
66
64
  logger.error("Error in trace creation: %s", e)
67
65
 
68
- # Return original response
69
- return response
66
+ # Return original response
67
+ return response
70
68
 
71
69
  return wrapper
72
70
 
@@ -59,14 +59,12 @@ def generate(version, environment, application_name,
59
59
  version=version,
60
60
  )
61
61
 
62
- return response
63
-
64
62
  except Exception as e:
65
63
  handle_exception(span, e)
66
64
  logger.error("Error in trace creation: %s", e)
67
65
 
68
- # Return original response
69
- return response
66
+ # Return original response
67
+ return response
70
68
 
71
69
  return wrapper
72
70
 
@@ -2,10 +2,8 @@
2
2
  Google AI Studio OpenTelemetry instrumentation utility functions
3
3
  """
4
4
  import time
5
-
6
5
  from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
6
  from opentelemetry.trace import Status, StatusCode
8
-
9
7
  from openlit.__helpers import (
10
8
  calculate_ttft,
11
9
  response_as_dict,
@@ -117,6 +115,7 @@ def common_chat_logic(scope, pricing_info, environment, application_name, metric
117
115
  scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_GEMINI)
118
116
  scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
119
117
  scope._span.set_attribute(SemanticConvention.SERVER_PORT, scope._server_port)
118
+ scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
120
119
 
121
120
  inference_config = scope._kwargs.get('config', {})
122
121
 
@@ -142,7 +141,6 @@ def common_chat_logic(scope, pricing_info, environment, application_name, metric
142
141
  scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
143
142
  scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
144
143
  scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_REASONING_TOKENS, scope._reasoning_tokens)
145
- scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
146
144
 
147
145
  scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
148
146
  'text' if isinstance(scope._llmresponse, str) else 'json')
@@ -5,9 +5,10 @@ import importlib.metadata
5
5
  from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
6
  from wrapt import wrap_function_wrapper
7
7
 
8
- from openlit.instrumentation.openai.openai import chat_completions, embedding, responses
8
+ from openlit.instrumentation.openai.openai import chat_completions, embedding, responses, chat_completions_parse
9
9
  from openlit.instrumentation.openai.openai import image_generate, image_variatons, audio_create
10
- from openlit.instrumentation.openai.async_openai import async_chat_completions, async_embedding
10
+ from openlit.instrumentation.openai.async_openai import (async_chat_completions, async_embedding,
11
+ async_chat_completions_parse)
11
12
  from openlit.instrumentation.openai.async_openai import async_image_generate, async_image_variatons
12
13
  from openlit.instrumentation.openai.async_openai import async_audio_create, async_responses
13
14
 
@@ -127,6 +128,20 @@ class OpenAIInstrumentor(BaseInstrumentor):
127
128
  metrics, disable_metrics),
128
129
  )
129
130
 
131
+ wrap_function_wrapper(
132
+ "openai.resources.beta.chat.completions",
133
+ "Completions.parse",
134
+ chat_completions_parse(version, environment, application_name, tracer, pricing_info,
135
+ capture_message_content, metrics, disable_metrics),
136
+ )
137
+
138
+ wrap_function_wrapper(
139
+ "openai.resources.beta.chat.completions",
140
+ "AsyncCompletions.parse",
141
+ async_chat_completions_parse(version, environment, application_name, tracer, pricing_info,
142
+ capture_message_content, metrics, disable_metrics),
143
+ )
144
+
130
145
  @staticmethod
131
146
  def _uninstrument(self, **kwargs):
132
147
  pass
@@ -882,6 +882,167 @@ def async_chat_completions(version, environment, application_name,
882
882
 
883
883
  return wrapper
884
884
 
885
+ def async_chat_completions_parse(version, environment, application_name, tracer, pricing_info, capture_message_content,
886
+ metrics, disable_metrics):
887
+ """
888
+ Generates a telemetry wrapper for chat completions parse to collect metrics.
889
+
890
+ Args:
891
+ version: Version of the monitoring package.
892
+ environment: Deployment environment (e.g., production, staging).
893
+ application_name: Name of the application using the OpenAI API.
894
+ tracer: OpenTelemetry tracer for creating spans.
895
+ pricing_info: Information used for calculating the cost of OpenAI usage.
896
+ capture_message_content: Flag indicating whether to trace the actual content.
897
+
898
+ Returns:
899
+ A function that wraps the chat completions parse method to add telemetry.
900
+ """
901
+
902
+ async def wrapper(wrapped, instance, args, kwargs):
903
+ """
904
+ Wraps the 'chat.completions.parse' API call to add telemetry.
905
+
906
+ This collects metrics such as execution time, cost, and token usage, and handles errors
907
+ gracefully, adding details to the trace for observability.
908
+
909
+ Args:
910
+ wrapped: The original 'chat.completions' method to be wrapped.
911
+ instance: The instance of the class where the original method is defined.
912
+ args: Positional arguments for the 'chat.completions' method.
913
+ kwargs: Keyword arguments for the 'chat.completions' method.
914
+
915
+ Returns:
916
+ The response from the original 'chat.completions.parse' method.
917
+ """
918
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
919
+ request_model = kwargs.get("model", "gpt-4o")
920
+ span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
921
+
922
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
923
+ start_time = time.time()
924
+ try:
925
+ # Execute the original 'parse' method
926
+ response = await wrapped(*args, **kwargs)
927
+ end_time = time.time()
928
+
929
+ response_dict = response_as_dict(response)
930
+
931
+ # Format 'messages' from kwargs to calculate input tokens
932
+ message_prompt = kwargs.get("messages", "")
933
+ formatted_messages = []
934
+ for message in message_prompt:
935
+ role = message.get("role")
936
+ content = message.get("content")
937
+ if content:
938
+ formatted_messages.append(f"{role}: {content}")
939
+ prompt = "\n".join(formatted_messages)
940
+
941
+ input_tokens = response_dict.get('usage').get('prompt_tokens')
942
+ output_tokens = response_dict.get('usage').get('completion_tokens')
943
+
944
+ # Calculate cost
945
+ cost = get_chat_model_cost(request_model,
946
+ pricing_info, input_tokens,
947
+ output_tokens)
948
+
949
+ # Set base span attribues (OTel Semconv)
950
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
951
+ span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
952
+ span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_OPENAI)
953
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
954
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, str(kwargs.get("seed", "")))
955
+ span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
956
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
957
+ str(kwargs.get("frequency_penalty", 0.0)))
958
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, str(kwargs.get("max_tokens", -1)))
959
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
960
+ str(kwargs.get("presence_penalty", 0.0)))
961
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, str(kwargs.get("stop", [])))
962
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, str(kwargs.get("temperature", 1.0)))
963
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, str(kwargs.get("top_p", 1.0)))
964
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, response_dict.get("id"))
965
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_dict.get('model'))
966
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
967
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
968
+ span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
969
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SERVICE_TIER,
970
+ str(kwargs.get("service_tier", "auto")))
971
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SERVICE_TIER,
972
+ response_dict.get('service_tier', 'auto'))
973
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
974
+ str(response_dict.get('system_fingerprint', '')))
975
+
976
+ # Set base span attribues (Extras)
977
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
978
+ span.set_attribute(SERVICE_NAME, application_name)
979
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, kwargs.get("user", ""))
980
+ span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
981
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, False)
982
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS, input_tokens + output_tokens)
983
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
984
+ span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
985
+
986
+ if capture_message_content:
987
+ span.add_event(
988
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
989
+ attributes={SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt},
990
+ )
991
+
992
+ for i in range(kwargs.get('n', 1)):
993
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
994
+ [response_dict.get('choices')[i].get('finish_reason')])
995
+ if capture_message_content:
996
+ span.add_event(
997
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
998
+ attributes={
999
+ # pylint: disable=line-too-long
1000
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: str(
1001
+ response_dict.get('choices')[i].get('message').get('content')),
1002
+ },
1003
+ )
1004
+ if kwargs.get('tools'):
1005
+ span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALLS,
1006
+ str(response_dict.get('choices')[i].get('message').get('tool_calls')))
1007
+
1008
+ if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
1009
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1010
+ "text")
1011
+ elif response_dict.get('choices')[i].get('message').get('content') is not None:
1012
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1013
+ "json")
1014
+
1015
+ span.set_status(Status(StatusCode.OK))
1016
+
1017
+ if not disable_metrics:
1018
+ attributes = create_metrics_attributes(
1019
+ service_name=application_name,
1020
+ deployment_environment=environment,
1021
+ operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
1022
+ system=SemanticConvention.GEN_AI_SYSTEM_OPENAI,
1023
+ request_model=request_model,
1024
+ server_address=server_address,
1025
+ server_port=server_port,
1026
+ response_model=response_dict.get('model'),
1027
+ )
1028
+ metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
1029
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
1030
+ metrics["genai_server_ttft"].record( end_time - start_time, attributes)
1031
+ metrics["genai_requests"].add(1, attributes)
1032
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
1033
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
1034
+ metrics["genai_cost"].record(cost, attributes)
1035
+
1036
+ return response
1037
+
1038
+ except Exception as e:
1039
+ handle_exception(span, e)
1040
+ logger.error("Error in 'parse' trace creation: %s", e)
1041
+ # Re-raise the exception to not interfere with the application flow
1042
+ raise
1043
+
1044
+ return wrapper
1045
+
885
1046
  def async_embedding(version, environment, application_name,
886
1047
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
887
1048
  """
@@ -882,6 +882,167 @@ def chat_completions(version, environment, application_name,
882
882
 
883
883
  return wrapper
884
884
 
885
+ def chat_completions_parse(version, environment, application_name, tracer, pricing_info, capture_message_content,
886
+ metrics, disable_metrics):
887
+ """
888
+ Generates a telemetry wrapper for chat completions parse to collect metrics.
889
+
890
+ Args:
891
+ version: Version of the monitoring package.
892
+ environment: Deployment environment (e.g., production, staging).
893
+ application_name: Name of the application using the OpenAI API.
894
+ tracer: OpenTelemetry tracer for creating spans.
895
+ pricing_info: Information used for calculating the cost of OpenAI usage.
896
+ capture_message_content: Flag indicating whether to trace the actual content.
897
+
898
+ Returns:
899
+ A function that wraps the chat completions parse method to add telemetry.
900
+ """
901
+
902
+ def wrapper(wrapped, instance, args, kwargs):
903
+ """
904
+ Wraps the 'chat.completions.parse' API call to add telemetry.
905
+
906
+ This collects metrics such as execution time, cost, and token usage, and handles errors
907
+ gracefully, adding details to the trace for observability.
908
+
909
+ Args:
910
+ wrapped: The original 'chat.completions' method to be wrapped.
911
+ instance: The instance of the class where the original method is defined.
912
+ args: Positional arguments for the 'chat.completions' method.
913
+ kwargs: Keyword arguments for the 'chat.completions' method.
914
+
915
+ Returns:
916
+ The response from the original 'chat.completions.parse' method.
917
+ """
918
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
919
+ request_model = kwargs.get("model", "gpt-4o")
920
+ span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
921
+
922
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
923
+ start_time = time.time()
924
+ try:
925
+ # Execute the original 'parse' method
926
+ response = wrapped(*args, **kwargs)
927
+ end_time = time.time()
928
+
929
+ response_dict = response_as_dict(response)
930
+
931
+ # Format 'messages' from kwargs to calculate input tokens
932
+ message_prompt = kwargs.get("messages", "")
933
+ formatted_messages = []
934
+ for message in message_prompt:
935
+ role = message.get("role")
936
+ content = message.get("content")
937
+ if content:
938
+ formatted_messages.append(f"{role}: {content}")
939
+ prompt = "\n".join(formatted_messages)
940
+
941
+ input_tokens = response_dict.get('usage').get('prompt_tokens')
942
+ output_tokens = response_dict.get('usage').get('completion_tokens')
943
+
944
+ # Calculate cost
945
+ cost = get_chat_model_cost(request_model,
946
+ pricing_info, input_tokens,
947
+ output_tokens)
948
+
949
+ # Set base span attribues (OTel Semconv)
950
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
951
+ span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
952
+ span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_OPENAI)
953
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
954
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, str(kwargs.get("seed", "")))
955
+ span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
956
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
957
+ str(kwargs.get("frequency_penalty", 0.0)))
958
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, str(kwargs.get("max_tokens", -1)))
959
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
960
+ str(kwargs.get("presence_penalty", 0.0)))
961
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, str(kwargs.get("stop", [])))
962
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, str(kwargs.get("temperature", 1.0)))
963
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, str(kwargs.get("top_p", 1.0)))
964
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, response_dict.get("id"))
965
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_dict.get('model'))
966
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, input_tokens)
967
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, output_tokens)
968
+ span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
969
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SERVICE_TIER,
970
+ str(kwargs.get("service_tier", "auto")))
971
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SERVICE_TIER,
972
+ response_dict.get('service_tier', 'auto'))
973
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT,
974
+ str(response_dict.get('system_fingerprint', '')))
975
+
976
+ # Set base span attribues (Extras)
977
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
978
+ span.set_attribute(SERVICE_NAME, application_name)
979
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, kwargs.get("user", ""))
980
+ span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
981
+ span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, False)
982
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS, input_tokens + output_tokens)
983
+ span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
984
+ span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, end_time - start_time)
985
+
986
+ if capture_message_content:
987
+ span.add_event(
988
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
989
+ attributes={SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt},
990
+ )
991
+
992
+ for i in range(kwargs.get('n', 1)):
993
+ span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
994
+ [response_dict.get('choices')[i].get('finish_reason')])
995
+ if capture_message_content:
996
+ span.add_event(
997
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
998
+ attributes={
999
+ # pylint: disable=line-too-long
1000
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: str(
1001
+ response_dict.get('choices')[i].get('message').get('content')),
1002
+ },
1003
+ )
1004
+ if kwargs.get('tools'):
1005
+ span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALLS,
1006
+ str(response_dict.get('choices')[i].get('message').get('tool_calls')))
1007
+
1008
+ if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
1009
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1010
+ "text")
1011
+ elif response_dict.get('choices')[i].get('message').get('content') is not None:
1012
+ span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
1013
+ "json")
1014
+
1015
+ span.set_status(Status(StatusCode.OK))
1016
+
1017
+ if not disable_metrics:
1018
+ attributes = create_metrics_attributes(
1019
+ service_name=application_name,
1020
+ deployment_environment=environment,
1021
+ operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
1022
+ system=SemanticConvention.GEN_AI_SYSTEM_OPENAI,
1023
+ request_model=request_model,
1024
+ server_address=server_address,
1025
+ server_port=server_port,
1026
+ response_model=response_dict.get('model'),
1027
+ )
1028
+ metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
1029
+ metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
1030
+ metrics["genai_server_ttft"].record( end_time - start_time, attributes)
1031
+ metrics["genai_requests"].add(1, attributes)
1032
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
1033
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
1034
+ metrics["genai_cost"].record(cost, attributes)
1035
+
1036
+ return response
1037
+
1038
+ except Exception as e:
1039
+ handle_exception(span, e)
1040
+ logger.error("Error in 'parse' trace creation: %s", e)
1041
+ # Re-raise the exception to not interfere with the application flow
1042
+ raise
1043
+
1044
+ return wrapper
1045
+
885
1046
  def embedding(version, environment, application_name,
886
1047
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
887
1048
  """
@@ -32,7 +32,7 @@ class VLLMInstrumentor(BaseInstrumentor):
32
32
 
33
33
  # sync chat
34
34
  wrap_function_wrapper(
35
- "vllm",
35
+ "vllm.entrypoints.llm",
36
36
  "LLM.generate",
37
37
  generate(version, environment, application_name,
38
38
  tracer, pricing_info, capture_message_content, metrics, disable_metrics),
@@ -0,0 +1,161 @@
1
+ """
2
+ Utility functions for vLLM instrumentation.
3
+ """
4
+
5
+ import time
6
+ from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
+ from opentelemetry.trace import Status, StatusCode
8
+ from openlit.__helpers import (
9
+ calculate_tbt,
10
+ get_chat_model_cost,
11
+ general_tokens,
12
+ create_metrics_attributes,
13
+ )
14
+ from openlit.semcov import SemanticConvention
15
+
16
+ def get_inference_config(args, kwargs):
17
+ """
18
+ Safely extract inference configuration from args or kwargs.
19
+ """
20
+
21
+ if 'sampling_params' in kwargs:
22
+ return kwargs['sampling_params']
23
+ if len(args) > 1:
24
+ return args[1]
25
+ return None
26
+
27
+ def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
28
+ capture_message_content, disable_metrics, version, is_stream):
29
+ """
30
+ Process chat request and generate Telemetry
31
+ """
32
+
33
+ scope._end_time = time.time()
34
+ if len(scope._timestamps) > 1:
35
+ scope._tbt = calculate_tbt(scope._timestamps)
36
+
37
+ # Set base span attributes
38
+ scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
39
+ scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
40
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_VLLM)
41
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, scope._request_model)
42
+ scope._span.set_attribute(SemanticConvention.SERVER_PORT, scope._server_port)
43
+ scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
44
+
45
+ # Handle inference configuration
46
+ inference_config = get_inference_config(scope._args, scope._kwargs)
47
+ if inference_config:
48
+ attributes = [
49
+ (SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, 'frequency_penalty'),
50
+ (SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, 'max_tokens'),
51
+ (SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, 'presence_penalty'),
52
+ (SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, 'stop_sequences'),
53
+ (SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, 'temperature'),
54
+ (SemanticConvention.GEN_AI_REQUEST_TOP_P, 'top_p'),
55
+ (SemanticConvention.GEN_AI_REQUEST_TOP_K, 'top_k'),
56
+ ]
57
+
58
+ for attribute, key in attributes:
59
+ value = getattr(inference_config, key, None)
60
+ if value is not None:
61
+ scope._span.set_attribute(attribute, value)
62
+
63
+ scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, scope._request_model)
64
+ scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text")
65
+
66
+ # Set base span attributes (Extras)
67
+ scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
68
+ scope._span.set_attribute(SERVICE_NAME, application_name)
69
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
70
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, scope._tbt)
71
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, scope._ttft)
72
+ scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
73
+
74
+ input_tokens = 0
75
+ output_tokens = 0
76
+ cost = 0
77
+
78
+ if capture_message_content:
79
+ prompt = ""
80
+ completion = ""
81
+
82
+ for output in scope._response:
83
+ prompt += output.prompt + "\n"
84
+ if output.outputs and len(output.outputs) > 0:
85
+ completion += output.outputs[0].text + "\n"
86
+ input_tokens += general_tokens(output.prompt)
87
+ output_tokens += general_tokens(output.outputs[0].text)
88
+
89
+ # Add a single event for prompt
90
+ scope._span.add_event(
91
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
92
+ attributes={
93
+ SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
94
+ },
95
+ )
96
+
97
+ # Add a single event for completion
98
+ scope._span.add_event(
99
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
100
+ attributes={
101
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: completion,
102
+ },
103
+ )
104
+
105
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
106
+ input_tokens)
107
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
108
+ output_tokens)
109
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE,
110
+ input_tokens + output_tokens)
111
+
112
+ # Calculate cost of the operation
113
+ cost = get_chat_model_cost(scope._request_model, pricing_info, input_tokens, output_tokens)
114
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
115
+
116
+ scope._span.set_status(Status(StatusCode.OK))
117
+
118
+ if disable_metrics is False:
119
+ metrics_attributes = create_metrics_attributes(
120
+ service_name=application_name,
121
+ deployment_environment=environment,
122
+ operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
123
+ system=SemanticConvention.GEN_AI_SYSTEM_VLLM,
124
+ request_model=scope._request_model,
125
+ server_address=scope._server_address,
126
+ server_port=scope._server_port,
127
+ response_model=scope._request_model,
128
+ )
129
+ metrics['genai_client_operation_duration'].record(scope._end_time - scope._start_time, metrics_attributes)
130
+ metrics['genai_server_tbt'].record(scope._tbt, metrics_attributes)
131
+ metrics['genai_server_ttft'].record(scope._ttft, metrics_attributes)
132
+ metrics['genai_requests'].add(1, metrics_attributes)
133
+ metrics['genai_completion_tokens'].add(output_tokens, metrics_attributes)
134
+ metrics['genai_prompt_tokens'].add(input_tokens, metrics_attributes)
135
+ metrics['genai_cost'].record(cost, metrics_attributes)
136
+ metrics['genai_client_usage_tokens'].record(
137
+ input_tokens + output_tokens, metrics_attributes)
138
+
139
+ def process_chat_response(instance, response, request_model, pricing_info, server_port, server_address,
140
+ environment, application_name, metrics, start_time, span, args, kwargs,
141
+ capture_message_content=False, disable_metrics=False, version="1.0.0"):
142
+ """
143
+ Process chat request and generate Telemetry
144
+ """
145
+ self = type('GenericScope', (), {})()
146
+ self._response = response
147
+ self._start_time = start_time
148
+ self._end_time = time.time()
149
+ self._span = span
150
+ self._ttft, self._tbt = self._end_time - self._start_time, 0
151
+ self._server_address = server_address
152
+ self._server_port = server_port
153
+ self._request_model = request_model
154
+ self._timestamps = []
155
+ self._args = args
156
+ self._kwargs = kwargs
157
+
158
+ common_chat_logic(self, pricing_info, environment, application_name, metrics,
159
+ capture_message_content, disable_metrics, version, is_stream=False)
160
+
161
+ return response
@@ -4,170 +4,62 @@ Module for monitoring vLLM API calls.
4
4
 
5
5
  import logging
6
6
  import time
7
- from opentelemetry.trace import SpanKind, Status, StatusCode
8
- from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
+ from opentelemetry.trace import SpanKind
9
8
  from openlit.__helpers import (
10
- get_chat_model_cost,
11
9
  handle_exception,
12
- general_tokens,
13
- create_metrics_attributes,
14
10
  set_server_address_and_port
15
11
  )
12
+ from openlit.instrumentation.vllm.utils import (
13
+ process_chat_response
14
+ )
16
15
  from openlit.semcov import SemanticConvention
17
16
 
18
17
  # Initialize logger for logging potential issues and operations
19
18
  logger = logging.getLogger(__name__)
20
19
 
21
20
  def generate(version, environment, application_name,
22
- tracer, pricing_info, capture_message_content, metrics, disable_metrics):
21
+ tracer, pricing_info, capture_message_content, metrics, disable_metrics):
23
22
  """
24
- Generates a telemetry wrapper for generate to collect metrics.
25
-
26
- Args:
27
- version: Version of the monitoring package.
28
- environment: Deployment environment (e.g., production, staging).
29
- application_name: Name of the application using the vLLM API.
30
- tracer: OpenTelemetry tracer for creating spans.
31
- pricing_info: Information used for calculating the cost of vLLM usage.
32
- capture_message_content: Flag indicating whether to trace the actual content.
33
-
34
- Returns:
35
- A function that wraps the generate method to add telemetry.
23
+ Generates a telemetry wrapper for GenAI function call
36
24
  """
37
25
 
38
26
  def wrapper(wrapped, instance, args, kwargs):
39
27
  """
40
- Wraps the 'generate' API call to add telemetry.
41
-
42
- This collects metrics such as execution time, cost, and token usage, and handles errors
43
- gracefully, adding details to the trace for observability.
44
-
45
- Args:
46
- wrapped: The original 'generate' method to be wrapped.
47
- instance: The instance of the class where the original method is defined.
48
- args: Positional arguments for the 'generate' method.
49
- kwargs: Keyword arguments for the 'generate' method.
50
-
51
- Returns:
52
- The response from the original 'generate' method.
28
+ Wraps the GenAI function call.
53
29
  """
54
30
 
55
- server_address, server_port = set_server_address_and_port(instance, "api.cohere.com", 443)
31
+ server_address, server_port = set_server_address_and_port(instance, "http://127.0.0.1", 443)
56
32
  request_model = instance.llm_engine.model_config.model or "facebook/opt-125m"
57
33
 
58
34
  span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
59
35
 
60
- # pylint: disable=line-too-long
61
- with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
36
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
62
37
  start_time = time.time()
63
38
  response = wrapped(*args, **kwargs)
64
- end_time = time.time()
65
39
 
66
40
  try:
67
- # Set base span attribues
68
- span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
69
- span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
70
- SemanticConvention.GEN_AI_SYSTEM_VLLM)
71
- span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
72
- SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
73
- span.set_attribute(SemanticConvention.SERVER_PORT,
74
- server_port)
75
- span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
76
- request_model)
77
- span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
78
- request_model)
79
- span.set_attribute(SemanticConvention.SERVER_ADDRESS,
80
- server_address)
81
- span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
82
- "text")
83
-
84
- # Set base span attribues (Extras)
85
- span.set_attribute(DEPLOYMENT_ENVIRONMENT,
86
- environment)
87
- span.set_attribute(SERVICE_NAME,
88
- application_name)
89
- span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
90
- False)
91
- span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
92
- end_time - start_time)
93
- span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
94
- version)
95
-
96
- input_tokens = 0
97
- output_tokens = 0
98
- cost = 0
99
-
100
- if capture_message_content:
101
- prompt_attributes = {}
102
- completion_attributes = {}
103
-
104
- for i, output in enumerate(response):
105
- prompt_attributes[f"{SemanticConvention.GEN_AI_CONTENT_PROMPT}.{i}"] = output.prompt
106
- completion_attributes[f"{SemanticConvention.GEN_AI_CONTENT_COMPLETION}.{i}"] = output.outputs[0].text
107
- input_tokens += general_tokens(output.prompt)
108
- output_tokens += general_tokens(output.outputs[0].text)
109
-
110
- # Add a single event for all prompts
111
- span.add_event(
112
- name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
113
- attributes=prompt_attributes,
114
- )
115
-
116
- # Add a single event for all completions
117
- span.add_event(
118
- name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
119
- attributes=completion_attributes,
120
- )
121
-
122
- span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
123
- input_tokens)
124
- span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
125
- output_tokens)
126
- span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
127
- input_tokens + output_tokens)
128
-
129
- # Calculate cost of the operation
130
- cost = get_chat_model_cost(request_model, pricing_info,
131
- input_tokens, output_tokens)
132
- span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
133
- cost)
134
-
135
- span.set_status(Status(StatusCode.OK))
136
-
137
- if disable_metrics is False:
138
- attributes = create_metrics_attributes(
139
- service_name=application_name,
140
- deployment_environment=environment,
141
- operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
142
- system=SemanticConvention.GEN_AI_SYSTEM_VLLM,
143
- request_model=request_model,
144
- server_address=server_address,
145
- server_port=server_port,
146
- response_model=request_model,
147
- )
148
-
149
- metrics["genai_client_usage_tokens"].record(
150
- input_tokens + output_tokens, attributes
151
- )
152
- metrics["genai_client_operation_duration"].record(
153
- end_time - start_time, attributes
154
- )
155
- metrics["genai_server_ttft"].record(
156
- end_time - start_time, attributes
157
- )
158
- metrics["genai_requests"].add(1, attributes)
159
- metrics["genai_completion_tokens"].add(output_tokens, attributes)
160
- metrics["genai_prompt_tokens"].add(input_tokens, attributes)
161
- metrics["genai_cost"].record(cost, attributes)
162
-
163
- # Return original response
164
- return response
165
-
41
+ response = process_chat_response(
42
+ instance=instance,
43
+ response=response,
44
+ request_model=request_model,
45
+ pricing_info=pricing_info,
46
+ server_port=server_port,
47
+ server_address=server_address,
48
+ environment=environment,
49
+ application_name=application_name,
50
+ metrics=metrics,
51
+ start_time=start_time,
52
+ span=span,
53
+ args=args,
54
+ kwargs=kwargs,
55
+ capture_message_content=capture_message_content,
56
+ disable_metrics=disable_metrics,
57
+ version=version,
58
+ )
166
59
  except Exception as e:
167
60
  handle_exception(span, e)
168
61
  logger.error("Error in trace creation: %s", e)
169
62
 
170
- # Return original response
171
- return response
63
+ return response
172
64
 
173
65
  return wrapper
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openlit
3
- Version: 1.34.1
3
+ Version: 1.34.3
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  License: Apache-2.0
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -57,9 +57,9 @@ openlit/instrumentation/embedchain/embedchain.py,sha256=f4hyOr1Xr0RC4PNHRu46aV-j
57
57
  openlit/instrumentation/firecrawl/__init__.py,sha256=kyVsAiDBC2djifqT2w1cPRAotiEyEabNvnBeSQxi9N8,1876
58
58
  openlit/instrumentation/firecrawl/firecrawl.py,sha256=4X38UrLYeGm3uez-edYA6qEc0nKC3p77yfKgKBBud0A,3826
59
59
  openlit/instrumentation/google_ai_studio/__init__.py,sha256=d4aDvCSfDtT2geRbwG5yinu62uPTHaj4PtalimuvG-k,2685
60
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=eOUrIMsUh2dG8BqMB7oizuQBbntIb4sy2WkYrF3Dzj0,5815
61
- openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=fvwZcWlfjT5eXPmeYA5JMSyPfHfLZKBnzBd0iHQxEec,5717
62
- openlit/instrumentation/google_ai_studio/utils.py,sha256=s9-5qnIWfXsq2xjYbWToI0RBAUo5lT0yLPOILc6eY1k,11256
60
+ openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=sWwoUCzaRO9TTSmwO12hPqKTdBmrgG1TTkyvgLN-CIo,5774
61
+ openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=Qps8EY6xZDFT1ZQWZJ0RAQxORHG8PjrTzq52vSqrJ2o,5676
62
+ openlit/instrumentation/google_ai_studio/utils.py,sha256=0Bqs2GMFv6e5UU-FV-s-RBVvJOTSNvD74AaGCPD5CVc,11254
63
63
  openlit/instrumentation/gpt4all/__init__.py,sha256=cO8mi3hhPDXcNwb9AwQ3-wQ_ydnOeBRwb0cptlQmAM4,1805
64
64
  openlit/instrumentation/gpt4all/gpt4all.py,sha256=EYp0njZ1kF56rTAjYZVtufA5W4xTWGzSIntjJ4MEfl4,24185
65
65
  openlit/instrumentation/gpu/__init__.py,sha256=QQCFVEbRfdeTjmdFe-UeEiy19vEEWSIBpj2B1wYGhUs,11036
@@ -95,9 +95,9 @@ openlit/instrumentation/ollama/__init__.py,sha256=v7VhVxHw_c6QtMznxe6a7z6QrYHZsH
95
95
  openlit/instrumentation/ollama/async_ollama.py,sha256=zJPDr2ROh1nvFGoxgdTbe04Zr1KhmgJUYFPeuRLQGLk,6667
96
96
  openlit/instrumentation/ollama/ollama.py,sha256=MNUltiP9XVT4azmO_-E2vjhFaoHQyJ0Z6c-HnB0_jCE,6563
97
97
  openlit/instrumentation/ollama/utils.py,sha256=41uvYaYkGwWfRyHYqhOOwrFy6cMzBlG1urJYUat9Q24,14819
98
- openlit/instrumentation/openai/__init__.py,sha256=FiL4OHDhs957spa3k9sNC_VLt0-txtwbnujQwnevQ5I,5564
99
- openlit/instrumentation/openai/async_openai.py,sha256=gxA9Fs_b0hsOlJh8F55zi0TqgarJUlZA6eK1-ghvy90,71945
100
- openlit/instrumentation/openai/openai.py,sha256=Gky-NPUhjXhGOG4nWKkuKGTEKWJSgebzHb5dmqJp7fU,71754
98
+ openlit/instrumentation/openai/__init__.py,sha256=y9Ox5aYWTb2nAa_d0ic3Mkv4wEKmUGqslW9nHKg6NnY,6320
99
+ openlit/instrumentation/openai/async_openai.py,sha256=JkpVcyOhGvPzhqxzeP01MwwfaYhddNsSUQqgfF8hU8I,81390
100
+ openlit/instrumentation/openai/openai.py,sha256=5fgRyK5dUN2zUdrN0vBSZFnSEAXf2dKS0qnq_85-mQE,81175
101
101
  openlit/instrumentation/openai_agents/__init__.py,sha256=tRTSIrUtkXc_lfQnVanXmQLd2Sy9RqBNTHF5FhhZx7o,1530
102
102
  openlit/instrumentation/openai_agents/openai_agents.py,sha256=kRWPgjofcOviMi3w7CsRvJO3SCjqPmuq-PM800vIM7g,2678
103
103
  openlit/instrumentation/phidata/__init__.py,sha256=tqls5-UI6FzbjxYgq_qqAfALhWJm8dHn2NtgqiQA4f8,1557
@@ -124,13 +124,14 @@ openlit/instrumentation/transformers/utils.py,sha256=3f-ewpUpduaBrTVIFJKaabACjz-
124
124
  openlit/instrumentation/vertexai/__init__.py,sha256=mT28WCBvQfRCkAWGL6bd0EjEPHvMjaNcz6T3jsLZh8k,3745
125
125
  openlit/instrumentation/vertexai/async_vertexai.py,sha256=-kpg-eiL76O5_XopUPghCYwJHf0Nrxi00_Z5tCwq6zM,23086
126
126
  openlit/instrumentation/vertexai/vertexai.py,sha256=5NB090aWlm9DnlccNNLRO6A97P_RN-JnHb5JS01tYyw,23000
127
- openlit/instrumentation/vllm/__init__.py,sha256=8Su4DEpxdT2wr4Qr17heakzoGSbuq6ey1MmSVR_vbOA,1508
128
- openlit/instrumentation/vllm/vllm.py,sha256=FxDIR4WH1VySivi0wop4E1DBo2HXyCr8nZ9x1c7x4eM,7778
127
+ openlit/instrumentation/vllm/__init__.py,sha256=VUWsjtYEe1_u4hJRDAZI5abrRfZ2L85LxZmc76irBrk,1524
128
+ openlit/instrumentation/vllm/utils.py,sha256=hPVG_UKLY7xTvmmHbBdPy8HT7y_8VIILn37a5zOTYzU,6822
129
+ openlit/instrumentation/vllm/vllm.py,sha256=SZosSwnkBUKspPtsm_k6VQaAWnD4kdcFWj2n-StWJus,2175
129
130
  openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
130
131
  openlit/otel/metrics.py,sha256=GM2PDloBGRhBTkHHkYaqmOwIAQkY124ZhW4sEqW1Fgk,7086
131
132
  openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
132
133
  openlit/semcov/__init__.py,sha256=ptyo37PY-FHDx_PShEvbdns71cD4YvvXw15bCRXKCKM,13461
133
- openlit-1.34.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
134
- openlit-1.34.1.dist-info/METADATA,sha256=c3xokUNDxGsFVnc_XqD9q4_aodyLpYGPYBA6uXNd3do,23469
135
- openlit-1.34.1.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
136
- openlit-1.34.1.dist-info/RECORD,,
134
+ openlit-1.34.3.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
135
+ openlit-1.34.3.dist-info/METADATA,sha256=8_jDnUBC1cxAr2DNwkg5IXbNQX2qru-_nC7OpwC6Jh8,23469
136
+ openlit-1.34.3.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
137
+ openlit-1.34.3.dist-info/RECORD,,