openlit 1.34.1__py3-none-any.whl → 1.34.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +2 -4
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +2 -4
- openlit/instrumentation/google_ai_studio/utils.py +1 -3
- openlit/instrumentation/vllm/__init__.py +1 -1
- openlit/instrumentation/vllm/utils.py +161 -0
- openlit/instrumentation/vllm/vllm.py +28 -136
- {openlit-1.34.1.dist-info → openlit-1.34.2.dist-info}/METADATA +1 -1
- {openlit-1.34.1.dist-info → openlit-1.34.2.dist-info}/RECORD +10 -9
- {openlit-1.34.1.dist-info → openlit-1.34.2.dist-info}/LICENSE +0 -0
- {openlit-1.34.1.dist-info → openlit-1.34.2.dist-info}/WHEEL +0 -0
@@ -59,14 +59,12 @@ def async_generate(version, environment, application_name,
|
|
59
59
|
version=version,
|
60
60
|
)
|
61
61
|
|
62
|
-
return response
|
63
|
-
|
64
62
|
except Exception as e:
|
65
63
|
handle_exception(span, e)
|
66
64
|
logger.error("Error in trace creation: %s", e)
|
67
65
|
|
68
|
-
|
69
|
-
|
66
|
+
# Return original response
|
67
|
+
return response
|
70
68
|
|
71
69
|
return wrapper
|
72
70
|
|
@@ -59,14 +59,12 @@ def generate(version, environment, application_name,
|
|
59
59
|
version=version,
|
60
60
|
)
|
61
61
|
|
62
|
-
return response
|
63
|
-
|
64
62
|
except Exception as e:
|
65
63
|
handle_exception(span, e)
|
66
64
|
logger.error("Error in trace creation: %s", e)
|
67
65
|
|
68
|
-
|
69
|
-
|
66
|
+
# Return original response
|
67
|
+
return response
|
70
68
|
|
71
69
|
return wrapper
|
72
70
|
|
@@ -2,10 +2,8 @@
|
|
2
2
|
Google AI Studio OpenTelemetry instrumentation utility functions
|
3
3
|
"""
|
4
4
|
import time
|
5
|
-
|
6
5
|
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
6
|
from opentelemetry.trace import Status, StatusCode
|
8
|
-
|
9
7
|
from openlit.__helpers import (
|
10
8
|
calculate_ttft,
|
11
9
|
response_as_dict,
|
@@ -117,6 +115,7 @@ def common_chat_logic(scope, pricing_info, environment, application_name, metric
|
|
117
115
|
scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_GEMINI)
|
118
116
|
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
|
119
117
|
scope._span.set_attribute(SemanticConvention.SERVER_PORT, scope._server_port)
|
118
|
+
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
|
120
119
|
|
121
120
|
inference_config = scope._kwargs.get('config', {})
|
122
121
|
|
@@ -142,7 +141,6 @@ def common_chat_logic(scope, pricing_info, environment, application_name, metric
|
|
142
141
|
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
143
142
|
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
|
144
143
|
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_REASONING_TOKENS, scope._reasoning_tokens)
|
145
|
-
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
|
146
144
|
|
147
145
|
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
148
146
|
'text' if isinstance(scope._llmresponse, str) else 'json')
|
@@ -32,7 +32,7 @@ class VLLMInstrumentor(BaseInstrumentor):
|
|
32
32
|
|
33
33
|
# sync chat
|
34
34
|
wrap_function_wrapper(
|
35
|
-
"vllm",
|
35
|
+
"vllm.entrypoints.llm",
|
36
36
|
"LLM.generate",
|
37
37
|
generate(version, environment, application_name,
|
38
38
|
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
@@ -0,0 +1,161 @@
|
|
1
|
+
"""
|
2
|
+
Utility functions for vLLM instrumentation.
|
3
|
+
"""
|
4
|
+
|
5
|
+
import time
|
6
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import Status, StatusCode
|
8
|
+
from openlit.__helpers import (
|
9
|
+
calculate_tbt,
|
10
|
+
get_chat_model_cost,
|
11
|
+
general_tokens,
|
12
|
+
create_metrics_attributes,
|
13
|
+
)
|
14
|
+
from openlit.semcov import SemanticConvention
|
15
|
+
|
16
|
+
def get_inference_config(args, kwargs):
|
17
|
+
"""
|
18
|
+
Safely extract inference configuration from args or kwargs.
|
19
|
+
"""
|
20
|
+
|
21
|
+
if 'sampling_params' in kwargs:
|
22
|
+
return kwargs['sampling_params']
|
23
|
+
if len(args) > 1:
|
24
|
+
return args[1]
|
25
|
+
return None
|
26
|
+
|
27
|
+
def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
28
|
+
capture_message_content, disable_metrics, version, is_stream):
|
29
|
+
"""
|
30
|
+
Process chat request and generate Telemetry
|
31
|
+
"""
|
32
|
+
|
33
|
+
scope._end_time = time.time()
|
34
|
+
if len(scope._timestamps) > 1:
|
35
|
+
scope._tbt = calculate_tbt(scope._timestamps)
|
36
|
+
|
37
|
+
# Set base span attributes
|
38
|
+
scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
39
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
40
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, SemanticConvention.GEN_AI_SYSTEM_VLLM)
|
41
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, scope._request_model)
|
42
|
+
scope._span.set_attribute(SemanticConvention.SERVER_PORT, scope._server_port)
|
43
|
+
scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, scope._server_address)
|
44
|
+
|
45
|
+
# Handle inference configuration
|
46
|
+
inference_config = get_inference_config(scope._args, scope._kwargs)
|
47
|
+
if inference_config:
|
48
|
+
attributes = [
|
49
|
+
(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, 'frequency_penalty'),
|
50
|
+
(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, 'max_tokens'),
|
51
|
+
(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, 'presence_penalty'),
|
52
|
+
(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, 'stop_sequences'),
|
53
|
+
(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, 'temperature'),
|
54
|
+
(SemanticConvention.GEN_AI_REQUEST_TOP_P, 'top_p'),
|
55
|
+
(SemanticConvention.GEN_AI_REQUEST_TOP_K, 'top_k'),
|
56
|
+
]
|
57
|
+
|
58
|
+
for attribute, key in attributes:
|
59
|
+
value = getattr(inference_config, key, None)
|
60
|
+
if value is not None:
|
61
|
+
scope._span.set_attribute(attribute, value)
|
62
|
+
|
63
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, scope._request_model)
|
64
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text")
|
65
|
+
|
66
|
+
# Set base span attributes (Extras)
|
67
|
+
scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
68
|
+
scope._span.set_attribute(SERVICE_NAME, application_name)
|
69
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
|
70
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, scope._tbt)
|
71
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, scope._ttft)
|
72
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
|
73
|
+
|
74
|
+
input_tokens = 0
|
75
|
+
output_tokens = 0
|
76
|
+
cost = 0
|
77
|
+
|
78
|
+
if capture_message_content:
|
79
|
+
prompt = ""
|
80
|
+
completion = ""
|
81
|
+
|
82
|
+
for output in scope._response:
|
83
|
+
prompt += output.prompt + "\n"
|
84
|
+
if output.outputs and len(output.outputs) > 0:
|
85
|
+
completion += output.outputs[0].text + "\n"
|
86
|
+
input_tokens += general_tokens(output.prompt)
|
87
|
+
output_tokens += general_tokens(output.outputs[0].text)
|
88
|
+
|
89
|
+
# Add a single event for prompt
|
90
|
+
scope._span.add_event(
|
91
|
+
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
92
|
+
attributes={
|
93
|
+
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
94
|
+
},
|
95
|
+
)
|
96
|
+
|
97
|
+
# Add a single event for completion
|
98
|
+
scope._span.add_event(
|
99
|
+
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
100
|
+
attributes={
|
101
|
+
SemanticConvention.GEN_AI_CONTENT_COMPLETION: completion,
|
102
|
+
},
|
103
|
+
)
|
104
|
+
|
105
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
106
|
+
input_tokens)
|
107
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
108
|
+
output_tokens)
|
109
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE,
|
110
|
+
input_tokens + output_tokens)
|
111
|
+
|
112
|
+
# Calculate cost of the operation
|
113
|
+
cost = get_chat_model_cost(scope._request_model, pricing_info, input_tokens, output_tokens)
|
114
|
+
scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
|
115
|
+
|
116
|
+
scope._span.set_status(Status(StatusCode.OK))
|
117
|
+
|
118
|
+
if disable_metrics is False:
|
119
|
+
metrics_attributes = create_metrics_attributes(
|
120
|
+
service_name=application_name,
|
121
|
+
deployment_environment=environment,
|
122
|
+
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
123
|
+
system=SemanticConvention.GEN_AI_SYSTEM_VLLM,
|
124
|
+
request_model=scope._request_model,
|
125
|
+
server_address=scope._server_address,
|
126
|
+
server_port=scope._server_port,
|
127
|
+
response_model=scope._request_model,
|
128
|
+
)
|
129
|
+
metrics['genai_client_operation_duration'].record(scope._end_time - scope._start_time, metrics_attributes)
|
130
|
+
metrics['genai_server_tbt'].record(scope._tbt, metrics_attributes)
|
131
|
+
metrics['genai_server_ttft'].record(scope._ttft, metrics_attributes)
|
132
|
+
metrics['genai_requests'].add(1, metrics_attributes)
|
133
|
+
metrics['genai_completion_tokens'].add(output_tokens, metrics_attributes)
|
134
|
+
metrics['genai_prompt_tokens'].add(input_tokens, metrics_attributes)
|
135
|
+
metrics['genai_cost'].record(cost, metrics_attributes)
|
136
|
+
metrics['genai_client_usage_tokens'].record(
|
137
|
+
input_tokens + output_tokens, metrics_attributes)
|
138
|
+
|
139
|
+
def process_chat_response(instance, response, request_model, pricing_info, server_port, server_address,
|
140
|
+
environment, application_name, metrics, start_time, span, args, kwargs,
|
141
|
+
capture_message_content=False, disable_metrics=False, version="1.0.0"):
|
142
|
+
"""
|
143
|
+
Process chat request and generate Telemetry
|
144
|
+
"""
|
145
|
+
self = type('GenericScope', (), {})()
|
146
|
+
self._response = response
|
147
|
+
self._start_time = start_time
|
148
|
+
self._end_time = time.time()
|
149
|
+
self._span = span
|
150
|
+
self._ttft, self._tbt = self._end_time - self._start_time, 0
|
151
|
+
self._server_address = server_address
|
152
|
+
self._server_port = server_port
|
153
|
+
self._request_model = request_model
|
154
|
+
self._timestamps = []
|
155
|
+
self._args = args
|
156
|
+
self._kwargs = kwargs
|
157
|
+
|
158
|
+
common_chat_logic(self, pricing_info, environment, application_name, metrics,
|
159
|
+
capture_message_content, disable_metrics, version, is_stream=False)
|
160
|
+
|
161
|
+
return response
|
@@ -4,170 +4,62 @@ Module for monitoring vLLM API calls.
|
|
4
4
|
|
5
5
|
import logging
|
6
6
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import SpanKind
|
9
8
|
from openlit.__helpers import (
|
10
|
-
get_chat_model_cost,
|
11
9
|
handle_exception,
|
12
|
-
general_tokens,
|
13
|
-
create_metrics_attributes,
|
14
10
|
set_server_address_and_port
|
15
11
|
)
|
12
|
+
from openlit.instrumentation.vllm.utils import (
|
13
|
+
process_chat_response
|
14
|
+
)
|
16
15
|
from openlit.semcov import SemanticConvention
|
17
16
|
|
18
17
|
# Initialize logger for logging potential issues and operations
|
19
18
|
logger = logging.getLogger(__name__)
|
20
19
|
|
21
20
|
def generate(version, environment, application_name,
|
22
|
-
|
21
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
23
22
|
"""
|
24
|
-
Generates a telemetry wrapper for
|
25
|
-
|
26
|
-
Args:
|
27
|
-
version: Version of the monitoring package.
|
28
|
-
environment: Deployment environment (e.g., production, staging).
|
29
|
-
application_name: Name of the application using the vLLM API.
|
30
|
-
tracer: OpenTelemetry tracer for creating spans.
|
31
|
-
pricing_info: Information used for calculating the cost of vLLM usage.
|
32
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
33
|
-
|
34
|
-
Returns:
|
35
|
-
A function that wraps the generate method to add telemetry.
|
23
|
+
Generates a telemetry wrapper for GenAI function call
|
36
24
|
"""
|
37
25
|
|
38
26
|
def wrapper(wrapped, instance, args, kwargs):
|
39
27
|
"""
|
40
|
-
Wraps the
|
41
|
-
|
42
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
43
|
-
gracefully, adding details to the trace for observability.
|
44
|
-
|
45
|
-
Args:
|
46
|
-
wrapped: The original 'generate' method to be wrapped.
|
47
|
-
instance: The instance of the class where the original method is defined.
|
48
|
-
args: Positional arguments for the 'generate' method.
|
49
|
-
kwargs: Keyword arguments for the 'generate' method.
|
50
|
-
|
51
|
-
Returns:
|
52
|
-
The response from the original 'generate' method.
|
28
|
+
Wraps the GenAI function call.
|
53
29
|
"""
|
54
30
|
|
55
|
-
server_address, server_port = set_server_address_and_port(instance, "
|
31
|
+
server_address, server_port = set_server_address_and_port(instance, "http://127.0.0.1", 443)
|
56
32
|
request_model = instance.llm_engine.model_config.model or "facebook/opt-125m"
|
57
33
|
|
58
34
|
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
59
35
|
|
60
|
-
|
61
|
-
with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
|
36
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
62
37
|
start_time = time.time()
|
63
38
|
response = wrapped(*args, **kwargs)
|
64
|
-
end_time = time.time()
|
65
39
|
|
66
40
|
try:
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
86
|
-
environment)
|
87
|
-
span.set_attribute(SERVICE_NAME,
|
88
|
-
application_name)
|
89
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
90
|
-
False)
|
91
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
92
|
-
end_time - start_time)
|
93
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
94
|
-
version)
|
95
|
-
|
96
|
-
input_tokens = 0
|
97
|
-
output_tokens = 0
|
98
|
-
cost = 0
|
99
|
-
|
100
|
-
if capture_message_content:
|
101
|
-
prompt_attributes = {}
|
102
|
-
completion_attributes = {}
|
103
|
-
|
104
|
-
for i, output in enumerate(response):
|
105
|
-
prompt_attributes[f"{SemanticConvention.GEN_AI_CONTENT_PROMPT}.{i}"] = output.prompt
|
106
|
-
completion_attributes[f"{SemanticConvention.GEN_AI_CONTENT_COMPLETION}.{i}"] = output.outputs[0].text
|
107
|
-
input_tokens += general_tokens(output.prompt)
|
108
|
-
output_tokens += general_tokens(output.outputs[0].text)
|
109
|
-
|
110
|
-
# Add a single event for all prompts
|
111
|
-
span.add_event(
|
112
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
113
|
-
attributes=prompt_attributes,
|
114
|
-
)
|
115
|
-
|
116
|
-
# Add a single event for all completions
|
117
|
-
span.add_event(
|
118
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
119
|
-
attributes=completion_attributes,
|
120
|
-
)
|
121
|
-
|
122
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
123
|
-
input_tokens)
|
124
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
125
|
-
output_tokens)
|
126
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
127
|
-
input_tokens + output_tokens)
|
128
|
-
|
129
|
-
# Calculate cost of the operation
|
130
|
-
cost = get_chat_model_cost(request_model, pricing_info,
|
131
|
-
input_tokens, output_tokens)
|
132
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
133
|
-
cost)
|
134
|
-
|
135
|
-
span.set_status(Status(StatusCode.OK))
|
136
|
-
|
137
|
-
if disable_metrics is False:
|
138
|
-
attributes = create_metrics_attributes(
|
139
|
-
service_name=application_name,
|
140
|
-
deployment_environment=environment,
|
141
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
142
|
-
system=SemanticConvention.GEN_AI_SYSTEM_VLLM,
|
143
|
-
request_model=request_model,
|
144
|
-
server_address=server_address,
|
145
|
-
server_port=server_port,
|
146
|
-
response_model=request_model,
|
147
|
-
)
|
148
|
-
|
149
|
-
metrics["genai_client_usage_tokens"].record(
|
150
|
-
input_tokens + output_tokens, attributes
|
151
|
-
)
|
152
|
-
metrics["genai_client_operation_duration"].record(
|
153
|
-
end_time - start_time, attributes
|
154
|
-
)
|
155
|
-
metrics["genai_server_ttft"].record(
|
156
|
-
end_time - start_time, attributes
|
157
|
-
)
|
158
|
-
metrics["genai_requests"].add(1, attributes)
|
159
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
160
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
161
|
-
metrics["genai_cost"].record(cost, attributes)
|
162
|
-
|
163
|
-
# Return original response
|
164
|
-
return response
|
165
|
-
|
41
|
+
response = process_chat_response(
|
42
|
+
instance=instance,
|
43
|
+
response=response,
|
44
|
+
request_model=request_model,
|
45
|
+
pricing_info=pricing_info,
|
46
|
+
server_port=server_port,
|
47
|
+
server_address=server_address,
|
48
|
+
environment=environment,
|
49
|
+
application_name=application_name,
|
50
|
+
metrics=metrics,
|
51
|
+
start_time=start_time,
|
52
|
+
span=span,
|
53
|
+
args=args,
|
54
|
+
kwargs=kwargs,
|
55
|
+
capture_message_content=capture_message_content,
|
56
|
+
disable_metrics=disable_metrics,
|
57
|
+
version=version,
|
58
|
+
)
|
166
59
|
except Exception as e:
|
167
60
|
handle_exception(span, e)
|
168
61
|
logger.error("Error in trace creation: %s", e)
|
169
62
|
|
170
|
-
|
171
|
-
return response
|
63
|
+
return response
|
172
64
|
|
173
65
|
return wrapper
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.34.
|
3
|
+
Version: 1.34.2
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
License: Apache-2.0
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -57,9 +57,9 @@ openlit/instrumentation/embedchain/embedchain.py,sha256=f4hyOr1Xr0RC4PNHRu46aV-j
|
|
57
57
|
openlit/instrumentation/firecrawl/__init__.py,sha256=kyVsAiDBC2djifqT2w1cPRAotiEyEabNvnBeSQxi9N8,1876
|
58
58
|
openlit/instrumentation/firecrawl/firecrawl.py,sha256=4X38UrLYeGm3uez-edYA6qEc0nKC3p77yfKgKBBud0A,3826
|
59
59
|
openlit/instrumentation/google_ai_studio/__init__.py,sha256=d4aDvCSfDtT2geRbwG5yinu62uPTHaj4PtalimuvG-k,2685
|
60
|
-
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=
|
61
|
-
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=
|
62
|
-
openlit/instrumentation/google_ai_studio/utils.py,sha256=
|
60
|
+
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=sWwoUCzaRO9TTSmwO12hPqKTdBmrgG1TTkyvgLN-CIo,5774
|
61
|
+
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=Qps8EY6xZDFT1ZQWZJ0RAQxORHG8PjrTzq52vSqrJ2o,5676
|
62
|
+
openlit/instrumentation/google_ai_studio/utils.py,sha256=0Bqs2GMFv6e5UU-FV-s-RBVvJOTSNvD74AaGCPD5CVc,11254
|
63
63
|
openlit/instrumentation/gpt4all/__init__.py,sha256=cO8mi3hhPDXcNwb9AwQ3-wQ_ydnOeBRwb0cptlQmAM4,1805
|
64
64
|
openlit/instrumentation/gpt4all/gpt4all.py,sha256=EYp0njZ1kF56rTAjYZVtufA5W4xTWGzSIntjJ4MEfl4,24185
|
65
65
|
openlit/instrumentation/gpu/__init__.py,sha256=QQCFVEbRfdeTjmdFe-UeEiy19vEEWSIBpj2B1wYGhUs,11036
|
@@ -124,13 +124,14 @@ openlit/instrumentation/transformers/utils.py,sha256=3f-ewpUpduaBrTVIFJKaabACjz-
|
|
124
124
|
openlit/instrumentation/vertexai/__init__.py,sha256=mT28WCBvQfRCkAWGL6bd0EjEPHvMjaNcz6T3jsLZh8k,3745
|
125
125
|
openlit/instrumentation/vertexai/async_vertexai.py,sha256=-kpg-eiL76O5_XopUPghCYwJHf0Nrxi00_Z5tCwq6zM,23086
|
126
126
|
openlit/instrumentation/vertexai/vertexai.py,sha256=5NB090aWlm9DnlccNNLRO6A97P_RN-JnHb5JS01tYyw,23000
|
127
|
-
openlit/instrumentation/vllm/__init__.py,sha256=
|
128
|
-
openlit/instrumentation/vllm/
|
127
|
+
openlit/instrumentation/vllm/__init__.py,sha256=VUWsjtYEe1_u4hJRDAZI5abrRfZ2L85LxZmc76irBrk,1524
|
128
|
+
openlit/instrumentation/vllm/utils.py,sha256=hPVG_UKLY7xTvmmHbBdPy8HT7y_8VIILn37a5zOTYzU,6822
|
129
|
+
openlit/instrumentation/vllm/vllm.py,sha256=SZosSwnkBUKspPtsm_k6VQaAWnD4kdcFWj2n-StWJus,2175
|
129
130
|
openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
|
130
131
|
openlit/otel/metrics.py,sha256=GM2PDloBGRhBTkHHkYaqmOwIAQkY124ZhW4sEqW1Fgk,7086
|
131
132
|
openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
|
132
133
|
openlit/semcov/__init__.py,sha256=ptyo37PY-FHDx_PShEvbdns71cD4YvvXw15bCRXKCKM,13461
|
133
|
-
openlit-1.34.
|
134
|
-
openlit-1.34.
|
135
|
-
openlit-1.34.
|
136
|
-
openlit-1.34.
|
134
|
+
openlit-1.34.2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
135
|
+
openlit-1.34.2.dist-info/METADATA,sha256=WpHx9DGPjkfepoQxJVxsc6LtuwK9gzJNqFijGAs-JAc,23469
|
136
|
+
openlit-1.34.2.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
137
|
+
openlit-1.34.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|