openlit 1.34.16__py3-none-any.whl → 1.34.17__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/mistral/__init__.py +48 -40
- openlit/instrumentation/mistral/async_mistral.py +145 -556
- openlit/instrumentation/mistral/mistral.py +142 -553
- openlit/instrumentation/mistral/utils.py +298 -0
- {openlit-1.34.16.dist-info → openlit-1.34.17.dist-info}/METADATA +1 -1
- {openlit-1.34.16.dist-info → openlit-1.34.17.dist-info}/RECORD +8 -7
- {openlit-1.34.16.dist-info → openlit-1.34.17.dist-info}/LICENSE +0 -0
- {openlit-1.34.16.dist-info → openlit-1.34.17.dist-info}/WHEEL +0 -0
@@ -1,611 +1,200 @@
|
|
1
1
|
"""
|
2
|
-
Module for monitoring Mistral API calls.
|
2
|
+
Module for monitoring Mistral API calls (async version).
|
3
3
|
"""
|
4
4
|
|
5
|
-
import logging
|
6
5
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
6
|
+
from opentelemetry.trace import SpanKind
|
9
7
|
from openlit.__helpers import (
|
10
|
-
get_chat_model_cost,
|
11
|
-
get_embed_model_cost,
|
12
8
|
handle_exception,
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
9
|
+
set_server_address_and_port,
|
10
|
+
)
|
11
|
+
from openlit.instrumentation.mistral.utils import (
|
12
|
+
process_chunk,
|
13
|
+
process_chat_response,
|
14
|
+
process_streaming_chat_response,
|
15
|
+
process_embedding_response,
|
18
16
|
)
|
19
17
|
from openlit.semcov import SemanticConvention
|
20
18
|
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
def async_chat(version, environment, application_name, tracer,
|
25
|
-
pricing_info, capture_message_content, metrics, disable_metrics):
|
19
|
+
def async_complete(version, environment, application_name,
|
20
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
26
21
|
"""
|
27
|
-
Generates a telemetry wrapper for
|
28
|
-
|
29
|
-
Args:
|
30
|
-
version: Version of the monitoring package.
|
31
|
-
environment: Deployment environment (e.g., production, staging).
|
32
|
-
application_name: Name of the application using the Mistral API.
|
33
|
-
tracer: OpenTelemetry tracer for creating spans.
|
34
|
-
pricing_info: Information used for calculating the cost of Mistral usage.
|
35
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
36
|
-
|
37
|
-
Returns:
|
38
|
-
A function that wraps the chat method to add telemetry.
|
22
|
+
Generates a telemetry wrapper for GenAI complete function call
|
39
23
|
"""
|
40
24
|
|
41
25
|
async def wrapper(wrapped, instance, args, kwargs):
|
42
26
|
"""
|
43
|
-
Wraps the
|
44
|
-
|
45
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
46
|
-
gracefully, adding details to the trace for observability.
|
47
|
-
|
48
|
-
Args:
|
49
|
-
wrapped: The original 'chat' method to be wrapped.
|
50
|
-
instance: The instance of the class where the original method is defined.
|
51
|
-
args: Positional arguments for the 'chat' method.
|
52
|
-
kwargs: Keyword arguments for the 'chat' method.
|
53
|
-
|
54
|
-
Returns:
|
55
|
-
The response from the original 'chat' method.
|
27
|
+
Wraps the GenAI complete function call.
|
56
28
|
"""
|
57
29
|
|
58
|
-
server_address, server_port = set_server_address_and_port(instance,
|
59
|
-
request_model = kwargs.get(
|
30
|
+
server_address, server_port = set_server_address_and_port(instance, "api.mistral.ai", 443)
|
31
|
+
request_model = kwargs.get("model", "mistral-small-latest")
|
60
32
|
|
61
|
-
span_name = f
|
33
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
62
34
|
|
63
35
|
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
64
36
|
start_time = time.time()
|
65
37
|
response = await wrapped(*args, **kwargs)
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
formatted_messages.append(f'{role}: {content_str}')
|
85
|
-
else:
|
86
|
-
formatted_messages.append(f'{role}: {content}')
|
87
|
-
prompt = '\n'.join(formatted_messages)
|
88
|
-
|
89
|
-
input_tokens = response_dict.get('usage').get('prompt_tokens')
|
90
|
-
output_tokens = response_dict.get('usage').get('completion_tokens')
|
91
|
-
|
92
|
-
# Calculate cost of the operation
|
93
|
-
cost = get_chat_model_cost(request_model,
|
94
|
-
pricing_info, input_tokens,
|
95
|
-
output_tokens)
|
96
|
-
|
97
|
-
# Set base span attribues (OTel Semconv)
|
98
|
-
span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
|
99
|
-
span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
|
100
|
-
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
101
|
-
span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
|
102
|
-
SemanticConvention.GEN_AI_SYSTEM_MISTRAL)
|
103
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
|
104
|
-
request_model)
|
105
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED,
|
106
|
-
kwargs.get('seed', ''))
|
107
|
-
span.set_attribute(SemanticConvention.SERVER_PORT,
|
108
|
-
server_port)
|
109
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
110
|
-
kwargs.get('frequency_penalty', 0.0))
|
111
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS,
|
112
|
-
kwargs.get('max_tokens', -1))
|
113
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
114
|
-
kwargs.get('presence_penalty', 0.0))
|
115
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES,
|
116
|
-
kwargs.get('stop', []))
|
117
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE,
|
118
|
-
kwargs.get('temperature', 1.0))
|
119
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P,
|
120
|
-
kwargs.get('top_p', 1.0))
|
121
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID,
|
122
|
-
response_dict.get('id'))
|
123
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
124
|
-
response_dict.get('model'))
|
125
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
126
|
-
input_tokens)
|
127
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
128
|
-
output_tokens)
|
129
|
-
span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
130
|
-
server_address)
|
131
|
-
|
132
|
-
# Set base span attribues (Extras)
|
133
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
134
|
-
environment)
|
135
|
-
span.set_attribute(SERVICE_NAME,
|
136
|
-
application_name)
|
137
|
-
span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
138
|
-
False)
|
139
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
140
|
-
input_tokens + output_tokens)
|
141
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
142
|
-
cost)
|
143
|
-
span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
144
|
-
end_time - start_time)
|
145
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
146
|
-
version)
|
147
|
-
if capture_message_content:
|
148
|
-
span.add_event(
|
149
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
150
|
-
attributes={
|
151
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
152
|
-
},
|
153
|
-
)
|
154
|
-
|
155
|
-
for i in range(kwargs.get('n',1)):
|
156
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
|
157
|
-
[response_dict.get('choices')[i].get('finish_reason')])
|
158
|
-
if capture_message_content:
|
159
|
-
span.add_event(
|
160
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
161
|
-
attributes={
|
162
|
-
# pylint: disable=line-too-long
|
163
|
-
SemanticConvention.GEN_AI_CONTENT_COMPLETION: str(response_dict.get('choices')[i].get('message').get('content')),
|
164
|
-
},
|
165
|
-
)
|
166
|
-
if kwargs.get('tools'):
|
167
|
-
span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALLS,
|
168
|
-
str(response_dict.get('choices')[i].get('message').get('tool_calls')))
|
169
|
-
|
170
|
-
if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
|
171
|
-
span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
172
|
-
'text')
|
173
|
-
elif response_dict.get('choices')[i].get('message').get('content') is not None:
|
174
|
-
span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
175
|
-
'json')
|
176
|
-
|
177
|
-
span.set_status(Status(StatusCode.OK))
|
178
|
-
|
179
|
-
if disable_metrics is False:
|
180
|
-
attributes = create_metrics_attributes(
|
181
|
-
service_name=application_name,
|
182
|
-
deployment_environment=environment,
|
183
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
184
|
-
system=SemanticConvention.GEN_AI_SYSTEM_MISTRAL,
|
185
|
-
request_model=request_model,
|
186
|
-
server_address=server_address,
|
187
|
-
server_port=server_port,
|
188
|
-
response_model=response_dict.get('model'),
|
189
|
-
)
|
190
|
-
|
191
|
-
metrics['genai_client_usage_tokens'].record(
|
192
|
-
input_tokens + output_tokens, attributes
|
193
|
-
)
|
194
|
-
metrics['genai_client_operation_duration'].record(
|
195
|
-
end_time - start_time, attributes
|
196
|
-
)
|
197
|
-
metrics['genai_server_ttft'].record(
|
198
|
-
end_time - start_time, attributes
|
199
|
-
)
|
200
|
-
metrics['genai_requests'].add(1, attributes)
|
201
|
-
metrics['genai_completion_tokens'].add(output_tokens, attributes)
|
202
|
-
metrics['genai_prompt_tokens'].add(input_tokens, attributes)
|
203
|
-
metrics['genai_cost'].record(cost, attributes)
|
204
|
-
|
205
|
-
# Return original response
|
206
|
-
return response
|
207
|
-
|
208
|
-
except Exception as e:
|
209
|
-
handle_exception(span, e)
|
210
|
-
logger.error('Error in trace creation: %s', e)
|
211
|
-
|
212
|
-
# Return original response
|
213
|
-
return response
|
38
|
+
response = process_chat_response(
|
39
|
+
response=response,
|
40
|
+
request_model=request_model,
|
41
|
+
pricing_info=pricing_info,
|
42
|
+
server_port=server_port,
|
43
|
+
server_address=server_address,
|
44
|
+
environment=environment,
|
45
|
+
application_name=application_name,
|
46
|
+
metrics=metrics,
|
47
|
+
start_time=start_time,
|
48
|
+
span=span,
|
49
|
+
capture_message_content=capture_message_content,
|
50
|
+
disable_metrics=disable_metrics,
|
51
|
+
version=version,
|
52
|
+
**kwargs
|
53
|
+
)
|
54
|
+
|
55
|
+
return response
|
214
56
|
|
215
57
|
return wrapper
|
216
58
|
|
217
|
-
def
|
59
|
+
def async_stream(version, environment, application_name,
|
218
60
|
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
219
61
|
"""
|
220
|
-
Generates a telemetry wrapper for
|
221
|
-
|
222
|
-
Args:
|
223
|
-
version: Version of the monitoring package.
|
224
|
-
environment: Deployment environment (e.g., production, staging).
|
225
|
-
application_name: Name of the application using the Mistral API.
|
226
|
-
tracer: OpenTelemetry tracer for creating spans.
|
227
|
-
pricing_info: Information used for calculating the cost of Mistral usage.
|
228
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
229
|
-
|
230
|
-
Returns:
|
231
|
-
A function that wraps the chat method to add telemetry.
|
62
|
+
Generates a telemetry wrapper for GenAI stream function call
|
232
63
|
"""
|
233
64
|
|
234
|
-
|
65
|
+
class TracedAsyncStream:
|
235
66
|
"""
|
236
|
-
|
237
|
-
|
238
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
239
|
-
gracefully, adding details to the trace for observability.
|
240
|
-
|
241
|
-
Args:
|
242
|
-
wrapped: The original 'chat_stream' method to be wrapped.
|
243
|
-
instance: The instance of the class where the original method is defined.
|
244
|
-
args: Positional arguments for the 'chat_stream' method.
|
245
|
-
kwargs: Keyword arguments for the 'chat_stream' method.
|
246
|
-
|
247
|
-
Returns:
|
248
|
-
The response from the original 'chat_stream' method.
|
67
|
+
Wrapper for async streaming responses to collect telemetry.
|
249
68
|
"""
|
250
69
|
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
"""Delegate attribute access to the wrapped object."""
|
303
|
-
return getattr(await self.__wrapped__, name)
|
304
|
-
|
305
|
-
async def __anext__(self):
|
70
|
+
def __init__(
|
71
|
+
self,
|
72
|
+
wrapped,
|
73
|
+
span,
|
74
|
+
span_name,
|
75
|
+
kwargs,
|
76
|
+
server_address,
|
77
|
+
server_port,
|
78
|
+
**args,
|
79
|
+
):
|
80
|
+
self.__wrapped__ = wrapped
|
81
|
+
self._span = span
|
82
|
+
self._span_name = span_name
|
83
|
+
self._llmresponse = ""
|
84
|
+
self._response_id = ""
|
85
|
+
self._response_model = ""
|
86
|
+
self._finish_reason = ""
|
87
|
+
self._tools = None
|
88
|
+
self._input_tokens = 0
|
89
|
+
self._output_tokens = 0
|
90
|
+
|
91
|
+
self._args = args
|
92
|
+
self._kwargs = kwargs
|
93
|
+
self._start_time = time.time()
|
94
|
+
self._end_time = None
|
95
|
+
self._timestamps = []
|
96
|
+
self._ttft = 0
|
97
|
+
self._tbt = 0
|
98
|
+
self._server_address = server_address
|
99
|
+
self._server_port = server_port
|
100
|
+
|
101
|
+
async def __aenter__(self):
|
102
|
+
await self.__wrapped__.__aenter__()
|
103
|
+
return self
|
104
|
+
|
105
|
+
async def __aexit__(self, exc_type, exc_value, traceback):
|
106
|
+
await self.__wrapped__.__aexit__(exc_type, exc_value, traceback)
|
107
|
+
|
108
|
+
def __aiter__(self):
|
109
|
+
return self
|
110
|
+
|
111
|
+
async def __getattr__(self, name):
|
112
|
+
"""Delegate attribute access to the wrapped object."""
|
113
|
+
return getattr(await self.__wrapped__, name)
|
114
|
+
|
115
|
+
async def __anext__(self):
|
116
|
+
try:
|
117
|
+
chunk = await self.__wrapped__.__anext__()
|
118
|
+
process_chunk(self, chunk)
|
119
|
+
return chunk
|
120
|
+
except StopAsyncIteration:
|
306
121
|
try:
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
self._output_tokens = chunked.get('data').get('usage').get('completion_tokens')
|
324
|
-
self._finish_reason = chunked.get('data').get('choices')[0].get('finish_reason')
|
325
|
-
|
326
|
-
return chunk
|
327
|
-
except StopAsyncIteration:
|
328
|
-
# Handling exception ensure observability without disrupting operation
|
329
|
-
try:
|
330
|
-
self._end_time = time.time()
|
331
|
-
if len(self._timestamps) > 1:
|
332
|
-
self._tbt = calculate_tbt(self._timestamps)
|
333
|
-
|
334
|
-
# Format 'messages' into a single string
|
335
|
-
message_prompt = self._kwargs.get('messages', '')
|
336
|
-
formatted_messages = []
|
337
|
-
for message in message_prompt:
|
338
|
-
role = message['role']
|
339
|
-
content = message['content']
|
340
|
-
|
341
|
-
if isinstance(content, list):
|
342
|
-
content_str_list = []
|
343
|
-
for item in content:
|
344
|
-
if item['type'] == 'text':
|
345
|
-
content_str_list.append(f'text: {item["text"]}')
|
346
|
-
elif (item['type'] == 'image_url' and
|
347
|
-
not item['image_url']['url'].startswith('data:')):
|
348
|
-
content_str_list.append(f'image_url: {item["image_url"]["url"]}')
|
349
|
-
content_str = ", ".join(content_str_list)
|
350
|
-
formatted_messages.append(f'{role}: {content_str}')
|
351
|
-
else:
|
352
|
-
formatted_messages.append(f'{role}: {content}')
|
353
|
-
prompt = '\n'.join(formatted_messages)
|
354
|
-
|
355
|
-
request_model = self._kwargs.get('model', 'mistral-small-latest')
|
356
|
-
|
357
|
-
# Calculate cost of the operation
|
358
|
-
cost = get_chat_model_cost(request_model,
|
359
|
-
pricing_info, self._input_tokens,
|
360
|
-
self._output_tokens)
|
361
|
-
|
362
|
-
# Set Span attributes (OTel Semconv)
|
363
|
-
self._span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
|
364
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OPERATION,
|
365
|
-
SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT)
|
366
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM,
|
367
|
-
SemanticConvention.GEN_AI_SYSTEM_MISTRAL)
|
368
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL,
|
369
|
-
request_model)
|
370
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED,
|
371
|
-
self._kwargs.get('seed', ''))
|
372
|
-
self._span.set_attribute(SemanticConvention.SERVER_PORT,
|
373
|
-
self._server_port)
|
374
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
375
|
-
self._kwargs.get('frequency_penalty', 0.0))
|
376
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS,
|
377
|
-
self._kwargs.get('max_tokens', -1))
|
378
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
379
|
-
self._kwargs.get('presence_penalty', 0.0))
|
380
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES,
|
381
|
-
self._kwargs.get('stop_sequences', []))
|
382
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE,
|
383
|
-
self._kwargs.get('temperature', 0.3))
|
384
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_K,
|
385
|
-
self._kwargs.get('k', 1.0))
|
386
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P,
|
387
|
-
self._kwargs.get('p', 1.0))
|
388
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON,
|
389
|
-
[self._finish_reason])
|
390
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID,
|
391
|
-
self._response_id)
|
392
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
393
|
-
self._response_model)
|
394
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
395
|
-
self._input_tokens)
|
396
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS,
|
397
|
-
self._output_tokens)
|
398
|
-
self._span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
399
|
-
self._server_address)
|
400
|
-
|
401
|
-
if isinstance(self._llmresponse, str):
|
402
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
403
|
-
'text')
|
404
|
-
else:
|
405
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE,
|
406
|
-
'json')
|
407
|
-
|
408
|
-
# Set Span attributes (Extra)
|
409
|
-
self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
410
|
-
environment)
|
411
|
-
self._span.set_attribute(SERVICE_NAME,
|
412
|
-
application_name)
|
413
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM,
|
414
|
-
True)
|
415
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
416
|
-
self._input_tokens + self._output_tokens)
|
417
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
418
|
-
cost)
|
419
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT,
|
420
|
-
self._tbt)
|
421
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT,
|
422
|
-
self._ttft)
|
423
|
-
self._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
424
|
-
version)
|
425
|
-
if capture_message_content:
|
426
|
-
self._span.add_event(
|
427
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
428
|
-
attributes={
|
429
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
|
430
|
-
},
|
431
|
-
)
|
432
|
-
self._span.add_event(
|
433
|
-
name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
|
434
|
-
attributes={
|
435
|
-
SemanticConvention.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
436
|
-
},
|
437
|
-
)
|
438
|
-
self._span.set_status(Status(StatusCode.OK))
|
439
|
-
|
440
|
-
if disable_metrics is False:
|
441
|
-
attributes = create_metrics_attributes(
|
442
|
-
service_name=application_name,
|
443
|
-
deployment_environment=environment,
|
444
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT,
|
445
|
-
system=SemanticConvention.GEN_AI_SYSTEM_MISTRAL,
|
446
|
-
request_model=request_model,
|
447
|
-
server_address=self._server_address,
|
448
|
-
server_port=self._server_port,
|
449
|
-
response_model=self._response_model,
|
450
|
-
)
|
451
|
-
|
452
|
-
metrics['genai_client_usage_tokens'].record(
|
453
|
-
self._input_tokens + self._output_tokens, attributes
|
454
|
-
)
|
455
|
-
metrics['genai_client_operation_duration'].record(
|
456
|
-
self._end_time - self._start_time, attributes
|
457
|
-
)
|
458
|
-
metrics['genai_server_tbt'].record(
|
459
|
-
self._tbt, attributes
|
460
|
-
)
|
461
|
-
metrics['genai_server_ttft'].record(
|
462
|
-
self._ttft, attributes
|
463
|
-
)
|
464
|
-
metrics['genai_requests'].add(1, attributes)
|
465
|
-
metrics['genai_completion_tokens'].add(self._output_tokens, attributes)
|
466
|
-
metrics['genai_prompt_tokens'].add(self._input_tokens, attributes)
|
467
|
-
metrics['genai_cost'].record(cost, attributes)
|
468
|
-
|
469
|
-
except Exception as e:
|
470
|
-
handle_exception(self._span, e)
|
471
|
-
logger.error('Error in trace creation: %s', e)
|
472
|
-
finally:
|
473
|
-
self._span.end()
|
474
|
-
raise
|
475
|
-
|
476
|
-
server_address, server_port = set_server_address_and_port(instance, 'api.mistral.ai', 443)
|
477
|
-
request_model = kwargs.get('model', 'mistral-small-latest')
|
478
|
-
|
479
|
-
span_name = f'{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}'
|
122
|
+
with tracer.start_as_current_span(self._span_name, kind= SpanKind.CLIENT) as self._span:
|
123
|
+
process_streaming_chat_response(
|
124
|
+
self,
|
125
|
+
pricing_info=pricing_info,
|
126
|
+
environment=environment,
|
127
|
+
application_name=application_name,
|
128
|
+
metrics=metrics,
|
129
|
+
capture_message_content=capture_message_content,
|
130
|
+
disable_metrics=disable_metrics,
|
131
|
+
version=version
|
132
|
+
)
|
133
|
+
|
134
|
+
except Exception as e:
|
135
|
+
handle_exception(self._span, e)
|
136
|
+
|
137
|
+
raise
|
480
138
|
|
139
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
140
|
+
"""
|
141
|
+
Wraps the GenAI stream function call.
|
142
|
+
"""
|
143
|
+
|
144
|
+
server_address, server_port = set_server_address_and_port(instance, "api.mistral.ai", 443)
|
145
|
+
request_model = kwargs.get("model", "mistral-small-latest")
|
146
|
+
|
147
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
148
|
+
|
149
|
+
# Stream endpoint is always streaming
|
481
150
|
awaited_wrapped = await wrapped(*args, **kwargs)
|
482
151
|
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
483
|
-
|
152
|
+
|
153
|
+
return TracedAsyncStream(awaited_wrapped, span, span_name, kwargs, server_address, server_port)
|
484
154
|
|
485
155
|
return wrapper
|
486
156
|
|
487
|
-
def
|
488
|
-
|
157
|
+
def async_embed(version, environment, application_name,
|
158
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
489
159
|
"""
|
490
|
-
Generates a telemetry wrapper for
|
491
|
-
|
492
|
-
Args:
|
493
|
-
version: Version of the monitoring package.
|
494
|
-
environment: Deployment environment (e.g., production, staging).
|
495
|
-
application_name: Name of the application using the Mistral API.
|
496
|
-
tracer: OpenTelemetry tracer for creating spans.
|
497
|
-
pricing_info: Information used for calculating the cost of Mistral usage.
|
498
|
-
capture_message_content: Flag indicating whether to trace the actual content.
|
499
|
-
|
500
|
-
Returns:
|
501
|
-
A function that wraps the embeddings method to add telemetry.
|
160
|
+
Generates a telemetry wrapper for GenAI embedding function call
|
502
161
|
"""
|
503
162
|
|
504
|
-
def wrapper(wrapped, instance, args, kwargs):
|
163
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
505
164
|
"""
|
506
|
-
Wraps the
|
507
|
-
|
508
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
509
|
-
gracefully, adding details to the trace for observability.
|
510
|
-
|
511
|
-
Args:
|
512
|
-
wrapped: The original 'embeddings' method to be wrapped.
|
513
|
-
instance: The instance of the class where the original method is defined.
|
514
|
-
args: Positional arguments for the 'embeddings' method.
|
515
|
-
kwargs: Keyword arguments for the 'embeddings' method.
|
516
|
-
|
517
|
-
Returns:
|
518
|
-
The response from the original 'embeddings' method.
|
165
|
+
Wraps the GenAI embedding function call.
|
519
166
|
"""
|
520
167
|
|
521
|
-
server_address, server_port = set_server_address_and_port(instance,
|
522
|
-
request_model = kwargs.get(
|
168
|
+
server_address, server_port = set_server_address_and_port(instance, "api.mistral.ai", 443)
|
169
|
+
request_model = kwargs.get("model", "mistral-embed")
|
523
170
|
|
524
|
-
span_name = f
|
171
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING} {request_model}"
|
525
172
|
|
526
|
-
with tracer.start_as_current_span(span_name, kind=
|
173
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
527
174
|
start_time = time.time()
|
528
|
-
response = wrapped(*args, **kwargs)
|
529
|
-
end_time = time.time()
|
175
|
+
response = await wrapped(*args, **kwargs)
|
530
176
|
|
531
|
-
response_dict = response_as_dict(response)
|
532
177
|
try:
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
541
|
-
|
542
|
-
|
543
|
-
|
544
|
-
|
545
|
-
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL,
|
550
|
-
response_dict.get('model'))
|
551
|
-
span.set_attribute(SemanticConvention.SERVER_ADDRESS,
|
552
|
-
server_address)
|
553
|
-
span.set_attribute(SemanticConvention.SERVER_PORT,
|
554
|
-
server_port)
|
555
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS,
|
556
|
-
input_tokens)
|
557
|
-
|
558
|
-
# Set Span attributes (Extras)
|
559
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
560
|
-
environment)
|
561
|
-
span.set_attribute(SERVICE_NAME,
|
562
|
-
application_name)
|
563
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_TOTAL_TOKENS,
|
564
|
-
input_tokens)
|
565
|
-
span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST,
|
566
|
-
cost)
|
567
|
-
span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION,
|
568
|
-
version)
|
569
|
-
|
570
|
-
if capture_message_content:
|
571
|
-
span.add_event(
|
572
|
-
name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
|
573
|
-
attributes={
|
574
|
-
SemanticConvention.GEN_AI_CONTENT_PROMPT: str(kwargs.get('inputs', '')),
|
575
|
-
},
|
576
|
-
)
|
577
|
-
|
578
|
-
span.set_status(Status(StatusCode.OK))
|
579
|
-
|
580
|
-
if disable_metrics is False:
|
581
|
-
attributes = create_metrics_attributes(
|
582
|
-
service_name=application_name,
|
583
|
-
deployment_environment=environment,
|
584
|
-
operation=SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING,
|
585
|
-
system=SemanticConvention.GEN_AI_SYSTEM_MISTRAL,
|
586
|
-
request_model=request_model,
|
587
|
-
server_address=server_address,
|
588
|
-
server_port=server_port,
|
589
|
-
response_model=response_dict.get('model'),
|
590
|
-
)
|
591
|
-
metrics['genai_client_usage_tokens'].record(
|
592
|
-
input_tokens, attributes
|
593
|
-
)
|
594
|
-
metrics['genai_client_operation_duration'].record(
|
595
|
-
end_time - start_time, attributes
|
596
|
-
)
|
597
|
-
metrics['genai_requests'].add(1, attributes)
|
598
|
-
metrics['genai_prompt_tokens'].add(input_tokens, attributes)
|
599
|
-
metrics['genai_cost'].record(cost, attributes)
|
600
|
-
|
601
|
-
# Return original response
|
602
|
-
return response
|
178
|
+
response = process_embedding_response(
|
179
|
+
response=response,
|
180
|
+
request_model=request_model,
|
181
|
+
pricing_info=pricing_info,
|
182
|
+
server_port=server_port,
|
183
|
+
server_address=server_address,
|
184
|
+
environment=environment,
|
185
|
+
application_name=application_name,
|
186
|
+
metrics=metrics,
|
187
|
+
start_time=start_time,
|
188
|
+
span=span,
|
189
|
+
capture_message_content=capture_message_content,
|
190
|
+
disable_metrics=disable_metrics,
|
191
|
+
version=version,
|
192
|
+
**kwargs
|
193
|
+
)
|
603
194
|
|
604
195
|
except Exception as e:
|
605
196
|
handle_exception(span, e)
|
606
|
-
logger.error('Error in trace creation: %s', e)
|
607
197
|
|
608
|
-
|
609
|
-
return response
|
198
|
+
return response
|
610
199
|
|
611
200
|
return wrapper
|