openlit 1.34.14__py3-none-any.whl → 1.34.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/azure_ai_inference/__init__.py +39 -23
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +70 -40
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +69 -39
- openlit/instrumentation/azure_ai_inference/utils.py +258 -146
- openlit/instrumentation/litellm/__init__.py +7 -6
- openlit/instrumentation/litellm/async_litellm.py +89 -493
- openlit/instrumentation/litellm/litellm.py +87 -491
- openlit/instrumentation/litellm/utils.py +288 -0
- openlit/semcov/__init__.py +1 -0
- {openlit-1.34.14.dist-info → openlit-1.34.16.dist-info}/METADATA +1 -1
- {openlit-1.34.14.dist-info → openlit-1.34.16.dist-info}/RECORD +13 -12
- {openlit-1.34.14.dist-info → openlit-1.34.16.dist-info}/LICENSE +0 -0
- {openlit-1.34.14.dist-info → openlit-1.34.16.dist-info}/WHEEL +0 -0
@@ -5,49 +5,65 @@ import importlib.metadata
|
|
5
5
|
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
6
6
|
from wrapt import wrap_function_wrapper
|
7
7
|
from openlit.instrumentation.azure_ai_inference.azure_ai_inference import (
|
8
|
-
complete
|
8
|
+
complete,
|
9
|
+
embed
|
9
10
|
)
|
10
11
|
from openlit.instrumentation.azure_ai_inference.async_azure_ai_inference import (
|
11
|
-
async_complete
|
12
|
+
async_complete,
|
13
|
+
async_embed
|
12
14
|
)
|
13
15
|
|
14
|
-
_instruments = (
|
16
|
+
_instruments = ("azure-ai-inference >= 1.0.0b4",)
|
15
17
|
|
16
18
|
class AzureAIInferenceInstrumentor(BaseInstrumentor):
|
17
19
|
"""
|
18
|
-
An instrumentor for azure-ai-inference
|
20
|
+
An instrumentor for azure-ai-inference client library.
|
19
21
|
"""
|
20
22
|
|
21
23
|
def instrumentation_dependencies(self) -> Collection[str]:
|
22
24
|
return _instruments
|
23
25
|
|
24
26
|
def _instrument(self, **kwargs):
|
25
|
-
application_name = kwargs.get(
|
26
|
-
environment = kwargs.get(
|
27
|
-
tracer = kwargs.get(
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
# sync generate
|
27
|
+
application_name = kwargs.get("application_name", "default")
|
28
|
+
environment = kwargs.get("environment", "default")
|
29
|
+
tracer = kwargs.get("tracer")
|
30
|
+
metrics = kwargs.get("metrics_dict")
|
31
|
+
pricing_info = kwargs.get("pricing_info", {})
|
32
|
+
capture_message_content = kwargs.get("capture_message_content", False)
|
33
|
+
disable_metrics = kwargs.get("disable_metrics")
|
34
|
+
version = importlib.metadata.version("azure-ai-inference")
|
35
|
+
|
36
|
+
# sync chat completions
|
36
37
|
wrap_function_wrapper(
|
37
|
-
|
38
|
-
|
38
|
+
"azure.ai.inference",
|
39
|
+
"ChatCompletionsClient.complete",
|
39
40
|
complete(version, environment, application_name,
|
40
|
-
tracer,
|
41
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
41
42
|
)
|
42
43
|
|
43
|
-
# async
|
44
|
+
# async chat completions
|
44
45
|
wrap_function_wrapper(
|
45
|
-
|
46
|
-
|
46
|
+
"azure.ai.inference.aio",
|
47
|
+
"ChatCompletionsClient.complete",
|
47
48
|
async_complete(version, environment, application_name,
|
48
|
-
tracer,
|
49
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
50
|
+
)
|
51
|
+
|
52
|
+
# sync embeddings
|
53
|
+
wrap_function_wrapper(
|
54
|
+
"azure.ai.inference",
|
55
|
+
"EmbeddingsClient.embed",
|
56
|
+
embed(version, environment, application_name,
|
57
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
58
|
+
)
|
59
|
+
|
60
|
+
# async embeddings
|
61
|
+
wrap_function_wrapper(
|
62
|
+
"azure.ai.inference.aio",
|
63
|
+
"EmbeddingsClient.embed",
|
64
|
+
async_embed(version, environment, application_name,
|
65
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics),
|
49
66
|
)
|
50
67
|
|
51
68
|
def _uninstrument(self, **kwargs):
|
52
|
-
# Proper uninstrumentation logic to revert patched methods
|
53
69
|
pass
|
@@ -13,6 +13,7 @@ from openlit.instrumentation.azure_ai_inference.utils import (
|
|
13
13
|
process_chunk,
|
14
14
|
process_chat_response,
|
15
15
|
process_streaming_chat_response,
|
16
|
+
process_embedding_response,
|
16
17
|
)
|
17
18
|
from openlit.semcov import SemanticConvention
|
18
19
|
|
@@ -20,7 +21,7 @@ from openlit.semcov import SemanticConvention
|
|
20
21
|
logger = logging.getLogger(__name__)
|
21
22
|
|
22
23
|
def async_complete(version, environment, application_name,
|
23
|
-
tracer,
|
24
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
24
25
|
"""
|
25
26
|
Generates a telemetry wrapper for GenAI function call
|
26
27
|
"""
|
@@ -43,12 +44,15 @@ def async_complete(version, environment, application_name,
|
|
43
44
|
self.__wrapped__ = wrapped
|
44
45
|
self._span = span
|
45
46
|
self._span_name = span_name
|
46
|
-
self._llmresponse =
|
47
|
-
self._response_id =
|
48
|
-
self._response_model =
|
49
|
-
self._finish_reason =
|
47
|
+
self._llmresponse = ""
|
48
|
+
self._response_id = ""
|
49
|
+
self._response_model = ""
|
50
|
+
self._finish_reason = ""
|
51
|
+
self._response_service_tier = ""
|
52
|
+
self._tools = None
|
50
53
|
self._input_tokens = 0
|
51
54
|
self._output_tokens = 0
|
55
|
+
self._reasoning_tokens = 0
|
52
56
|
|
53
57
|
self._args = args
|
54
58
|
self._kwargs = kwargs
|
@@ -64,53 +68,35 @@ def async_complete(version, environment, application_name,
|
|
64
68
|
await self.__wrapped__.__aenter__()
|
65
69
|
return self
|
66
70
|
|
67
|
-
async def __aexit__(self, exc_type,
|
68
|
-
await self.__wrapped__.__aexit__(exc_type,
|
71
|
+
async def __aexit__(self, exc_type, exc_val, exc_tb):
|
72
|
+
await self.__wrapped__.__aexit__(exc_type, exc_val, exc_tb)
|
73
|
+
process_streaming_chat_response(
|
74
|
+
self, pricing_info, environment, application_name, metrics,
|
75
|
+
capture_message_content, disable_metrics, version
|
76
|
+
)
|
69
77
|
|
70
78
|
def __aiter__(self):
|
71
79
|
return self
|
72
80
|
|
73
|
-
async def __getattr__(self, name):
|
74
|
-
"""Delegate attribute access to the wrapped object."""
|
75
|
-
return getattr(await self.__wrapped__, name)
|
76
|
-
|
77
81
|
async def __anext__(self):
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
with tracer.start_as_current_span(self._span_name, kind= SpanKind.CLIENT) as self._span:
|
85
|
-
process_streaming_chat_response(
|
86
|
-
self,
|
87
|
-
pricing_info=pricing_info,
|
88
|
-
environment=environment,
|
89
|
-
application_name=application_name,
|
90
|
-
metrics=metrics,
|
91
|
-
event_provider=event_provider,
|
92
|
-
capture_message_content=capture_message_content,
|
93
|
-
disable_metrics=disable_metrics,
|
94
|
-
version=version
|
95
|
-
)
|
96
|
-
|
97
|
-
except Exception as e:
|
98
|
-
handle_exception(self._span, e)
|
99
|
-
logger.error('Error in trace creation: %s', e)
|
100
|
-
raise
|
82
|
+
chunk = await self.__wrapped__.__anext__()
|
83
|
+
process_chunk(self, chunk)
|
84
|
+
return chunk
|
85
|
+
|
86
|
+
def __getattr__(self, name):
|
87
|
+
return getattr(self.__wrapped__, name)
|
101
88
|
|
102
89
|
async def wrapper(wrapped, instance, args, kwargs):
|
103
90
|
"""
|
104
91
|
Wraps the GenAI function call.
|
105
92
|
"""
|
106
93
|
|
107
|
-
streaming = kwargs.get(
|
108
|
-
server_address, server_port = set_server_address_and_port(instance,
|
109
|
-
request_model = kwargs.get(
|
94
|
+
streaming = kwargs.get("stream", False)
|
95
|
+
server_address, server_port = set_server_address_and_port(instance, "models.github.ai", 443)
|
96
|
+
request_model = kwargs.get("model", "gpt-4o")
|
110
97
|
|
111
|
-
span_name = f
|
98
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
112
99
|
|
113
|
-
# pylint: disable=no-else-return
|
114
100
|
if streaming:
|
115
101
|
awaited_wrapped = await wrapped(*args, **kwargs)
|
116
102
|
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
@@ -130,7 +116,6 @@ def async_complete(version, environment, application_name,
|
|
130
116
|
environment=environment,
|
131
117
|
application_name=application_name,
|
132
118
|
metrics=metrics,
|
133
|
-
event_provider=event_provider,
|
134
119
|
start_time=start_time,
|
135
120
|
span=span,
|
136
121
|
capture_message_content=capture_message_content,
|
@@ -142,3 +127,48 @@ def async_complete(version, environment, application_name,
|
|
142
127
|
return response
|
143
128
|
|
144
129
|
return wrapper
|
130
|
+
|
131
|
+
def async_embed(version, environment, application_name,
|
132
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
133
|
+
"""
|
134
|
+
Generates a telemetry wrapper for GenAI embedding function call
|
135
|
+
"""
|
136
|
+
|
137
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
138
|
+
"""
|
139
|
+
Wraps the GenAI embedding function call.
|
140
|
+
"""
|
141
|
+
|
142
|
+
server_address, server_port = set_server_address_and_port(instance, "models.github.ai", 443)
|
143
|
+
request_model = kwargs.get("model", "text-embedding-3-small")
|
144
|
+
|
145
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING} {request_model}"
|
146
|
+
|
147
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
148
|
+
start_time = time.time()
|
149
|
+
response = await wrapped(*args, **kwargs)
|
150
|
+
|
151
|
+
try:
|
152
|
+
response = process_embedding_response(
|
153
|
+
response=response,
|
154
|
+
request_model=request_model,
|
155
|
+
pricing_info=pricing_info,
|
156
|
+
server_port=server_port,
|
157
|
+
server_address=server_address,
|
158
|
+
environment=environment,
|
159
|
+
application_name=application_name,
|
160
|
+
metrics=metrics,
|
161
|
+
start_time=start_time,
|
162
|
+
span=span,
|
163
|
+
capture_message_content=capture_message_content,
|
164
|
+
disable_metrics=disable_metrics,
|
165
|
+
version=version,
|
166
|
+
**kwargs
|
167
|
+
)
|
168
|
+
|
169
|
+
except Exception as e:
|
170
|
+
handle_exception(span, e)
|
171
|
+
|
172
|
+
return response
|
173
|
+
|
174
|
+
return wrapper
|
@@ -13,6 +13,7 @@ from openlit.instrumentation.azure_ai_inference.utils import (
|
|
13
13
|
process_chunk,
|
14
14
|
process_chat_response,
|
15
15
|
process_streaming_chat_response,
|
16
|
+
process_embedding_response,
|
16
17
|
)
|
17
18
|
from openlit.semcov import SemanticConvention
|
18
19
|
|
@@ -20,7 +21,7 @@ from openlit.semcov import SemanticConvention
|
|
20
21
|
logger = logging.getLogger(__name__)
|
21
22
|
|
22
23
|
def complete(version, environment, application_name,
|
23
|
-
tracer,
|
24
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
24
25
|
"""
|
25
26
|
Generates a telemetry wrapper for GenAI function call
|
26
27
|
"""
|
@@ -43,12 +44,15 @@ def complete(version, environment, application_name,
|
|
43
44
|
self.__wrapped__ = wrapped
|
44
45
|
self._span = span
|
45
46
|
self._span_name = span_name
|
46
|
-
self._llmresponse =
|
47
|
-
self._response_id =
|
48
|
-
self._response_model =
|
49
|
-
self._finish_reason =
|
47
|
+
self._llmresponse = ""
|
48
|
+
self._response_id = ""
|
49
|
+
self._response_model = ""
|
50
|
+
self._finish_reason = ""
|
51
|
+
self._response_service_tier = ""
|
52
|
+
self._tools = None
|
50
53
|
self._input_tokens = 0
|
51
54
|
self._output_tokens = 0
|
55
|
+
self._reasoning_tokens = 0
|
52
56
|
|
53
57
|
self._args = args
|
54
58
|
self._kwargs = kwargs
|
@@ -64,53 +68,35 @@ def complete(version, environment, application_name,
|
|
64
68
|
self.__wrapped__.__enter__()
|
65
69
|
return self
|
66
70
|
|
67
|
-
def __exit__(self, exc_type,
|
68
|
-
self.__wrapped__.__exit__(exc_type,
|
71
|
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
72
|
+
self.__wrapped__.__exit__(exc_type, exc_val, exc_tb)
|
73
|
+
process_streaming_chat_response(
|
74
|
+
self, pricing_info, environment, application_name, metrics,
|
75
|
+
capture_message_content, disable_metrics, version
|
76
|
+
)
|
69
77
|
|
70
78
|
def __iter__(self):
|
71
79
|
return self
|
72
80
|
|
81
|
+
def __next__(self):
|
82
|
+
chunk = next(self.__wrapped__)
|
83
|
+
process_chunk(self, chunk)
|
84
|
+
return chunk
|
85
|
+
|
73
86
|
def __getattr__(self, name):
|
74
|
-
"""Delegate attribute access to the wrapped object."""
|
75
87
|
return getattr(self.__wrapped__, name)
|
76
88
|
|
77
|
-
def __next__(self):
|
78
|
-
try:
|
79
|
-
chunk = self.__wrapped__.__next__()
|
80
|
-
process_chunk(self, chunk)
|
81
|
-
return chunk
|
82
|
-
except StopIteration:
|
83
|
-
try:
|
84
|
-
with tracer.start_as_current_span(self._span_name, kind= SpanKind.CLIENT) as self._span:
|
85
|
-
process_streaming_chat_response(
|
86
|
-
self,
|
87
|
-
pricing_info=pricing_info,
|
88
|
-
environment=environment,
|
89
|
-
application_name=application_name,
|
90
|
-
metrics=metrics,
|
91
|
-
event_provider=event_provider,
|
92
|
-
capture_message_content=capture_message_content,
|
93
|
-
disable_metrics=disable_metrics,
|
94
|
-
version=version
|
95
|
-
)
|
96
|
-
|
97
|
-
except Exception as e:
|
98
|
-
handle_exception(self._span, e)
|
99
|
-
logger.error('Error in trace creation: %s', e)
|
100
|
-
raise
|
101
|
-
|
102
89
|
def wrapper(wrapped, instance, args, kwargs):
|
103
90
|
"""
|
104
91
|
Wraps the GenAI function call.
|
105
92
|
"""
|
106
93
|
|
107
|
-
streaming = kwargs.get(
|
108
|
-
server_address, server_port = set_server_address_and_port(instance,
|
109
|
-
request_model = kwargs.get(
|
94
|
+
streaming = kwargs.get("stream", False)
|
95
|
+
server_address, server_port = set_server_address_and_port(instance, "models.github.ai", 443)
|
96
|
+
request_model = kwargs.get("model", "gpt-4o")
|
110
97
|
|
111
|
-
span_name = f
|
98
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
112
99
|
|
113
|
-
# pylint: disable=no-else-return
|
114
100
|
if streaming:
|
115
101
|
awaited_wrapped = wrapped(*args, **kwargs)
|
116
102
|
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
@@ -130,7 +116,6 @@ def complete(version, environment, application_name,
|
|
130
116
|
environment=environment,
|
131
117
|
application_name=application_name,
|
132
118
|
metrics=metrics,
|
133
|
-
event_provider=event_provider,
|
134
119
|
start_time=start_time,
|
135
120
|
span=span,
|
136
121
|
capture_message_content=capture_message_content,
|
@@ -142,3 +127,48 @@ def complete(version, environment, application_name,
|
|
142
127
|
return response
|
143
128
|
|
144
129
|
return wrapper
|
130
|
+
|
131
|
+
def embed(version, environment, application_name,
|
132
|
+
tracer, pricing_info, capture_message_content, metrics, disable_metrics):
|
133
|
+
"""
|
134
|
+
Generates a telemetry wrapper for GenAI embedding function call
|
135
|
+
"""
|
136
|
+
|
137
|
+
def wrapper(wrapped, instance, args, kwargs):
|
138
|
+
"""
|
139
|
+
Wraps the GenAI embedding function call.
|
140
|
+
"""
|
141
|
+
|
142
|
+
server_address, server_port = set_server_address_and_port(instance, "models.github.ai", 443)
|
143
|
+
request_model = kwargs.get("model", "text-embedding-3-small")
|
144
|
+
|
145
|
+
span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_EMBEDDING} {request_model}"
|
146
|
+
|
147
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
148
|
+
start_time = time.time()
|
149
|
+
response = wrapped(*args, **kwargs)
|
150
|
+
|
151
|
+
try:
|
152
|
+
response = process_embedding_response(
|
153
|
+
response=response,
|
154
|
+
request_model=request_model,
|
155
|
+
pricing_info=pricing_info,
|
156
|
+
server_port=server_port,
|
157
|
+
server_address=server_address,
|
158
|
+
environment=environment,
|
159
|
+
application_name=application_name,
|
160
|
+
metrics=metrics,
|
161
|
+
start_time=start_time,
|
162
|
+
span=span,
|
163
|
+
capture_message_content=capture_message_content,
|
164
|
+
disable_metrics=disable_metrics,
|
165
|
+
version=version,
|
166
|
+
**kwargs
|
167
|
+
)
|
168
|
+
|
169
|
+
except Exception as e:
|
170
|
+
handle_exception(span, e)
|
171
|
+
|
172
|
+
return response
|
173
|
+
|
174
|
+
return wrapper
|