openlit 1.34.10__py3-none-any.whl → 1.34.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,199 @@
1
+ """
2
+ Groq OpenTelemetry instrumentation utility functions
3
+ """
4
+ import time
5
+
6
+ from opentelemetry.trace import Status, StatusCode
7
+
8
+ from openlit.__helpers import (
9
+ calculate_ttft,
10
+ response_as_dict,
11
+ calculate_tbt,
12
+ get_chat_model_cost,
13
+ common_span_attributes,
14
+ record_completion_metrics,
15
+ )
16
+ from openlit.semcov import SemanticConvention
17
+
18
+ def format_content(messages):
19
+ """
20
+ Process a list of messages to extract content.
21
+ """
22
+
23
+ formatted_messages = []
24
+ for message in messages:
25
+ role = message["role"]
26
+ content = message["content"]
27
+
28
+ if isinstance(content, list):
29
+ content_str = ", ".join(
30
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
31
+ if "type" in item else f'text: {item["text"]}'
32
+ for item in content
33
+ )
34
+ formatted_messages.append(f"{role}: {content_str}")
35
+ else:
36
+ formatted_messages.append(f"{role}: {content}")
37
+
38
+ return "\n".join(formatted_messages)
39
+
40
+ def process_chunk(scope, chunk):
41
+ """
42
+ Process a chunk of response data and update state.
43
+ """
44
+
45
+ end_time = time.time()
46
+ # Record the timestamp for the current chunk
47
+ scope._timestamps.append(end_time)
48
+
49
+ if len(scope._timestamps) == 1:
50
+ # Calculate time to first chunk
51
+ scope._ttft = calculate_ttft(scope._timestamps, scope._start_time)
52
+
53
+ chunked = response_as_dict(chunk)
54
+
55
+ # Collect message IDs and aggregated response from events
56
+ if (len(chunked.get("choices", [])) > 0 and
57
+ "delta" in chunked.get("choices")[0] and
58
+ "content" in chunked.get("choices")[0].get("delta", {})):
59
+
60
+ content = chunked.get("choices")[0].get("delta").get("content")
61
+ if content:
62
+ scope._llmresponse += content
63
+
64
+ if chunked.get('x_groq') is not None:
65
+ if chunked.get('x_groq').get('usage') is not None:
66
+ scope._input_tokens = chunked.get('x_groq').get('usage').get('prompt_tokens')
67
+ scope._output_tokens = chunked.get('x_groq').get('usage').get('completion_tokens')
68
+ scope._response_id = chunked.get('x_groq').get('id')
69
+ scope._response_model = chunked.get('x_groq').get('model')
70
+ scope._finish_reason = chunked.get('choices', [{}])[0].get('finish_reason')
71
+ scope._system_fingerprint = chunked.get('x_groq').get('system_fingerprint')
72
+ scope._end_time = time.time()
73
+
74
+
75
+ def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
76
+ capture_message_content, disable_metrics, version, is_stream):
77
+ """
78
+ Process chat request and generate Telemetry
79
+ """
80
+
81
+ if len(scope._timestamps) > 1:
82
+ scope._tbt = calculate_tbt(scope._timestamps)
83
+
84
+ prompt = format_content(scope._kwargs.get("messages", []))
85
+ request_model = scope._kwargs.get("model", "mixtral-8x7b-32768")
86
+
87
+ cost = get_chat_model_cost(request_model, pricing_info, scope._input_tokens, scope._output_tokens)
88
+
89
+ # Common Span Attributes
90
+ common_span_attributes(scope,
91
+ SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GROQ,
92
+ scope._server_address, scope._server_port, request_model, scope._response_model,
93
+ environment, application_name, is_stream, scope._tbt, scope._ttft, version)
94
+
95
+ # Span Attributes for Request parameters
96
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SEED, scope._kwargs.get("seed", ""))
97
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_FREQUENCY_PENALTY, scope._kwargs.get("frequency_penalty", 0.0))
98
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get("max_completion_tokens", -1))
99
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_PRESENCE_PENALTY, scope._kwargs.get("presence_penalty", 0.0))
100
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_STOP_SEQUENCES, scope._kwargs.get("stop", []))
101
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get("temperature", 1.0))
102
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_TOP_P, scope._kwargs.get("top_p", 1.0))
103
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_USER, scope._kwargs.get("user", ""))
104
+ scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_SERVICE_TIER, scope._kwargs.get("service_tier", "on_demand"))
105
+
106
+ # Span Attributes for Response parameters
107
+ scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_ID, scope._response_id)
108
+ scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_FINISH_REASON, [scope._finish_reason])
109
+ scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_SYSTEM_FINGERPRINT, scope._system_fingerprint)
110
+ scope._span.set_attribute(SemanticConvention.GEN_AI_OUTPUT_TYPE, "text" if isinstance(scope._llmresponse, str) else "json")
111
+
112
+ # Span Attributes for Cost and Tokens
113
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
114
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
115
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens + scope._output_tokens)
116
+ scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
117
+
118
+ # Span Attributes for Tools
119
+ if scope._tools:
120
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function", {}).get("name", ""))
121
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id", "")))
122
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function", {}).get("arguments", "")))
123
+
124
+ # Span Attributes for Content
125
+ if capture_message_content:
126
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_PROMPT, prompt)
127
+ scope._span.set_attribute(SemanticConvention.GEN_AI_CONTENT_COMPLETION, scope._llmresponse)
128
+
129
+ # To be removed one the change to span_attributes (from span events) is complete
130
+ scope._span.add_event(
131
+ name=SemanticConvention.GEN_AI_CONTENT_PROMPT_EVENT,
132
+ attributes={
133
+ SemanticConvention.GEN_AI_CONTENT_PROMPT: prompt,
134
+ },
135
+ )
136
+ scope._span.add_event(
137
+ name=SemanticConvention.GEN_AI_CONTENT_COMPLETION_EVENT,
138
+ attributes={
139
+ SemanticConvention.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
140
+ },
141
+ )
142
+
143
+ scope._span.set_status(Status(StatusCode.OK))
144
+
145
+ # Metrics
146
+ if not disable_metrics:
147
+ record_completion_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_GROQ,
148
+ scope._server_address, scope._server_port, request_model, scope._response_model, environment,
149
+ application_name, scope._start_time, scope._end_time, scope._input_tokens, scope._output_tokens,
150
+ cost, scope._tbt, scope._ttft)
151
+
152
+ def process_streaming_chat_response(scope, pricing_info, environment, application_name, metrics,
153
+ capture_message_content=False, disable_metrics=False, version=""):
154
+ """
155
+ Process chat request and generate Telemetry
156
+ """
157
+
158
+ common_chat_logic(scope, pricing_info, environment, application_name, metrics,
159
+ capture_message_content, disable_metrics, version, is_stream=True)
160
+
161
+ def process_chat_response(response, request_model, pricing_info, server_port, server_address,
162
+ environment, application_name, metrics, start_time, span, capture_message_content=False,
163
+ disable_metrics=False, version="1.0.0", **kwargs):
164
+ """
165
+ Process chat request and generate Telemetry
166
+ """
167
+
168
+ # Create scope object
169
+ scope = type("GenericScope", (), {})()
170
+ response_dict = response_as_dict(response)
171
+
172
+ scope._start_time = start_time
173
+ scope._end_time = time.time()
174
+ scope._span = span
175
+ scope._llmresponse = " ".join(
176
+ (choice.get("message", {}).get("content") or "")
177
+ for choice in response_dict.get("choices", [])
178
+ )
179
+ scope._response_id = response_dict.get("id")
180
+ scope._response_model = response_dict.get("model")
181
+ scope._input_tokens = response_dict.get("usage", {}).get("prompt_tokens", 0)
182
+ scope._output_tokens = response_dict.get("usage", {}).get("completion_tokens", 0)
183
+ scope._timestamps = []
184
+ scope._ttft, scope._tbt = scope._end_time - scope._start_time, 0
185
+ scope._server_address, scope._server_port = server_address, server_port
186
+ scope._kwargs = kwargs
187
+ scope._system_fingerprint = response_dict.get("system_fingerprint")
188
+ scope._finish_reason = str(response_dict.get("choices", [])[0].get("finish_reason", ""))
189
+
190
+ # Handle tool calls
191
+ if scope._kwargs.get("tools"):
192
+ scope._tools = response_dict.get("choices", [{}])[0].get("message", {}).get("tool_calls")
193
+ else:
194
+ scope._tools = None
195
+
196
+ common_chat_logic(scope, pricing_info, environment, application_name, metrics,
197
+ capture_message_content, disable_metrics, version, is_stream=False)
198
+
199
+ return response
@@ -42,7 +42,7 @@ def async_chat(version, environment, application_name,
42
42
  self._llmresponse = ""
43
43
  self._response_model = ""
44
44
  self._finish_reason = ""
45
- self._tool_calls = []
45
+ self._tools = []
46
46
  self._input_tokens = 0
47
47
  self._output_tokens = 0
48
48
  self._response_role = ""
@@ -102,7 +102,8 @@ def async_chat(version, environment, application_name,
102
102
  streaming = kwargs.get("stream", False)
103
103
 
104
104
  server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 11434)
105
- request_model = kwargs.get("model")
105
+ json_body = kwargs.get("json", {}) or {}
106
+ request_model = json_body.get("model") or kwargs.get("model")
106
107
 
107
108
  span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
108
109
 
@@ -42,7 +42,7 @@ def chat(version, environment, application_name,
42
42
  self._llmresponse = ""
43
43
  self._response_model = ""
44
44
  self._finish_reason = ""
45
- self._tool_calls = []
45
+ self._tools = []
46
46
  self._input_tokens = 0
47
47
  self._output_tokens = 0
48
48
  self._response_role = ""
@@ -102,7 +102,8 @@ def chat(version, environment, application_name,
102
102
  streaming = kwargs.get("stream", False)
103
103
 
104
104
  server_address, server_port = set_server_address_and_port(instance, "127.0.0.1", 11434)
105
- request_model = kwargs.get("model")
105
+ json_body = kwargs.get("json", {}) or {}
106
+ request_model = json_body.get("model") or kwargs.get("model")
106
107
 
107
108
  span_name = f"{SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
108
109
 
@@ -57,7 +57,7 @@ def process_chunk(self, chunk):
57
57
  self._llmresponse += chunked.get("message", {}).get("content", "")
58
58
 
59
59
  if chunked.get("message", {}).get("tool_calls"):
60
- self._tool_calls = chunked["message"]["tool_calls"]
60
+ self._tools = chunked["message"]["tool_calls"]
61
61
 
62
62
  if chunked.get("eval_count"):
63
63
  self._response_role = chunked.get("message", {}).get("role", "")
@@ -138,10 +138,10 @@ def common_chat_logic(scope, gen_ai_endpoint, pricing_info, environment, applica
138
138
  scope._span.set_attribute(SemanticConvention.GEN_AI_USAGE_COST, cost)
139
139
 
140
140
  # Span Attributes for Tools
141
- if hasattr(scope, "_tool_calls") and scope._tool_calls:
142
- tool_call = scope._tool_calls[0]
143
- scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, tool_call.get("function", {}).get("name", ""))
144
- scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(tool_call.get("function", {}).get("arguments", "")))
141
+ if scope._tools is not None:
142
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_NAME, scope._tools.get("function","")).get("name","")
143
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_CALL_ID, str(scope._tools.get("id","")))
144
+ scope._span.set_attribute(SemanticConvention.GEN_AI_TOOL_ARGS, str(scope._tools.get("function","").get("arguments","")))
145
145
 
146
146
  # Span Attributes for Content
147
147
  if capture_message_content:
@@ -244,7 +244,11 @@ def process_chat_response(response, gen_ai_endpoint, pricing_info, server_port,
244
244
  scope._tbt = 0
245
245
  scope._server_address, scope._server_port = server_address, server_port
246
246
  scope._kwargs = kwargs
247
- scope._tool_calls = response_dict.get("message", {}).get("tool_calls", [])
247
+
248
+ if scope._kwargs.get("tools"):
249
+ scope._tools = response_dict.get("choices")[0].get("message").get("tool_calls")
250
+ else:
251
+ scope._tools = None
248
252
 
249
253
  common_chat_logic(scope, gen_ai_endpoint, pricing_info, environment, application_name, metrics,
250
254
  capture_message_content, disable_metrics, version)
@@ -3,7 +3,6 @@ PremAI OpenTelemetry instrumentation utility functions
3
3
  """
4
4
  import time
5
5
 
6
- from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
6
  from opentelemetry.trace import Status, StatusCode
8
7
 
9
8
  from openlit.__helpers import (
@@ -13,7 +12,9 @@ from openlit.__helpers import (
13
12
  get_chat_model_cost,
14
13
  get_embed_model_cost,
15
14
  general_tokens,
16
- create_metrics_attributes,
15
+ common_span_attributes,
16
+ record_completion_metrics,
17
+ record_embedding_metrics,
17
18
  )
18
19
  from openlit.semcov import SemanticConvention
19
20
 
@@ -66,77 +67,6 @@ def process_chunk(scope, chunk):
66
67
  scope._response_model = chunked.get("model")
67
68
  scope._end_time = time.time()
68
69
 
69
- def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
70
- request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
71
- """
72
- Set common span attributes for both chat and RAG operations.
73
- """
74
-
75
- scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
76
- scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
77
- scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
78
- scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
79
- scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
80
- scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
81
- scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_model)
82
- scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
83
- scope._span.set_attribute(SERVICE_NAME, application_name)
84
- scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
85
- scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, tbt)
86
- scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, ttft)
87
- scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
88
-
89
- def record_completion_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
90
- request_model, response_model, environment, application_name, start_time, end_time,
91
- input_tokens, output_tokens, cost, tbt=None, ttft=None):
92
- """
93
- Record completion-specific metrics for the operation.
94
- """
95
-
96
- attributes = create_metrics_attributes(
97
- operation=gen_ai_operation,
98
- system=gen_ai_system,
99
- server_address=server_address,
100
- server_port=server_port,
101
- request_model=request_model,
102
- response_model=response_model,
103
- service_name=application_name,
104
- deployment_environment=environment,
105
- )
106
- metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
107
- metrics["genai_requests"].add(1, attributes)
108
- metrics["genai_prompt_tokens"].add(input_tokens, attributes)
109
- metrics["genai_completion_tokens"].add(output_tokens, attributes)
110
- metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
111
- metrics["genai_cost"].record(cost, attributes)
112
- if tbt is not None:
113
- metrics["genai_server_tbt"].record(tbt, attributes)
114
- if ttft is not None:
115
- metrics["genai_server_ttft"].record(ttft, attributes)
116
-
117
- def record_embedding_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
118
- request_model, response_model, environment, application_name, start_time, end_time,
119
- input_tokens, cost):
120
- """
121
- Record embedding-specific metrics for the operation.
122
- """
123
-
124
- attributes = create_metrics_attributes(
125
- operation=gen_ai_operation,
126
- system=gen_ai_system,
127
- server_address=server_address,
128
- server_port=server_port,
129
- request_model=request_model,
130
- response_model=response_model,
131
- service_name=application_name,
132
- deployment_environment=environment,
133
- )
134
- metrics["genai_client_usage_tokens"].record(input_tokens, attributes)
135
- metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
136
- metrics["genai_requests"].add(1, attributes)
137
- metrics["genai_prompt_tokens"].add(input_tokens, attributes)
138
- metrics["genai_cost"].record(cost, attributes)
139
-
140
70
  def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
141
71
  capture_message_content, disable_metrics, version, is_stream):
142
72
  """
@@ -3,14 +3,14 @@ Reka OpenTelemetry instrumentation utility functions
3
3
  """
4
4
  import time
5
5
 
6
- from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
7
6
  from opentelemetry.trace import Status, StatusCode
8
7
 
9
8
  from openlit.__helpers import (
10
9
  response_as_dict,
11
10
  calculate_tbt,
12
11
  get_chat_model_cost,
13
- create_metrics_attributes,
12
+ common_span_attributes,
13
+ record_completion_metrics,
14
14
  )
15
15
  from openlit.semcov import SemanticConvention
16
16
 
@@ -36,54 +36,6 @@ def format_content(messages):
36
36
 
37
37
  return "\n".join(formatted_messages)
38
38
 
39
- def common_span_attributes(scope, gen_ai_operation, gen_ai_system, server_address, server_port,
40
- request_model, response_model, environment, application_name, is_stream, tbt, ttft, version):
41
- """
42
- Set common span attributes for both chat and RAG operations.
43
- """
44
-
45
- scope._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
46
- scope._span.set_attribute(SemanticConvention.GEN_AI_OPERATION, gen_ai_operation)
47
- scope._span.set_attribute(SemanticConvention.GEN_AI_SYSTEM, gen_ai_system)
48
- scope._span.set_attribute(SemanticConvention.SERVER_ADDRESS, server_address)
49
- scope._span.set_attribute(SemanticConvention.SERVER_PORT, server_port)
50
- scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_MODEL, request_model)
51
- scope._span.set_attribute(SemanticConvention.GEN_AI_RESPONSE_MODEL, response_model)
52
- scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
53
- scope._span.set_attribute(SERVICE_NAME, application_name)
54
- scope._span.set_attribute(SemanticConvention.GEN_AI_REQUEST_IS_STREAM, is_stream)
55
- scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TBT, tbt)
56
- scope._span.set_attribute(SemanticConvention.GEN_AI_SERVER_TTFT, ttft)
57
- scope._span.set_attribute(SemanticConvention.GEN_AI_SDK_VERSION, version)
58
-
59
- def record_common_metrics(metrics, gen_ai_operation, gen_ai_system, server_address, server_port,
60
- request_model, response_model, environment, application_name, start_time, end_time,
61
- input_tokens, output_tokens, cost, tbt=None, ttft=None):
62
- """
63
- Record common metrics for the operation.
64
- """
65
-
66
- attributes = create_metrics_attributes(
67
- operation=gen_ai_operation,
68
- system=gen_ai_system,
69
- server_address=server_address,
70
- server_port=server_port,
71
- request_model=request_model,
72
- response_model=response_model,
73
- service_name=application_name,
74
- deployment_environment=environment,
75
- )
76
- metrics["genai_client_operation_duration"].record(end_time - start_time, attributes)
77
- metrics["genai_requests"].add(1, attributes)
78
- metrics["genai_prompt_tokens"].add(input_tokens, attributes)
79
- metrics["genai_completion_tokens"].add(output_tokens, attributes)
80
- metrics["genai_client_usage_tokens"].record(input_tokens + output_tokens, attributes)
81
- metrics["genai_cost"].record(cost, attributes)
82
- if tbt is not None:
83
- metrics["genai_server_tbt"].record(tbt, attributes)
84
- if ttft is not None:
85
- metrics["genai_server_ttft"].record(ttft, attributes)
86
-
87
39
  def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
88
40
  capture_message_content, disable_metrics, version, is_stream):
89
41
  """
@@ -151,7 +103,7 @@ def common_chat_logic(scope, pricing_info, environment, application_name, metric
151
103
 
152
104
  # Metrics
153
105
  if not disable_metrics:
154
- record_common_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_REKAAI,
106
+ record_completion_metrics(metrics, SemanticConvention.GEN_AI_OPERATION_TYPE_CHAT, SemanticConvention.GEN_AI_SYSTEM_REKAAI,
155
107
  scope._server_address, scope._server_port, request_model, scope._response_model, environment,
156
108
  application_name, scope._start_time, scope._end_time, scope._input_tokens, scope._output_tokens,
157
109
  cost, scope._tbt, scope._ttft)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openlit
3
- Version: 1.34.10
3
+ Version: 1.34.11
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  License: Apache-2.0
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -1,4 +1,4 @@
1
- openlit/__helpers.py,sha256=8jfY4C0uxTrQZCOMm572tiVar1aT7zNFMH7Uyt3C4dc,13920
1
+ openlit/__helpers.py,sha256=gIFD6pDsj_zd4_D936aRptUq-TKUQ-0GgJBf6PoEDlo,14883
2
2
  openlit/__init__.py,sha256=ris6-GY0ePSbK_jvawHTXymGClVF7yeKdIT95IRBl18,24086
3
3
  openlit/evals/__init__.py,sha256=nJe99nuLo1b5rf7pt9U9BCdSDedzbVi2Fj96cgl7msM,380
4
4
  openlit/evals/all.py,sha256=oWrue3PotE-rB5WePG3MRYSA-ro6WivkclSHjYlAqGs,7154
@@ -66,9 +66,10 @@ openlit/instrumentation/gpt4all/__init__.py,sha256=kXciJbQMZYnTeAYLCjriVYXV7XzUU
66
66
  openlit/instrumentation/gpt4all/gpt4all.py,sha256=6VkJbaPIDv5sbFXFiadH4IB0KljljnOZ1HaGAPuyp_E,6704
67
67
  openlit/instrumentation/gpt4all/utils.py,sha256=clyoIy1_ib-1_keQFMvyzTOcbWHeWPRpDhV-w2CtIAU,12470
68
68
  openlit/instrumentation/gpu/__init__.py,sha256=QQCFVEbRfdeTjmdFe-UeEiy19vEEWSIBpj2B1wYGhUs,11036
69
- openlit/instrumentation/groq/__init__.py,sha256=RszPvlPMD1j_uRu9MweyO_F_BRIqEExuB6sVQB2py4o,1901
70
- openlit/instrumentation/groq/async_groq.py,sha256=BDiGSS1C5uradPLDyfPCqyLWw7f5Emwe4KA1Zd7nXU8,24770
71
- openlit/instrumentation/groq/groq.py,sha256=v_-F3yRuaAzAfPx7V-XK8d13omojN5Tu9UbFM-uo4ls,24684
69
+ openlit/instrumentation/groq/__init__.py,sha256=MEcks6t-YqTe4hZXrQ6uGI60vb3OY84d3XjHH_emAyM,1739
70
+ openlit/instrumentation/groq/async_groq.py,sha256=hp3AN8B98cUbX4C0GksTbNb6kpg31FJUlhW32Wo8CnI,5113
71
+ openlit/instrumentation/groq/groq.py,sha256=XfJakQCfEszvVJxzpemYBIVE73b5WVj8bAlDaeVKBMU,4994
72
+ openlit/instrumentation/groq/utils.py,sha256=0ttCMcKmyDrSnmQtM20U5Yo6OllUPW5iBNBE5qW0jGk,9072
72
73
  openlit/instrumentation/haystack/__init__.py,sha256=jZPAXRilKTD1vww_4_K4jhYWNrMXngcs5pI29NTnFvI,1788
73
74
  openlit/instrumentation/haystack/haystack.py,sha256=kPkuCJDrccNgAg3yDAHbvEytzyfMOee_LDBhzrcfpkc,3927
74
75
  openlit/instrumentation/julep/__init__.py,sha256=g-hwXjvXAb5IDs5DR_P8rKsnD4beB9tupAzuuviQT3k,3216
@@ -95,9 +96,9 @@ openlit/instrumentation/multion/__init__.py,sha256=Wr3lcDyG_YbOLkCUzBFhraAedF6E1
95
96
  openlit/instrumentation/multion/async_multion.py,sha256=XutZnayCJOZ_NA9bvE1NUoej41KOGR7FRn2tpoGKMEU,6092
96
97
  openlit/instrumentation/multion/multion.py,sha256=-WqRAcu5qiEMY9XDmlJTQHuQiWfdwms9JDn127QCNb8,6074
97
98
  openlit/instrumentation/ollama/__init__.py,sha256=WxjqjuR8ovMU5dR08OELNqClbuM7ns4hDRiwWg9NXJk,3587
98
- openlit/instrumentation/ollama/async_ollama.py,sha256=A9WncbmZT12_NC8-Ijqh5a3DdyNpdomc0nMoWsLop8Q,6596
99
- openlit/instrumentation/ollama/ollama.py,sha256=HbHmdGXbtnZ3BLN7ieeg_eQKfamfKOZn23h86Am2wMg,6468
100
- openlit/instrumentation/ollama/utils.py,sha256=okikCSox0oOII99f2tANxGF3TpRNqwaZfJ6gMwr3s74,11840
99
+ openlit/instrumentation/ollama/async_ollama.py,sha256=ORXwem8lgSrhOcci55NkChIK9SNc3IYIpLjF_ogsGA8,6666
100
+ openlit/instrumentation/ollama/ollama.py,sha256=8mvrWfU1c5h1L7lxWo47YBJ7g2u7QZmSZuuP0URtTDo,6538
101
+ openlit/instrumentation/ollama/utils.py,sha256=TIE3_ur2U-iyCclna7TzwjDIFC9PZjRnZqNDV6NfG-0,11958
101
102
  openlit/instrumentation/openai/__init__.py,sha256=y9Ox5aYWTb2nAa_d0ic3Mkv4wEKmUGqslW9nHKg6NnY,6320
102
103
  openlit/instrumentation/openai/async_openai.py,sha256=JyA8MDxWCM38Te6mJzBdfonRgIIlo2ziLn7HOmzqxxo,81398
103
104
  openlit/instrumentation/openai/openai.py,sha256=5fgRyK5dUN2zUdrN0vBSZFnSEAXf2dKS0qnq_85-mQE,81175
@@ -109,7 +110,7 @@ openlit/instrumentation/pinecone/__init__.py,sha256=0guSEPmObaZiOF8yHExpOGY-qW_e
109
110
  openlit/instrumentation/pinecone/pinecone.py,sha256=7hVUlC0HOj0yQyvLasfdb6kS46hRJQdoSRzZQ4ixIkk,8850
110
111
  openlit/instrumentation/premai/__init__.py,sha256=3YlqyV-eNA_4aVUHDVUQUvGJRW8iVVcRtREw91yhbyw,1728
111
112
  openlit/instrumentation/premai/premai.py,sha256=rWRqfoIZUbTz-M7zgC2Z92gTVv9fCj1Z4iJcsG86YeI,6438
112
- openlit/instrumentation/premai/utils.py,sha256=v2DWazztCuwDMFW1IaWbWlyPLsBq9_2vTyU8zIle-ns,14942
113
+ openlit/instrumentation/premai/utils.py,sha256=K7EKGRDDh1X3OznG4z8H506zzFOHN6MH3oqtxM5eUyM,11409
113
114
  openlit/instrumentation/pydantic_ai/__init__.py,sha256=mq52QanFI4xDx6JK-qW5yzhFPXwznJqIYsuxRoBA2Xg,2023
114
115
  openlit/instrumentation/pydantic_ai/pydantic_ai.py,sha256=2F2hrowGqcPjTDLG9IeLY8OO-lXZKhLSU93XtZ3tt5A,1868
115
116
  openlit/instrumentation/pydantic_ai/utils.py,sha256=b0TqhSDnRqkPdM_qsOgMuXT3lwTvHzMYpaBv2qibiVo,4307
@@ -119,7 +120,7 @@ openlit/instrumentation/qdrant/qdrant.py,sha256=pafjlAzMPzYLRYFfTtWXsLKYVQls-grk
119
120
  openlit/instrumentation/reka/__init__.py,sha256=wI5KUYyTAD8ni4E98uziy9WPqoQqlzybDXanFOqDan0,1720
120
121
  openlit/instrumentation/reka/async_reka.py,sha256=CZk5rr7njThDkmrauRAJmNtMBgsLarTbQ54raPQb92A,1909
121
122
  openlit/instrumentation/reka/reka.py,sha256=wou7vVdN_1Y5UZd4tpkLpTPAtgmAl6gmh_onLn4k4GE,1908
122
- openlit/instrumentation/reka/utils.py,sha256=SmwP52XBcDkgLJrozHvNSqJQMSX_vQcmjpidavjNyq0,9211
123
+ openlit/instrumentation/reka/utils.py,sha256=qt1ZIsWkuFGX6iPMiUJ993dh1njvc81QJECD3BnSOpE,6632
123
124
  openlit/instrumentation/together/__init__.py,sha256=0UmUqQtppyK3oopb4lTjX2LITgVCR8VtH46IAV1rpA8,2484
124
125
  openlit/instrumentation/together/async_together.py,sha256=0-h5fKw6rIwN_fvWVpGuvVqizIuM9xFCzz8Z4oGgOj0,6822
125
126
  openlit/instrumentation/together/together.py,sha256=nY6mzHmHgoMbbnB_9eL0EBQjP0ltJVdkQj4pbamHAj0,6723
@@ -137,7 +138,7 @@ openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
137
138
  openlit/otel/metrics.py,sha256=GM2PDloBGRhBTkHHkYaqmOwIAQkY124ZhW4sEqW1Fgk,7086
138
139
  openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
139
140
  openlit/semcov/__init__.py,sha256=ptyo37PY-FHDx_PShEvbdns71cD4YvvXw15bCRXKCKM,13461
140
- openlit-1.34.10.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
141
- openlit-1.34.10.dist-info/METADATA,sha256=D3Bl7A4bVaqYECkXgHXTEuG_KKFtdOvbfWZSGnKQbZg,23470
142
- openlit-1.34.10.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
143
- openlit-1.34.10.dist-info/RECORD,,
141
+ openlit-1.34.11.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
142
+ openlit-1.34.11.dist-info/METADATA,sha256=uupRffQvhiozgD4kGsKu_uQ3Sc7hrYyfX32l3EmiKSk,23470
143
+ openlit-1.34.11.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
144
+ openlit-1.34.11.dist-info/RECORD,,