openlit 1.33.8__py3-none-any.whl → 1.33.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +83 -0
- openlit/__init__.py +1 -1
- openlit/instrumentation/ag2/ag2.py +2 -2
- openlit/instrumentation/ai21/__init__.py +4 -4
- openlit/instrumentation/ai21/ai21.py +370 -319
- openlit/instrumentation/ai21/async_ai21.py +371 -319
- openlit/instrumentation/anthropic/__init__.py +4 -4
- openlit/instrumentation/anthropic/anthropic.py +321 -189
- openlit/instrumentation/anthropic/async_anthropic.py +323 -190
- openlit/instrumentation/assemblyai/__init__.py +1 -1
- openlit/instrumentation/assemblyai/assemblyai.py +59 -43
- openlit/instrumentation/astra/astra.py +4 -4
- openlit/instrumentation/astra/async_astra.py +4 -4
- openlit/instrumentation/azure_ai_inference/__init__.py +4 -4
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +406 -252
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +406 -252
- openlit/instrumentation/bedrock/__init__.py +1 -1
- openlit/instrumentation/bedrock/bedrock.py +115 -58
- openlit/instrumentation/chroma/chroma.py +4 -4
- openlit/instrumentation/cohere/__init__.py +33 -10
- openlit/instrumentation/cohere/async_cohere.py +610 -0
- openlit/instrumentation/cohere/cohere.py +410 -219
- openlit/instrumentation/controlflow/controlflow.py +2 -2
- openlit/instrumentation/crawl4ai/async_crawl4ai.py +2 -2
- openlit/instrumentation/crawl4ai/crawl4ai.py +2 -2
- openlit/instrumentation/crewai/crewai.py +2 -2
- openlit/instrumentation/dynamiq/dynamiq.py +2 -2
- openlit/instrumentation/elevenlabs/async_elevenlabs.py +73 -47
- openlit/instrumentation/elevenlabs/elevenlabs.py +73 -52
- openlit/instrumentation/embedchain/embedchain.py +4 -4
- openlit/instrumentation/firecrawl/firecrawl.py +2 -2
- openlit/instrumentation/google_ai_studio/__init__.py +9 -9
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +183 -219
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +183 -220
- openlit/instrumentation/gpt4all/gpt4all.py +17 -17
- openlit/instrumentation/groq/async_groq.py +14 -14
- openlit/instrumentation/groq/groq.py +14 -14
- openlit/instrumentation/haystack/haystack.py +2 -2
- openlit/instrumentation/julep/async_julep.py +2 -2
- openlit/instrumentation/julep/julep.py +2 -2
- openlit/instrumentation/langchain/langchain.py +36 -31
- openlit/instrumentation/letta/letta.py +6 -6
- openlit/instrumentation/litellm/async_litellm.py +20 -20
- openlit/instrumentation/litellm/litellm.py +20 -20
- openlit/instrumentation/llamaindex/llamaindex.py +2 -2
- openlit/instrumentation/mem0/mem0.py +2 -2
- openlit/instrumentation/milvus/milvus.py +4 -4
- openlit/instrumentation/mistral/async_mistral.py +18 -18
- openlit/instrumentation/mistral/mistral.py +18 -18
- openlit/instrumentation/multion/async_multion.py +2 -2
- openlit/instrumentation/multion/multion.py +2 -2
- openlit/instrumentation/ollama/async_ollama.py +29 -29
- openlit/instrumentation/ollama/ollama.py +29 -29
- openlit/instrumentation/openai/__init__.py +11 -230
- openlit/instrumentation/openai/async_openai.py +434 -409
- openlit/instrumentation/openai/openai.py +415 -393
- openlit/instrumentation/phidata/phidata.py +2 -2
- openlit/instrumentation/pinecone/pinecone.py +4 -4
- openlit/instrumentation/premai/premai.py +20 -20
- openlit/instrumentation/qdrant/async_qdrant.py +4 -4
- openlit/instrumentation/qdrant/qdrant.py +4 -4
- openlit/instrumentation/reka/async_reka.py +6 -6
- openlit/instrumentation/reka/reka.py +6 -6
- openlit/instrumentation/together/async_together.py +18 -18
- openlit/instrumentation/together/together.py +18 -18
- openlit/instrumentation/transformers/transformers.py +6 -6
- openlit/instrumentation/vertexai/async_vertexai.py +53 -53
- openlit/instrumentation/vertexai/vertexai.py +53 -53
- openlit/instrumentation/vllm/vllm.py +6 -6
- openlit/otel/metrics.py +98 -7
- openlit/semcov/__init__.py +113 -80
- {openlit-1.33.8.dist-info → openlit-1.33.9.dist-info}/METADATA +1 -1
- openlit-1.33.9.dist-info/RECORD +121 -0
- {openlit-1.33.8.dist-info → openlit-1.33.9.dist-info}/WHEEL +1 -1
- openlit/instrumentation/openai/async_azure_openai.py +0 -900
- openlit/instrumentation/openai/azure_openai.py +0 -898
- openlit-1.33.8.dist-info/RECORD +0 -122
- {openlit-1.33.8.dist-info → openlit-1.33.9.dist-info}/LICENSE +0 -0
@@ -20,8 +20,8 @@ class AnthropicInstrumentor(BaseInstrumentor):
|
|
20
20
|
return _instruments
|
21
21
|
|
22
22
|
def _instrument(self, **kwargs):
|
23
|
-
application_name = kwargs.get("application_name", "
|
24
|
-
environment = kwargs.get("environment", "
|
23
|
+
application_name = kwargs.get("application_name", "default")
|
24
|
+
environment = kwargs.get("environment", "default")
|
25
25
|
tracer = kwargs.get("tracer")
|
26
26
|
metrics = kwargs.get("metrics_dict")
|
27
27
|
pricing_info = kwargs.get("pricing_info", {})
|
@@ -33,7 +33,7 @@ class AnthropicInstrumentor(BaseInstrumentor):
|
|
33
33
|
wrap_function_wrapper(
|
34
34
|
"anthropic.resources.messages",
|
35
35
|
"Messages.create",
|
36
|
-
messages(
|
36
|
+
messages(version, environment, application_name,
|
37
37
|
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
38
38
|
)
|
39
39
|
|
@@ -41,7 +41,7 @@ class AnthropicInstrumentor(BaseInstrumentor):
|
|
41
41
|
wrap_function_wrapper(
|
42
42
|
"anthropic.resources.messages",
|
43
43
|
"AsyncMessages.create",
|
44
|
-
async_messages(
|
44
|
+
async_messages(version, environment, application_name,
|
45
45
|
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
46
46
|
)
|
47
47
|
|
@@ -1,35 +1,267 @@
|
|
1
|
-
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
|
2
1
|
"""
|
3
2
|
Module for monitoring Anthropic API calls.
|
4
3
|
"""
|
5
4
|
|
6
5
|
import logging
|
6
|
+
import time
|
7
7
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
-
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import
|
8
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
handle_exception,
|
12
|
+
response_as_dict,
|
13
|
+
calculate_ttft,
|
14
|
+
calculate_tbt,
|
15
|
+
create_metrics_attributes,
|
16
|
+
set_server_address_and_port
|
17
|
+
)
|
10
18
|
from openlit.semcov import SemanticConvetion
|
11
19
|
|
12
20
|
# Initialize logger for logging potential issues and operations
|
13
21
|
logger = logging.getLogger(__name__)
|
14
22
|
|
15
|
-
def messages(
|
23
|
+
def messages(version, environment, application_name, tracer,
|
16
24
|
pricing_info, trace_content, metrics, disable_metrics):
|
17
25
|
"""
|
18
26
|
Generates a telemetry wrapper for messages to collect metrics.
|
19
27
|
|
20
28
|
Args:
|
21
|
-
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
29
|
version: Version of the monitoring package.
|
23
30
|
environment: Deployment environment (e.g., production, staging).
|
24
|
-
application_name: Name of the application using the
|
31
|
+
application_name: Name of the application using the Anthropic API.
|
25
32
|
tracer: OpenTelemetry tracer for creating spans.
|
26
|
-
pricing_info: Information used for calculating the cost of
|
33
|
+
pricing_info: Information used for calculating the cost of Anthropic usage.
|
27
34
|
trace_content: Flag indicating whether to trace the actual content.
|
28
35
|
|
29
36
|
Returns:
|
30
37
|
A function that wraps the chat method to add telemetry.
|
31
38
|
"""
|
32
39
|
|
40
|
+
class TracedSyncStream:
|
41
|
+
"""
|
42
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
43
|
+
Wraps the 'anthropic.AsyncStream' response to collect message IDs and aggregated response.
|
44
|
+
|
45
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
46
|
+
handle asynchronous streaming responses.
|
47
|
+
|
48
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
49
|
+
handle asynchronous context management protocol.
|
50
|
+
"""
|
51
|
+
def __init__(
|
52
|
+
self,
|
53
|
+
wrapped,
|
54
|
+
span,
|
55
|
+
kwargs,
|
56
|
+
server_address,
|
57
|
+
server_port,
|
58
|
+
**args,
|
59
|
+
):
|
60
|
+
self.__wrapped__ = wrapped
|
61
|
+
self._span = span
|
62
|
+
# Placeholder for aggregating streaming response
|
63
|
+
self._llmresponse = ""
|
64
|
+
self._response_id = ""
|
65
|
+
self._response_model = ""
|
66
|
+
self._finish_reason = ""
|
67
|
+
self._input_tokens = ""
|
68
|
+
self._output_tokens = ""
|
69
|
+
|
70
|
+
self._args = args
|
71
|
+
self._kwargs = kwargs
|
72
|
+
self._start_time = time.time()
|
73
|
+
self._end_time = None
|
74
|
+
self._timestamps = []
|
75
|
+
self._ttft = 0
|
76
|
+
self._tbt = 0
|
77
|
+
self._server_address = server_address
|
78
|
+
self._server_port = server_port
|
79
|
+
|
80
|
+
def __enter__(self):
|
81
|
+
self.__wrapped__.__enter__()
|
82
|
+
return self
|
83
|
+
|
84
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
85
|
+
self.__wrapped__.__exit__(exc_type, exc_value, traceback)
|
86
|
+
|
87
|
+
def __iter__(self):
|
88
|
+
return self
|
89
|
+
|
90
|
+
def __getattr__(self, name):
|
91
|
+
"""Delegate attribute access to the wrapped object."""
|
92
|
+
return getattr(self.__wrapped__, name)
|
93
|
+
|
94
|
+
def __next__(self):
|
95
|
+
try:
|
96
|
+
chunk = self.__wrapped__.__next__()
|
97
|
+
end_time = time.time()
|
98
|
+
# Record the timestamp for the current chunk
|
99
|
+
self._timestamps.append(end_time)
|
100
|
+
|
101
|
+
if len(self._timestamps) == 1:
|
102
|
+
# Calculate time to first chunk
|
103
|
+
self._ttft = calculate_ttft(self._timestamps, self._start_time)
|
104
|
+
|
105
|
+
chunked = response_as_dict(chunk)
|
106
|
+
|
107
|
+
# Collect message IDs and input token from events
|
108
|
+
if chunked.get('type') == "message_start":
|
109
|
+
self._response_id = chunked.get('message').get('id')
|
110
|
+
self._input_tokens = chunked.get('message').get('usage').get('input_tokens')
|
111
|
+
self._response_model = chunked.get('message').get('model')
|
112
|
+
# Collect message IDs and aggregated response from events
|
113
|
+
if chunked.get('type') == "content_block_delta":
|
114
|
+
content = chunked.get('delta').get('text')
|
115
|
+
if content:
|
116
|
+
self._llmresponse += content
|
117
|
+
# Collect output tokens and stop reason from events
|
118
|
+
if chunked.get('type') == "message_delta":
|
119
|
+
self._output_tokens = chunked.get('usage').get('output_tokens')
|
120
|
+
self._finish_reason = chunked.get('delta').get('stop_reason')
|
121
|
+
|
122
|
+
return chunk
|
123
|
+
except StopIteration:
|
124
|
+
# Handling exception ensure observability without disrupting operation
|
125
|
+
try:
|
126
|
+
self._end_time = time.time()
|
127
|
+
if len(self._timestamps) > 1:
|
128
|
+
self._tbt = calculate_tbt(self._timestamps)
|
129
|
+
|
130
|
+
# Format 'messages' into a single string
|
131
|
+
message_prompt = self._kwargs.get("messages", "")
|
132
|
+
formatted_messages = []
|
133
|
+
for message in message_prompt:
|
134
|
+
role = message["role"]
|
135
|
+
content = message["content"]
|
136
|
+
|
137
|
+
if isinstance(content, list):
|
138
|
+
content_str_list = []
|
139
|
+
for item in content:
|
140
|
+
if item["type"] == "text":
|
141
|
+
content_str_list.append(f'text: {item["text"]}')
|
142
|
+
elif (item["type"] == "image_url" and
|
143
|
+
not item["image_url"]["url"].startswith("data:")):
|
144
|
+
content_str_list.append(f'image_url: {item["image_url"]["url"]}')
|
145
|
+
content_str = ", ".join(content_str_list)
|
146
|
+
formatted_messages.append(f"{role}: {content_str}")
|
147
|
+
else:
|
148
|
+
formatted_messages.append(f"{role}: {content}")
|
149
|
+
prompt = "\n".join(formatted_messages)
|
150
|
+
|
151
|
+
request_model = self._kwargs.get("model", "claude-3-5-sonnet-latest")
|
152
|
+
|
153
|
+
# Calculate cost of the operation
|
154
|
+
cost = get_chat_model_cost(request_model,
|
155
|
+
pricing_info, self._input_tokens,
|
156
|
+
self._output_tokens)
|
157
|
+
|
158
|
+
# Set Span attributes (OTel Semconv)
|
159
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
160
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
161
|
+
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
162
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
163
|
+
SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC)
|
164
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
165
|
+
request_model)
|
166
|
+
self._span.set_attribute(SemanticConvetion.SERVER_PORT,
|
167
|
+
self._server_port)
|
168
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
169
|
+
self._kwargs.get("max_tokens", -1))
|
170
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
171
|
+
self._kwargs.get("stop_sequences", []))
|
172
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
173
|
+
self._kwargs.get("temperature", 1.0))
|
174
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
175
|
+
self._kwargs.get("top_k", 1.0))
|
176
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
177
|
+
self._kwargs.get("top_p", 1.0))
|
178
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
179
|
+
[self._finish_reason])
|
180
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
181
|
+
self._response_id)
|
182
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
183
|
+
self._response_model)
|
184
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
185
|
+
self._input_tokens)
|
186
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
187
|
+
self._output_tokens)
|
188
|
+
self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
189
|
+
self._server_address)
|
190
|
+
if isinstance(self._llmresponse, str):
|
191
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
192
|
+
"text")
|
193
|
+
else:
|
194
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
195
|
+
"json")
|
196
|
+
|
197
|
+
# Set Span attributes (Extra)
|
198
|
+
self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
199
|
+
environment)
|
200
|
+
self._span.set_attribute(SERVICE_NAME,
|
201
|
+
application_name)
|
202
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
203
|
+
True)
|
204
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
205
|
+
self._input_tokens + self._output_tokens)
|
206
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
207
|
+
cost)
|
208
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
|
209
|
+
self._tbt)
|
210
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
211
|
+
self._ttft)
|
212
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
213
|
+
version)
|
214
|
+
if trace_content:
|
215
|
+
self._span.add_event(
|
216
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
217
|
+
attributes={
|
218
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
219
|
+
},
|
220
|
+
)
|
221
|
+
self._span.add_event(
|
222
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
223
|
+
attributes={
|
224
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
225
|
+
},
|
226
|
+
)
|
227
|
+
self._span.set_status(Status(StatusCode.OK))
|
228
|
+
|
229
|
+
if disable_metrics is False:
|
230
|
+
attributes = create_metrics_attributes(
|
231
|
+
service_name=application_name,
|
232
|
+
deployment_environment=environment,
|
233
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
234
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC,
|
235
|
+
request_model=request_model,
|
236
|
+
server_address=self._server_address,
|
237
|
+
server_port=self._server_port,
|
238
|
+
response_model=self._response_model,
|
239
|
+
)
|
240
|
+
|
241
|
+
metrics["genai_client_usage_tokens"].record(
|
242
|
+
self._input_tokens + self._output_tokens, attributes
|
243
|
+
)
|
244
|
+
metrics["genai_client_operation_duration"].record(
|
245
|
+
self._end_time - self._start_time, attributes
|
246
|
+
)
|
247
|
+
metrics["genai_server_tbt"].record(
|
248
|
+
self._tbt, attributes
|
249
|
+
)
|
250
|
+
metrics["genai_server_ttft"].record(
|
251
|
+
self._ttft, attributes
|
252
|
+
)
|
253
|
+
metrics["genai_requests"].add(1, attributes)
|
254
|
+
metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
|
255
|
+
metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
|
256
|
+
metrics["genai_cost"].record(cost, attributes)
|
257
|
+
|
258
|
+
except Exception as e:
|
259
|
+
handle_exception(self._span, e)
|
260
|
+
logger.error("Error in trace creation: %s", e)
|
261
|
+
finally:
|
262
|
+
self._span.end()
|
263
|
+
raise
|
264
|
+
|
33
265
|
def wrapper(wrapped, instance, args, kwargs):
|
34
266
|
"""
|
35
267
|
Wraps the 'messages' API call to add telemetry.
|
@@ -49,147 +281,27 @@ def messages(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
49
281
|
|
50
282
|
# Check if streaming is enabled for the API call
|
51
283
|
streaming = kwargs.get("stream", False)
|
284
|
+
server_address, server_port = set_server_address_and_port(instance, "api.anthropic.com", 443)
|
285
|
+
request_model = kwargs.get("model", "claude-3-5-sonnet-latest")
|
286
|
+
|
287
|
+
span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
|
52
288
|
|
53
289
|
# pylint: disable=no-else-return
|
54
290
|
if streaming:
|
55
291
|
# Special handling for streaming response to accommodate the nature of data flow
|
56
|
-
|
57
|
-
|
58
|
-
# Placeholder for aggregating streaming response
|
59
|
-
llmresponse = ""
|
60
|
-
|
61
|
-
# Loop through streaming events capturing relevant details
|
62
|
-
for event in wrapped(*args, **kwargs):
|
63
|
-
|
64
|
-
# Collect message IDs and input token from events
|
65
|
-
if event.type == "message_start":
|
66
|
-
response_id = event.message.id
|
67
|
-
prompt_tokens = event.message.usage.input_tokens
|
68
|
-
|
69
|
-
# Aggregate response content
|
70
|
-
if event.type == "content_block_delta":
|
71
|
-
llmresponse += event.delta.text
|
72
|
-
|
73
|
-
# Collect output tokens and stop reason from events
|
74
|
-
if event.type == "message_delta":
|
75
|
-
completion_tokens = event.usage.output_tokens
|
76
|
-
finish_reason = event.delta.stop_reason
|
77
|
-
yield event
|
78
|
-
|
79
|
-
# Handling exception ensure observability without disrupting operation
|
80
|
-
try:
|
81
|
-
# Format 'messages' into a single string
|
82
|
-
message_prompt = kwargs.get("messages", "")
|
83
|
-
formatted_messages = []
|
84
|
-
for message in message_prompt:
|
85
|
-
role = message["role"]
|
86
|
-
content = message["content"]
|
87
|
-
|
88
|
-
if isinstance(content, list):
|
89
|
-
content_str = ", ".join(
|
90
|
-
# pylint: disable=line-too-long
|
91
|
-
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
92
|
-
if "type" in item else f'text: {item["text"]}'
|
93
|
-
for item in content
|
94
|
-
)
|
95
|
-
formatted_messages.append(f"{role}: {content_str}")
|
96
|
-
else:
|
97
|
-
formatted_messages.append(f"{role}: {content}")
|
98
|
-
prompt = "\n".join(formatted_messages)
|
99
|
-
|
100
|
-
# Calculate cost of the operation
|
101
|
-
cost = get_chat_model_cost(
|
102
|
-
kwargs.get("model", "claude-3-sonnet-20240229"),
|
103
|
-
pricing_info, prompt_tokens, completion_tokens
|
104
|
-
)
|
105
|
-
|
106
|
-
# Set Span attributes
|
107
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
108
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
109
|
-
SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC)
|
110
|
-
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
111
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
112
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
113
|
-
gen_ai_endpoint)
|
114
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
115
|
-
response_id)
|
116
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
117
|
-
environment)
|
118
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
119
|
-
application_name)
|
120
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
121
|
-
kwargs.get("model", "claude-3-sonnet-20240229"))
|
122
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
123
|
-
kwargs.get("max_tokens", -1))
|
124
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
125
|
-
True)
|
126
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
127
|
-
kwargs.get("temperature", 1.0))
|
128
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
129
|
-
kwargs.get("top_p", ""))
|
130
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
131
|
-
kwargs.get("top_k", ""))
|
132
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
133
|
-
[finish_reason])
|
134
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
135
|
-
prompt_tokens)
|
136
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
137
|
-
completion_tokens)
|
138
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
139
|
-
prompt_tokens + completion_tokens)
|
140
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
141
|
-
cost)
|
142
|
-
if trace_content:
|
143
|
-
span.add_event(
|
144
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
145
|
-
attributes={
|
146
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
147
|
-
},
|
148
|
-
)
|
149
|
-
span.add_event(
|
150
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
151
|
-
attributes={
|
152
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
153
|
-
},
|
154
|
-
)
|
155
|
-
|
156
|
-
span.set_status(Status(StatusCode.OK))
|
157
|
-
|
158
|
-
if disable_metrics is False:
|
159
|
-
attributes = {
|
160
|
-
TELEMETRY_SDK_NAME:
|
161
|
-
"openlit",
|
162
|
-
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
163
|
-
application_name,
|
164
|
-
SemanticConvetion.GEN_AI_SYSTEM:
|
165
|
-
SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC,
|
166
|
-
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
167
|
-
environment,
|
168
|
-
SemanticConvetion.GEN_AI_TYPE:
|
169
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
170
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
171
|
-
kwargs.get("model", "claude-3-sonnet-20240229")
|
172
|
-
}
|
173
|
-
|
174
|
-
metrics["genai_requests"].add(1, attributes)
|
175
|
-
metrics["genai_total_tokens"].add(
|
176
|
-
prompt_tokens + completion_tokens, attributes
|
177
|
-
)
|
178
|
-
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
179
|
-
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
180
|
-
metrics["genai_cost"].record(cost, attributes)
|
181
|
-
|
182
|
-
except Exception as e:
|
183
|
-
handle_exception(span, e)
|
184
|
-
logger.error("Error in trace creation: %s", e)
|
292
|
+
awaited_wrapped = wrapped(*args, **kwargs)
|
293
|
+
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
185
294
|
|
186
|
-
return
|
295
|
+
return TracedSyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
|
187
296
|
|
188
297
|
# Handling for non-streaming responses
|
189
298
|
else:
|
190
|
-
with tracer.start_as_current_span(
|
299
|
+
with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
|
300
|
+
start_time = time.time()
|
191
301
|
response = wrapped(*args, **kwargs)
|
302
|
+
end_time = time.time()
|
192
303
|
|
304
|
+
response_dict = response_as_dict(response)
|
193
305
|
try:
|
194
306
|
# Format 'messages' into a single string
|
195
307
|
message_prompt = kwargs.get("messages", "")
|
@@ -200,7 +312,6 @@ def messages(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
200
312
|
|
201
313
|
if isinstance(content, list):
|
202
314
|
content_str = ", ".join(
|
203
|
-
# pylint: disable=line-too-long
|
204
315
|
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
205
316
|
if "type" in item else f'text: {item["text"]}'
|
206
317
|
for item in content
|
@@ -210,48 +321,70 @@ def messages(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
210
321
|
formatted_messages.append(f"{role}: {content}")
|
211
322
|
prompt = "\n".join(formatted_messages)
|
212
323
|
|
324
|
+
input_tokens = response_dict.get('usage').get('input_tokens')
|
325
|
+
output_tokens = response_dict.get('usage').get('output_tokens')
|
326
|
+
|
213
327
|
# Calculate cost of the operation
|
214
|
-
cost = get_chat_model_cost(
|
215
|
-
pricing_info,
|
216
|
-
|
328
|
+
cost = get_chat_model_cost(request_model,
|
329
|
+
pricing_info, input_tokens,
|
330
|
+
output_tokens)
|
331
|
+
|
332
|
+
llm_response = ""
|
333
|
+
for i in range(len(response_dict.get('content'))):
|
334
|
+
if response_dict.get('content')[i].get('type') == 'text':
|
335
|
+
llm_response = response_dict.get('content')[i].get('text')
|
217
336
|
|
218
|
-
# Set Span
|
337
|
+
# Set Span attributes (OTel Semconv)
|
219
338
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
339
|
+
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
340
|
+
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
220
341
|
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
221
342
|
SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC)
|
222
|
-
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
223
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
224
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
225
|
-
gen_ai_endpoint)
|
226
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
227
|
-
response.id)
|
228
|
-
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
229
|
-
environment)
|
230
|
-
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
231
|
-
application_name)
|
232
343
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
233
|
-
|
344
|
+
request_model)
|
345
|
+
span.set_attribute(SemanticConvetion.SERVER_PORT,
|
346
|
+
server_port)
|
234
347
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
235
348
|
kwargs.get("max_tokens", -1))
|
236
|
-
span.set_attribute(SemanticConvetion.
|
237
|
-
|
349
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
350
|
+
kwargs.get("stop_sequences", []))
|
238
351
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
239
352
|
kwargs.get("temperature", 1.0))
|
240
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
241
|
-
kwargs.get("top_p", ""))
|
242
353
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
243
|
-
kwargs.get("top_k",
|
354
|
+
kwargs.get("top_k", 1.0))
|
355
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
356
|
+
kwargs.get("top_p", 1.0))
|
244
357
|
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
245
|
-
[
|
246
|
-
span.set_attribute(SemanticConvetion.
|
247
|
-
|
248
|
-
span.set_attribute(SemanticConvetion.
|
249
|
-
|
358
|
+
[response_dict.get('stop_reason')])
|
359
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
360
|
+
response_dict.get('id'))
|
361
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
362
|
+
response_dict.get('model'))
|
363
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
364
|
+
input_tokens)
|
365
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
366
|
+
output_tokens)
|
367
|
+
span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
368
|
+
server_address)
|
369
|
+
|
370
|
+
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
371
|
+
response_dict.get('content')[0].get('type'))
|
372
|
+
|
373
|
+
# Set Span attributes (Extra)
|
374
|
+
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
375
|
+
environment)
|
376
|
+
span.set_attribute(SERVICE_NAME,
|
377
|
+
application_name)
|
378
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
379
|
+
False)
|
250
380
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
251
|
-
|
252
|
-
response.usage.output_tokens)
|
381
|
+
input_tokens + output_tokens)
|
253
382
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
254
383
|
cost)
|
384
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
385
|
+
end_time - start_time)
|
386
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
387
|
+
version)
|
255
388
|
|
256
389
|
if trace_content:
|
257
390
|
span.add_event(
|
@@ -263,37 +396,36 @@ def messages(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
263
396
|
span.add_event(
|
264
397
|
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
265
398
|
attributes={
|
266
|
-
|
267
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.content[0].text if response.content else "",
|
399
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llm_response,
|
268
400
|
},
|
269
401
|
)
|
270
402
|
|
271
403
|
span.set_status(Status(StatusCode.OK))
|
272
404
|
|
273
405
|
if disable_metrics is False:
|
274
|
-
attributes =
|
275
|
-
|
276
|
-
|
277
|
-
SemanticConvetion.
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
285
|
-
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
286
|
-
kwargs.get("model", "claude-3-sonnet-20240229")
|
287
|
-
}
|
406
|
+
attributes = create_metrics_attributes(
|
407
|
+
service_name=application_name,
|
408
|
+
deployment_environment=environment,
|
409
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
410
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_ANTHROPIC,
|
411
|
+
request_model=request_model,
|
412
|
+
server_address=server_address,
|
413
|
+
server_port=server_port,
|
414
|
+
response_model=response_dict.get('model'),
|
415
|
+
)
|
288
416
|
|
417
|
+
metrics["genai_client_usage_tokens"].record(
|
418
|
+
input_tokens + output_tokens, attributes
|
419
|
+
)
|
420
|
+
metrics["genai_client_operation_duration"].record(
|
421
|
+
end_time - start_time, attributes
|
422
|
+
)
|
423
|
+
metrics["genai_server_ttft"].record(
|
424
|
+
end_time - start_time, attributes
|
425
|
+
)
|
289
426
|
metrics["genai_requests"].add(1, attributes)
|
290
|
-
metrics["
|
291
|
-
|
292
|
-
response.usage.output_tokens, attributes)
|
293
|
-
metrics["genai_completion_tokens"].add(
|
294
|
-
response.usage.output_tokens, attributes)
|
295
|
-
metrics["genai_prompt_tokens"].add(
|
296
|
-
response.usage.input_tokens, attributes)
|
427
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
428
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
297
429
|
metrics["genai_cost"].record(cost, attributes)
|
298
430
|
|
299
431
|
# Return original response
|