openlit 1.33.16__py3-none-any.whl → 1.33.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/instrumentation/azure_ai_inference/__init__.py +5 -22
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +48 -489
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +48 -489
- openlit/instrumentation/azure_ai_inference/utils.py +225 -0
- openlit/instrumentation/langchain/langchain.py +2 -28
- {openlit-1.33.16.dist-info → openlit-1.33.18.dist-info}/METADATA +1 -1
- {openlit-1.33.16.dist-info → openlit-1.33.18.dist-info}/RECORD +9 -8
- {openlit-1.33.16.dist-info → openlit-1.33.18.dist-info}/LICENSE +0 -0
- {openlit-1.33.16.dist-info → openlit-1.33.18.dist-info}/WHEEL +0 -0
@@ -0,0 +1,225 @@
|
|
1
|
+
"""
|
2
|
+
Azure AI Inference OpenTelemetry instrumentation utility functions
|
3
|
+
"""
|
4
|
+
import time
|
5
|
+
|
6
|
+
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import Status, StatusCode
|
8
|
+
|
9
|
+
from openlit.__helpers import (
|
10
|
+
calculate_ttft,
|
11
|
+
response_as_dict,
|
12
|
+
calculate_tbt,
|
13
|
+
extract_and_format_input,
|
14
|
+
get_chat_model_cost,
|
15
|
+
create_metrics_attributes,
|
16
|
+
otel_event,
|
17
|
+
concatenate_all_contents
|
18
|
+
)
|
19
|
+
from openlit.semcov import SemanticConvetion
|
20
|
+
|
21
|
+
def process_chunk(self, chunk):
|
22
|
+
"""
|
23
|
+
Process a chunk of response data and update state.
|
24
|
+
"""
|
25
|
+
|
26
|
+
end_time = time.time()
|
27
|
+
# Record the timestamp for the current chunk
|
28
|
+
self._timestamps.append(end_time)
|
29
|
+
|
30
|
+
if len(self._timestamps) == 1:
|
31
|
+
# Calculate time to first chunk
|
32
|
+
self._ttft = calculate_ttft(self._timestamps, self._start_time)
|
33
|
+
|
34
|
+
chunked = response_as_dict(chunk)
|
35
|
+
|
36
|
+
# Collect message IDs and aggregated response from events
|
37
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
38
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
39
|
+
|
40
|
+
if content := chunked.get('choices')[0].get('delta').get('content'):
|
41
|
+
self._llmresponse += content
|
42
|
+
|
43
|
+
if chunked.get('choices')[0].get('finish_reason') is not None:
|
44
|
+
self._finish_reason = chunked.get('choices')[0].get('finish_reason')
|
45
|
+
|
46
|
+
if chunked.get('usage') is not None:
|
47
|
+
self._input_tokens = chunked.get('usage').get('prompt_tokens')
|
48
|
+
self._response_id = chunked.get('id')
|
49
|
+
self._response_model = chunked.get('model')
|
50
|
+
self._output_tokens = chunked.get('usage').get('completion_tokens')
|
51
|
+
|
52
|
+
def common_chat_logic(scope, pricing_info, environment, application_name, metrics,
|
53
|
+
event_provider, capture_message_content, disable_metrics, version, is_stream):
|
54
|
+
"""
|
55
|
+
Process chat request and generate Telemetry
|
56
|
+
"""
|
57
|
+
|
58
|
+
scope._end_time = time.time()
|
59
|
+
if len(scope._timestamps) > 1:
|
60
|
+
scope._tbt = calculate_tbt(scope._timestamps)
|
61
|
+
|
62
|
+
formatted_messages = extract_and_format_input(scope._kwargs.get('messages', ''))
|
63
|
+
request_model = scope._kwargs.get('model', 'claude-3-opus-20240229')
|
64
|
+
|
65
|
+
cost = get_chat_model_cost(request_model, pricing_info, scope._input_tokens, scope._output_tokens)
|
66
|
+
|
67
|
+
# Set Span attributes (OTel Semconv)
|
68
|
+
scope._span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
|
69
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION, SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
70
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM, SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
71
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL, request_model)
|
72
|
+
scope._span.set_attribute(SemanticConvetion.SERVER_PORT, scope._server_port)
|
73
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS, scope._kwargs.get('max_tokens', -1))
|
74
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES, scope._kwargs.get('stop', []))
|
75
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE, scope._kwargs.get('temperature', 1.0))
|
76
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K, scope._kwargs.get('top_k', 1.0))
|
77
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P, scope._kwargs.get('top_p', 1.0))
|
78
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
79
|
+
scope._kwargs.get("frequency_penalty", 0.0))
|
80
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
81
|
+
scope._kwargs.get("presence_penalty", 0.0))
|
82
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON, [scope._finish_reason])
|
83
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID, scope._response_id)
|
84
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL, scope._response_model)
|
85
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS, scope._input_tokens)
|
86
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS, scope._output_tokens)
|
87
|
+
scope._span.set_attribute(SemanticConvetion.SERVER_ADDRESS, scope._server_address)
|
88
|
+
|
89
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
90
|
+
'text' if isinstance(scope._llmresponse, str) else 'json')
|
91
|
+
|
92
|
+
scope._span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
|
93
|
+
scope._span.set_attribute(SERVICE_NAME, application_name)
|
94
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM, is_stream)
|
95
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_CLIENT_TOKEN_USAGE, scope._input_tokens + scope._output_tokens)
|
96
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST, cost)
|
97
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT, scope._tbt)
|
98
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT, scope._ttft)
|
99
|
+
scope._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION, version)
|
100
|
+
|
101
|
+
# To be removed one the change to log events (from span events) is complete
|
102
|
+
prompt = concatenate_all_contents(formatted_messages)
|
103
|
+
if capture_message_content:
|
104
|
+
scope._span.add_event(
|
105
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
106
|
+
attributes={
|
107
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
108
|
+
},
|
109
|
+
)
|
110
|
+
scope._span.add_event(
|
111
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
112
|
+
attributes={
|
113
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: scope._llmresponse,
|
114
|
+
},
|
115
|
+
)
|
116
|
+
|
117
|
+
choice_event_body = {
|
118
|
+
'finish_reason': scope._finish_reason,
|
119
|
+
'index': 0,
|
120
|
+
'message': {
|
121
|
+
**({'content': scope._llmresponse} if capture_message_content else {}),
|
122
|
+
'role': 'assistant'
|
123
|
+
}
|
124
|
+
}
|
125
|
+
|
126
|
+
# Emit events
|
127
|
+
for role in ['user', 'system', 'assistant', 'tool']:
|
128
|
+
if formatted_messages.get(role, {}).get('content', ''):
|
129
|
+
event = otel_event(
|
130
|
+
name=getattr(SemanticConvetion, f'GEN_AI_{role.upper()}_MESSAGE'),
|
131
|
+
attributes={
|
132
|
+
SemanticConvetion.GEN_AI_SYSTEM: SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE
|
133
|
+
},
|
134
|
+
body = {
|
135
|
+
# pylint: disable=line-too-long
|
136
|
+
**({'content': formatted_messages.get(role, {}).get('content', '')} if capture_message_content else {}),
|
137
|
+
'role': formatted_messages.get(role, {}).get('role', []),
|
138
|
+
**({
|
139
|
+
'tool_calls': {
|
140
|
+
'function': {
|
141
|
+
# pylint: disable=line-too-long
|
142
|
+
'name': (scope._tool_calls[0].get('function', {}).get('name', '') if scope._tool_calls else ''),
|
143
|
+
'arguments': (scope._tool_calls[0].get('function', {}).get('arguments', '') if scope._tool_calls else '')
|
144
|
+
},
|
145
|
+
'id': (scope._tool_calls[0].get('id', '') if scope._tool_calls else ''),
|
146
|
+
'type': 'function'
|
147
|
+
}
|
148
|
+
} if role == 'assistant' else {}),
|
149
|
+
**({
|
150
|
+
'id': (scope._tool_calls[0].get('id', '') if scope._tool_calls else '')
|
151
|
+
} if role == 'tool' else {})
|
152
|
+
}
|
153
|
+
)
|
154
|
+
event_provider.emit(event)
|
155
|
+
|
156
|
+
choice_event = otel_event(
|
157
|
+
name=SemanticConvetion.GEN_AI_CHOICE,
|
158
|
+
attributes={
|
159
|
+
SemanticConvetion.GEN_AI_SYSTEM: SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE
|
160
|
+
},
|
161
|
+
body=choice_event_body
|
162
|
+
)
|
163
|
+
event_provider.emit(choice_event)
|
164
|
+
|
165
|
+
scope._span.set_status(Status(StatusCode.OK))
|
166
|
+
|
167
|
+
if not disable_metrics:
|
168
|
+
metrics_attributes = create_metrics_attributes(
|
169
|
+
service_name=application_name,
|
170
|
+
deployment_environment=environment,
|
171
|
+
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
172
|
+
system=SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
173
|
+
request_model=request_model,
|
174
|
+
server_address=scope._server_address,
|
175
|
+
server_port=scope._server_port,
|
176
|
+
response_model=scope._response_model,
|
177
|
+
)
|
178
|
+
|
179
|
+
metrics['genai_client_usage_tokens'].record(scope._input_tokens + scope._output_tokens, metrics_attributes)
|
180
|
+
metrics['genai_client_operation_duration'].record(scope._end_time - scope._start_time, metrics_attributes)
|
181
|
+
metrics['genai_server_tbt'].record(scope._tbt, metrics_attributes)
|
182
|
+
metrics['genai_server_ttft'].record(scope._ttft, metrics_attributes)
|
183
|
+
metrics['genai_requests'].add(1, metrics_attributes)
|
184
|
+
metrics['genai_completion_tokens'].add(scope._output_tokens, metrics_attributes)
|
185
|
+
metrics['genai_prompt_tokens'].add(scope._input_tokens, metrics_attributes)
|
186
|
+
metrics['genai_cost'].record(cost, metrics_attributes)
|
187
|
+
|
188
|
+
def process_streaming_chat_response(self, pricing_info, environment, application_name, metrics,
|
189
|
+
event_provider, capture_message_content=False, disable_metrics=False, version=''):
|
190
|
+
"""
|
191
|
+
Process chat request and generate Telemetry
|
192
|
+
"""
|
193
|
+
|
194
|
+
common_chat_logic(self, pricing_info, environment, application_name, metrics,
|
195
|
+
event_provider, capture_message_content, disable_metrics, version, is_stream=True)
|
196
|
+
|
197
|
+
def process_chat_response(response, request_model, pricing_info, server_port, server_address,
|
198
|
+
environment, application_name, metrics, event_provider, start_time,
|
199
|
+
span, capture_message_content=False, disable_metrics=False, version='1.0.0', **kwargs):
|
200
|
+
"""
|
201
|
+
Process chat request and generate Telemetry
|
202
|
+
"""
|
203
|
+
|
204
|
+
self = type('GenericScope', (), {})()
|
205
|
+
response_dict = response_as_dict(response)
|
206
|
+
|
207
|
+
# pylint: disable = no-member
|
208
|
+
self._start_time = start_time
|
209
|
+
self._end_time = time.time()
|
210
|
+
self._span = span
|
211
|
+
self._llmresponse = response_dict.get('choices', {})[0].get('message', '').get('content', '')
|
212
|
+
self._input_tokens = response_dict.get('usage').get('prompt_tokens')
|
213
|
+
self._output_tokens = response_dict.get('usage').get('completion_tokens')
|
214
|
+
self._response_model = response_dict.get('model', '')
|
215
|
+
self._finish_reason = response_dict.get('choices', {})[0].get('finish_reason', '')
|
216
|
+
self._response_id = response_dict.get('id', '')
|
217
|
+
self._timestamps = []
|
218
|
+
self._ttft, self._tbt = self._end_time - self._start_time, 0
|
219
|
+
self._server_address, self._server_port = server_address, server_port
|
220
|
+
self._kwargs = kwargs
|
221
|
+
|
222
|
+
common_chat_logic(self, pricing_info, environment, application_name, metrics,
|
223
|
+
event_provider, capture_message_content, disable_metrics, version, is_stream=False)
|
224
|
+
|
225
|
+
return response
|
@@ -14,6 +14,7 @@ from openlit.__helpers import (
|
|
14
14
|
calculate_ttft,
|
15
15
|
calculate_tbt,
|
16
16
|
create_metrics_attributes,
|
17
|
+
extract_and_format_input,
|
17
18
|
)
|
18
19
|
from openlit.semcov import SemanticConvetion
|
19
20
|
|
@@ -249,34 +250,7 @@ def chat(gen_ai_endpoint, version, environment, application_name,
|
|
249
250
|
end_time = time.time()
|
250
251
|
|
251
252
|
try:
|
252
|
-
|
253
|
-
message_prompt = kwargs.get("messages", "") or args[0]
|
254
|
-
formatted_messages = []
|
255
|
-
|
256
|
-
for message in message_prompt:
|
257
|
-
# Handle the case where message is a tuple
|
258
|
-
if isinstance(message, tuple) and len(message) == 2:
|
259
|
-
role, content = message
|
260
|
-
# Handle the case where message is a dictionary
|
261
|
-
elif isinstance(message, dict):
|
262
|
-
role = message["role"]
|
263
|
-
content = message["content"]
|
264
|
-
else:
|
265
|
-
continue
|
266
|
-
|
267
|
-
# Check if the content is a list
|
268
|
-
if isinstance(content, list):
|
269
|
-
content_str = ", ".join(
|
270
|
-
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
271
|
-
if "type" in item else f'text: {item["text"]}'
|
272
|
-
for item in content
|
273
|
-
)
|
274
|
-
formatted_messages.append(f"{role}: {content_str}")
|
275
|
-
else:
|
276
|
-
formatted_messages.append(f"{role}: {content}")
|
277
|
-
|
278
|
-
# Join all formatted messages with newline
|
279
|
-
prompt = "\n".join(formatted_messages)
|
253
|
+
prompt = str(kwargs.get('messages', '') or args[0])
|
280
254
|
|
281
255
|
input_tokens = general_tokens(str(prompt))
|
282
256
|
output_tokens = general_tokens(str(response))
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.33.
|
3
|
+
Version: 1.33.18
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
License: Apache-2.0
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -28,9 +28,10 @@ openlit/instrumentation/astra/__init__.py,sha256=-JG3_YHQQaOQUr4XtFzqfaYiQKqviAA
|
|
28
28
|
openlit/instrumentation/astra/astra.py,sha256=JH2-7RJBbk6nM9kBEVgbxCXXnzgTuGT0KoBhVGBGeIs,1607
|
29
29
|
openlit/instrumentation/astra/async_astra.py,sha256=mMG22exgduREIe-7s2TdqLM1Ub8wP_ttcIS8wJH5P1Y,1625
|
30
30
|
openlit/instrumentation/astra/utils.py,sha256=-Af5R_g8-x9XeQiepLBW3Qa3Beji4EMxppDtiE_nmzM,4933
|
31
|
-
openlit/instrumentation/azure_ai_inference/__init__.py,sha256=
|
32
|
-
openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py,sha256=
|
33
|
-
openlit/instrumentation/azure_ai_inference/azure_ai_inference.py,sha256=
|
31
|
+
openlit/instrumentation/azure_ai_inference/__init__.py,sha256=ZoMAX_MUNCNMJqLZgl0A_kQ_lsgoz3VddkHiDT3pVF8,2032
|
32
|
+
openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py,sha256=o5KbVT9UbBZzhdGpw7p1P_7c-IKmy9XVAySZNd1hqAg,5056
|
33
|
+
openlit/instrumentation/azure_ai_inference/azure_ai_inference.py,sha256=WwoAQO5UCeX7bbK8GbtukqqY_s0w0U9Nab_zrU-3T8I,4970
|
34
|
+
openlit/instrumentation/azure_ai_inference/utils.py,sha256=YVzrfumTK29A-igAPxsG_ERggAnLlRnWI5MGRHAXxgI,10997
|
34
35
|
openlit/instrumentation/bedrock/__init__.py,sha256=ZdCBjgwK92cclnbFfF90NC6AsRreom3nT3CklbM7EmM,1555
|
35
36
|
openlit/instrumentation/bedrock/bedrock.py,sha256=jBDzm005Y9rbcTLxo-yShOtRb65NCDFyUYtggi0XRF0,12264
|
36
37
|
openlit/instrumentation/chroma/__init__.py,sha256=4ZeHY1OInRKQbb4qg8BVvGJtWN1XdzW6mosqi7-6ruE,3353
|
@@ -70,7 +71,7 @@ openlit/instrumentation/julep/async_julep.py,sha256=URZQsxXEaQ4nHmOTeM1tsADRp4xQ
|
|
70
71
|
openlit/instrumentation/julep/julep.py,sha256=0bGlsdW32JGu1fEdsfc-MDbOqqbcCrlkl-ojE98Zqys,5316
|
71
72
|
openlit/instrumentation/langchain/__init__.py,sha256=cNlumZ8fwLMlGVFMjNEndOIzooD4FQEOINX9tGVksII,3853
|
72
73
|
openlit/instrumentation/langchain/async_langchain.py,sha256=u_f7FZThF9VdsOPBlh8W6aytUUTRt9d5z2KD1zbz4UI,18302
|
73
|
-
openlit/instrumentation/langchain/langchain.py,sha256=
|
74
|
+
openlit/instrumentation/langchain/langchain.py,sha256=tl2kXJU_SSlBAP6w_cb52cFhcP_SPWoTmf-sm6Ro0zo,16973
|
74
75
|
openlit/instrumentation/letta/__init__.py,sha256=K8PtRKxuueyqEYE3LzxWJ74IieNKSI6dmk9sNRd8Mt0,3031
|
75
76
|
openlit/instrumentation/letta/letta.py,sha256=y8yZWGtY6lDv4sA2UlUTZjktXxUOYyXatwz_yso-akA,8455
|
76
77
|
openlit/instrumentation/litellm/__init__.py,sha256=qRqfwDMhP5adKGI2vRaelAkN12i0e8jtJrT31VFFM5A,2374
|
@@ -123,7 +124,7 @@ openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
|
|
123
124
|
openlit/otel/metrics.py,sha256=Iwx6baEiCZPNqsFf92K5mDWU8are8DOF0uQAuNZsCKg,6826
|
124
125
|
openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
|
125
126
|
openlit/semcov/__init__.py,sha256=lM0Y3wMYYmCvfcNGD3k0xSn1XZUiGw-bKgCuwcGsOp8,13302
|
126
|
-
openlit-1.33.
|
127
|
-
openlit-1.33.
|
128
|
-
openlit-1.33.
|
129
|
-
openlit-1.33.
|
127
|
+
openlit-1.33.18.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
128
|
+
openlit-1.33.18.dist-info/METADATA,sha256=ILFGRCT5sslnrJoaoeKDGqnbKhjs-nYI4BRM9S3-7-A,23471
|
129
|
+
openlit-1.33.18.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
|
130
|
+
openlit-1.33.18.dist-info/RECORD,,
|
File without changes
|
File without changes
|