openlit 1.33.15__py3-none-any.whl → 1.33.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openlit/__init__.py CHANGED
@@ -65,6 +65,7 @@ from openlit.instrumentation.controlflow import ControlFlowInstrumentor
65
65
  from openlit.instrumentation.crawl4ai import Crawl4AIInstrumentor
66
66
  from openlit.instrumentation.firecrawl import FireCrawlInstrumentor
67
67
  from openlit.instrumentation.letta import LettaInstrumentor
68
+ from openlit.instrumentation.openai_agents import OpenAIAgentsInstrumentor
68
69
  from openlit.instrumentation.gpu import GPUInstrumentor
69
70
  import openlit.guard
70
71
  import openlit.evals
@@ -293,6 +294,7 @@ def init(
293
294
  "firecrawl": "firecrawl",
294
295
  "letta": "letta",
295
296
  "together": "together",
297
+ "openai-agents": "agents"
296
298
  }
297
299
 
298
300
  invalid_instrumentors = [
@@ -411,6 +413,7 @@ def init(
411
413
  "firecrawl": FireCrawlInstrumentor(),
412
414
  "letta": LettaInstrumentor(),
413
415
  "together": TogetherInstrumentor(),
416
+ "openai-agents": OpenAIAgentsInstrumentor(),
414
417
  }
415
418
 
416
419
  # Initialize and instrument only the enabled instrumentors
@@ -14,6 +14,7 @@ from openlit.__helpers import (
14
14
  calculate_ttft,
15
15
  calculate_tbt,
16
16
  create_metrics_attributes,
17
+ extract_and_format_input,
17
18
  )
18
19
  from openlit.semcov import SemanticConvetion
19
20
 
@@ -249,34 +250,7 @@ def chat(gen_ai_endpoint, version, environment, application_name,
249
250
  end_time = time.time()
250
251
 
251
252
  try:
252
- # Format 'messages' into a single string
253
- message_prompt = kwargs.get("messages", "") or args[0]
254
- formatted_messages = []
255
-
256
- for message in message_prompt:
257
- # Handle the case where message is a tuple
258
- if isinstance(message, tuple) and len(message) == 2:
259
- role, content = message
260
- # Handle the case where message is a dictionary
261
- elif isinstance(message, dict):
262
- role = message["role"]
263
- content = message["content"]
264
- else:
265
- continue
266
-
267
- # Check if the content is a list
268
- if isinstance(content, list):
269
- content_str = ", ".join(
270
- f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
271
- if "type" in item else f'text: {item["text"]}'
272
- for item in content
273
- )
274
- formatted_messages.append(f"{role}: {content_str}")
275
- else:
276
- formatted_messages.append(f"{role}: {content}")
277
-
278
- # Join all formatted messages with newline
279
- prompt = "\n".join(formatted_messages)
253
+ prompt = str(kwargs.get('messages', '') or args[0])
280
254
 
281
255
  input_tokens = general_tokens(str(prompt))
282
256
  output_tokens = general_tokens(str(response))
@@ -5,11 +5,11 @@ import importlib.metadata
5
5
  from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
6
  from wrapt import wrap_function_wrapper
7
7
 
8
- from openlit.instrumentation.openai.openai import chat_completions, embedding
8
+ from openlit.instrumentation.openai.openai import chat_completions, embedding, responses
9
9
  from openlit.instrumentation.openai.openai import image_generate, image_variatons, audio_create
10
10
  from openlit.instrumentation.openai.async_openai import async_chat_completions, async_embedding
11
11
  from openlit.instrumentation.openai.async_openai import async_image_generate, async_image_variatons
12
- from openlit.instrumentation.openai.async_openai import async_audio_create
12
+ from openlit.instrumentation.openai.async_openai import async_audio_create, async_responses
13
13
 
14
14
  _instruments = ("openai >= 1.1.1",)
15
15
 
@@ -45,6 +45,22 @@ class OpenAIInstrumentor(BaseInstrumentor):
45
45
  metrics, disable_metrics),
46
46
  )
47
47
 
48
+ wrap_function_wrapper(
49
+ "openai.resources.responses.responses",
50
+ "Responses.create",
51
+ responses(version, environment, application_name,
52
+ tracer, pricing_info, capture_message_content,
53
+ metrics, disable_metrics),
54
+ )
55
+
56
+ wrap_function_wrapper(
57
+ "openai.resources.responses.responses",
58
+ "AsyncResponses.create",
59
+ async_responses(version, environment, application_name,
60
+ tracer, pricing_info, capture_message_content,
61
+ metrics, disable_metrics),
62
+ )
63
+
48
64
  wrap_function_wrapper(
49
65
  "openai.resources.images",
50
66
  "Images.generate",
@@ -13,6 +13,8 @@ from openlit.__helpers import (
13
13
  get_image_model_cost,
14
14
  general_tokens,
15
15
  handle_exception,
16
+ extract_and_format_input,
17
+ concatenate_all_contents,
16
18
  response_as_dict,
17
19
  calculate_ttft,
18
20
  calculate_tbt,
@@ -24,6 +26,409 @@ from openlit.semcov import SemanticConvetion
24
26
  # Initialize logger for logging potential issues and operations
25
27
  logger = logging.getLogger(__name__)
26
28
 
29
+ def async_responses(version, environment, application_name,
30
+ tracer, pricing_info, capture_message_content, metrics, disable_metrics):
31
+ """
32
+ Generates a telemetry wrapper for chat completions to collect metrics.
33
+
34
+ Args:
35
+ version: Version of the monitoring package.
36
+ environment: Deployment environment (e.g., production, staging).
37
+ application_name: Name of the application using the OpenAI API.
38
+ tracer: OpenTelemetry tracer for creating spans.
39
+ pricing_info: Information used for calculating the cost of OpenAI usage.
40
+ capture_message_content: Flag indicating whether to trace the actual content.
41
+
42
+ Returns:
43
+ A function that wraps the chat completions method to add telemetry.
44
+ """
45
+
46
+ class TracedAsyncStream:
47
+ """
48
+ Wrapper for streaming responses to collect metrics and trace data.
49
+ Wraps the response to collect message IDs and aggregated response.
50
+
51
+ This class implements the '__aiter__' and '__anext__' methods that
52
+ handle asynchronous streaming responses.
53
+
54
+ This class also implements '__aenter__' and '__aexit__' methods that
55
+ handle asynchronous context management protocol.
56
+ """
57
+ def __init__(
58
+ self,
59
+ wrapped,
60
+ span,
61
+ kwargs,
62
+ server_address,
63
+ server_port,
64
+ **args,
65
+ ):
66
+ self.__wrapped__ = wrapped
67
+ self._span = span
68
+ # Placeholder for aggregating streaming response
69
+ self._llmresponse = ""
70
+ self._response_id = ""
71
+ self._response_model = ""
72
+ self._finish_reason = ""
73
+ self._input_tokens = ""
74
+ self._output_tokens = ""
75
+
76
+ self._args = args
77
+ self._kwargs = kwargs
78
+ self._start_time = time.time()
79
+ self._end_time = None
80
+ self._timestamps = []
81
+ self._ttft = 0
82
+ self._tbt = 0
83
+ self._server_address = server_address
84
+ self._server_port = server_port
85
+
86
+ async def __aenter__(self):
87
+ await self.__wrapped__.__aenter__()
88
+ return self
89
+
90
+ async def __aexit__(self, exc_type, exc_value, traceback):
91
+ await self.__wrapped__.__aexit__(exc_type, exc_value, traceback)
92
+
93
+ def __aiter__(self):
94
+ return self
95
+
96
+ async def __getattr__(self, name):
97
+ """Delegate attribute access to the wrapped object."""
98
+ return getattr(await self.__wrapped__, name)
99
+
100
+ async def __anext__(self):
101
+ try:
102
+ chunk = await self.__wrapped__.__anext__()
103
+ end_time = time.time()
104
+ # Record the timestamp for the current chunk
105
+ self._timestamps.append(end_time)
106
+
107
+ if len(self._timestamps) == 1:
108
+ # Calculate time to first chunk
109
+ self._ttft = calculate_ttft(self._timestamps, self._start_time)
110
+
111
+ chunked = response_as_dict(chunk)
112
+ # Collect message IDs and aggregated response from events
113
+ if chunked.get('type') == "response.output_text.delta":
114
+ self._llmresponse += chunked.get('delta')
115
+ if chunked.get('type') == "response.completed":
116
+ self._response_id = chunked.get('response').get('id')
117
+ self._response_model = chunked.get('response').get('model')
118
+ self._finish_reason = chunked.get('response').get('status')
119
+ self._input_tokens = chunked.get('response').get('usage').get('input_tokens')
120
+ self._output_tokens = chunked.get('response').get('usage').get('output_tokens')
121
+ return chunk
122
+ except StopAsyncIteration:
123
+ # Handling exception ensure observability without disrupting operation
124
+ try:
125
+ self._end_time = time.time()
126
+ if len(self._timestamps) > 1:
127
+ self._tbt = calculate_tbt(self._timestamps)
128
+
129
+ try:
130
+ formatted_messages = extract_and_format_input(self._kwargs.get('input', ''))
131
+ prompt = concatenate_all_contents(formatted_messages)
132
+ except:
133
+ prompt = self._kwargs.get('input', '')
134
+
135
+ request_model = self._kwargs.get("model", "gpt-4o")
136
+
137
+ # Calculate cost of the operation
138
+ cost = get_chat_model_cost(request_model,
139
+ pricing_info, self._input_tokens,
140
+ self._output_tokens)
141
+
142
+ # Set Span attributes (OTel Semconv)
143
+ self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
144
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
145
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
146
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
147
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
148
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
149
+ request_model)
150
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
151
+ self._kwargs.get("seed", ""))
152
+ self._span.set_attribute(SemanticConvetion.SERVER_PORT,
153
+ self._server_port)
154
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
155
+ self._kwargs.get("max_output_tokens", -1))
156
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
157
+ self._kwargs.get("stop", []))
158
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
159
+ self._kwargs.get("temperature", 1.0))
160
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
161
+ self._kwargs.get("top_p", 1.0))
162
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
163
+ [self._finish_reason])
164
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
165
+ self._response_id)
166
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
167
+ self._response_model)
168
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
169
+ self._input_tokens)
170
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
171
+ self._output_tokens)
172
+ self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
173
+ self._server_address)
174
+ if isinstance(self._llmresponse, str):
175
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
176
+ "text")
177
+ else:
178
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
179
+ "json")
180
+
181
+ # Set Span attributes (Extra)
182
+ self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
183
+ environment)
184
+ self._span.set_attribute(SERVICE_NAME,
185
+ application_name)
186
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
187
+ self._kwargs.get("user", ""))
188
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
189
+ True)
190
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
191
+ self._input_tokens + self._output_tokens)
192
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
193
+ cost)
194
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
195
+ self._tbt)
196
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
197
+ self._ttft)
198
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
199
+ version)
200
+
201
+ if capture_message_content:
202
+ self._span.add_event(
203
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
204
+ attributes={
205
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
206
+ },
207
+ )
208
+ self._span.add_event(
209
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
210
+ attributes={
211
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
212
+ },
213
+ )
214
+ self._span.set_status(Status(StatusCode.OK))
215
+
216
+ if disable_metrics is False:
217
+ attributes = create_metrics_attributes(
218
+ service_name=application_name,
219
+ deployment_environment=environment,
220
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
221
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
222
+ request_model=request_model,
223
+ server_address=self._server_address,
224
+ server_port=self._server_port,
225
+ response_model=self._response_model,
226
+ )
227
+
228
+ metrics["genai_client_usage_tokens"].record(
229
+ self._input_tokens + self._output_tokens, attributes
230
+ )
231
+ metrics["genai_client_operation_duration"].record(
232
+ self._end_time - self._start_time, attributes
233
+ )
234
+ metrics["genai_server_tbt"].record(
235
+ self._tbt, attributes
236
+ )
237
+ metrics["genai_server_ttft"].record(
238
+ self._ttft, attributes
239
+ )
240
+ metrics["genai_requests"].add(1, attributes)
241
+ metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
242
+ metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
243
+ metrics["genai_cost"].record(cost, attributes)
244
+
245
+ except Exception as e:
246
+ handle_exception(self._span, e)
247
+ logger.error("Error in trace creation: %s", e)
248
+ finally:
249
+ self._span.end()
250
+ raise
251
+
252
+ async def wrapper(wrapped, instance, args, kwargs):
253
+ """
254
+ Wraps the 'chat.completions' API call to add telemetry.
255
+
256
+ This collects metrics such as execution time, cost, and token usage, and handles errors
257
+ gracefully, adding details to the trace for observability.
258
+
259
+ Args:
260
+ wrapped: The original 'chat.completions' method to be wrapped.
261
+ instance: The instance of the class where the original method is defined.
262
+ args: Positional arguments for the 'chat.completions' method.
263
+ kwargs: Keyword arguments for the 'chat.completions' method.
264
+
265
+ Returns:
266
+ The response from the original 'chat.completions' method.
267
+ """
268
+
269
+ # Check if streaming is enabled for the API call
270
+ streaming = kwargs.get("stream", False)
271
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
272
+ request_model = kwargs.get("model", "gpt-4o")
273
+
274
+ span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
275
+
276
+ # pylint: disable=no-else-return
277
+ if streaming:
278
+ # Special handling for streaming response to accommodate the nature of data flow
279
+ awaited_wrapped = await wrapped(*args, **kwargs)
280
+ span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
281
+
282
+ return TracedAsyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
283
+
284
+ # Handling for non-streaming responses
285
+ else:
286
+ with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
287
+ start_time = time.time()
288
+ response = await wrapped(*args, **kwargs)
289
+ end_time = time.time()
290
+
291
+ response_dict = response_as_dict(response)
292
+
293
+ try:
294
+ try:
295
+ formatted_messages = extract_and_format_input(kwargs.get('input', ''))
296
+ prompt = concatenate_all_contents(formatted_messages)
297
+ except:
298
+ prompt = kwargs.get('input', '')
299
+
300
+ input_tokens = response_dict.get('usage').get('input_tokens')
301
+ output_tokens = response_dict.get('usage').get('output_tokens')
302
+
303
+ # Calculate cost of the operation
304
+ cost = get_chat_model_cost(request_model,
305
+ pricing_info, input_tokens,
306
+ output_tokens)
307
+
308
+ # Set base span attribues (OTel Semconv)
309
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
310
+ span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
311
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
312
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
313
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
314
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
315
+ request_model)
316
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
317
+ kwargs.get("seed", ""))
318
+ span.set_attribute(SemanticConvetion.SERVER_PORT,
319
+ server_port)
320
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
321
+ kwargs.get("max_output_tokens", -1))
322
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
323
+ kwargs.get("stop", []))
324
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
325
+ str(response_dict.get("temperature", 1.0)))
326
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
327
+ str(response_dict.get("top_p", 1.0)))
328
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
329
+ response_dict.get("id"))
330
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
331
+ response_dict.get('model'))
332
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
333
+ input_tokens)
334
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
335
+ output_tokens)
336
+ span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
337
+ server_address)
338
+
339
+ # Set base span attribues (Extras)
340
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT,
341
+ environment)
342
+ span.set_attribute(SERVICE_NAME,
343
+ application_name)
344
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
345
+ kwargs.get("user", ""))
346
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
347
+ False)
348
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
349
+ input_tokens + output_tokens)
350
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
351
+ cost)
352
+ span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
353
+ end_time - start_time)
354
+ span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
355
+ version)
356
+
357
+ if capture_message_content:
358
+ span.add_event(
359
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
360
+ attributes={
361
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
362
+ },
363
+ )
364
+
365
+ for i in range(kwargs.get('n',1)):
366
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
367
+ [response_dict.get('status')])
368
+ try:
369
+ llm_response = str(response_dict.get('output')[i].get('content')[0].get('text',''))
370
+ except:
371
+ llm_response = ''
372
+
373
+ if capture_message_content:
374
+ span.add_event(
375
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
376
+ attributes={
377
+ # pylint: disable=line-too-long
378
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llm_response,
379
+ },
380
+ )
381
+ if kwargs.get('tools'):
382
+ span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
383
+ str(response_dict.get('tools')))
384
+
385
+ if isinstance(llm_response, str):
386
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
387
+ "text")
388
+ elif llm_response is not None:
389
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
390
+ "json")
391
+
392
+ span.set_status(Status(StatusCode.OK))
393
+
394
+ if disable_metrics is False:
395
+ attributes = create_metrics_attributes(
396
+ service_name=application_name,
397
+ deployment_environment=environment,
398
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
399
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
400
+ request_model=request_model,
401
+ server_address=server_address,
402
+ server_port=server_port,
403
+ response_model=response_dict.get('model'),
404
+ )
405
+
406
+ metrics["genai_client_usage_tokens"].record(
407
+ input_tokens + output_tokens, attributes
408
+ )
409
+ metrics["genai_client_operation_duration"].record(
410
+ end_time - start_time, attributes
411
+ )
412
+ metrics["genai_server_ttft"].record(
413
+ end_time - start_time, attributes
414
+ )
415
+ metrics["genai_requests"].add(1, attributes)
416
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
417
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
418
+ metrics["genai_cost"].record(cost, attributes)
419
+
420
+ # Return original response
421
+ return response
422
+
423
+ except Exception as e:
424
+ handle_exception(span, e)
425
+ logger.error("Error in trace creation: %s", e)
426
+
427
+ # Return original response
428
+ return response
429
+
430
+ return wrapper
431
+
27
432
  def async_chat_completions(version, environment, application_name,
28
433
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
29
434
  """
@@ -13,6 +13,8 @@ from openlit.__helpers import (
13
13
  get_image_model_cost,
14
14
  general_tokens,
15
15
  handle_exception,
16
+ extract_and_format_input,
17
+ concatenate_all_contents,
16
18
  response_as_dict,
17
19
  calculate_ttft,
18
20
  calculate_tbt,
@@ -24,6 +26,409 @@ from openlit.semcov import SemanticConvetion
24
26
  # Initialize logger for logging potential issues and operations
25
27
  logger = logging.getLogger(__name__)
26
28
 
29
+ def responses(version, environment, application_name,
30
+ tracer, pricing_info, capture_message_content, metrics, disable_metrics):
31
+ """
32
+ Generates a telemetry wrapper for chat completions to collect metrics.
33
+
34
+ Args:
35
+ version: Version of the monitoring package.
36
+ environment: Deployment environment (e.g., production, staging).
37
+ application_name: Name of the application using the OpenAI API.
38
+ tracer: OpenTelemetry tracer for creating spans.
39
+ pricing_info: Information used for calculating the cost of OpenAI usage.
40
+ capture_message_content: Flag indicating whether to trace the actual content.
41
+
42
+ Returns:
43
+ A function that wraps the chat completions method to add telemetry.
44
+ """
45
+
46
+ class TracedSyncStream:
47
+ """
48
+ Wrapper for streaming responses to collect metrics and trace data.
49
+ Wraps the response to collect message IDs and aggregated response.
50
+
51
+ This class implements the '__aiter__' and '__anext__' methods that
52
+ handle asynchronous streaming responses.
53
+
54
+ This class also implements '__aenter__' and '__aexit__' methods that
55
+ handle asynchronous context management protocol.
56
+ """
57
+ def __init__(
58
+ self,
59
+ wrapped,
60
+ span,
61
+ kwargs,
62
+ server_address,
63
+ server_port,
64
+ **args,
65
+ ):
66
+ self.__wrapped__ = wrapped
67
+ self._span = span
68
+ # Placeholder for aggregating streaming response
69
+ self._llmresponse = ""
70
+ self._response_id = ""
71
+ self._response_model = ""
72
+ self._finish_reason = ""
73
+ self._input_tokens = ""
74
+ self._output_tokens = ""
75
+
76
+ self._args = args
77
+ self._kwargs = kwargs
78
+ self._start_time = time.time()
79
+ self._end_time = None
80
+ self._timestamps = []
81
+ self._ttft = 0
82
+ self._tbt = 0
83
+ self._server_address = server_address
84
+ self._server_port = server_port
85
+
86
+ def __enter__(self):
87
+ self.__wrapped__.__enter__()
88
+ return self
89
+
90
+ def __exit__(self, exc_type, exc_value, traceback):
91
+ self.__wrapped__.__exit__(exc_type, exc_value, traceback)
92
+
93
+ def __iter__(self):
94
+ return self
95
+
96
+ def __getattr__(self, name):
97
+ """Delegate attribute access to the wrapped object."""
98
+ return getattr(self.__wrapped__, name)
99
+
100
+ def __next__(self):
101
+ try:
102
+ chunk = self.__wrapped__.__next__()
103
+ end_time = time.time()
104
+ # Record the timestamp for the current chunk
105
+ self._timestamps.append(end_time)
106
+
107
+ if len(self._timestamps) == 1:
108
+ # Calculate time to first chunk
109
+ self._ttft = calculate_ttft(self._timestamps, self._start_time)
110
+
111
+ chunked = response_as_dict(chunk)
112
+ # Collect message IDs and aggregated response from events
113
+ if chunked.get('type') == "response.output_text.delta":
114
+ self._llmresponse += chunked.get('delta')
115
+ if chunked.get('type') == "response.completed":
116
+ self._response_id = chunked.get('response').get('id')
117
+ self._response_model = chunked.get('response').get('model')
118
+ self._finish_reason = chunked.get('response').get('status')
119
+ self._input_tokens = chunked.get('response').get('usage').get('input_tokens')
120
+ self._output_tokens = chunked.get('response').get('usage').get('output_tokens')
121
+ return chunk
122
+ except StopIteration:
123
+ # Handling exception ensure observability without disrupting operation
124
+ try:
125
+ self._end_time = time.time()
126
+ if len(self._timestamps) > 1:
127
+ self._tbt = calculate_tbt(self._timestamps)
128
+
129
+ try:
130
+ formatted_messages = extract_and_format_input(self._kwargs.get('input', ''))
131
+ prompt = concatenate_all_contents(formatted_messages)
132
+ except:
133
+ prompt = self._kwargs.get('input', '')
134
+
135
+ request_model = self._kwargs.get("model", "gpt-4o")
136
+
137
+ # Calculate cost of the operation
138
+ cost = get_chat_model_cost(request_model,
139
+ pricing_info, self._input_tokens,
140
+ self._output_tokens)
141
+
142
+ # Set Span attributes (OTel Semconv)
143
+ self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
144
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
145
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
146
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
147
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
148
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
149
+ request_model)
150
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
151
+ self._kwargs.get("seed", ""))
152
+ self._span.set_attribute(SemanticConvetion.SERVER_PORT,
153
+ self._server_port)
154
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
155
+ self._kwargs.get("max_output_tokens", -1))
156
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
157
+ self._kwargs.get("stop", []))
158
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
159
+ self._kwargs.get("temperature", 1.0))
160
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
161
+ self._kwargs.get("top_p", 1.0))
162
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
163
+ [self._finish_reason])
164
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
165
+ self._response_id)
166
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
167
+ self._response_model)
168
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
169
+ self._input_tokens)
170
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
171
+ self._output_tokens)
172
+ self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
173
+ self._server_address)
174
+ if isinstance(self._llmresponse, str):
175
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
176
+ "text")
177
+ else:
178
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
179
+ "json")
180
+
181
+ # Set Span attributes (Extra)
182
+ self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
183
+ environment)
184
+ self._span.set_attribute(SERVICE_NAME,
185
+ application_name)
186
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
187
+ self._kwargs.get("user", ""))
188
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
189
+ True)
190
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
191
+ self._input_tokens + self._output_tokens)
192
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
193
+ cost)
194
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
195
+ self._tbt)
196
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
197
+ self._ttft)
198
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
199
+ version)
200
+
201
+ if capture_message_content:
202
+ self._span.add_event(
203
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
204
+ attributes={
205
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
206
+ },
207
+ )
208
+ self._span.add_event(
209
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
210
+ attributes={
211
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
212
+ },
213
+ )
214
+ self._span.set_status(Status(StatusCode.OK))
215
+
216
+ if disable_metrics is False:
217
+ attributes = create_metrics_attributes(
218
+ service_name=application_name,
219
+ deployment_environment=environment,
220
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
221
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
222
+ request_model=request_model,
223
+ server_address=self._server_address,
224
+ server_port=self._server_port,
225
+ response_model=self._response_model,
226
+ )
227
+
228
+ metrics["genai_client_usage_tokens"].record(
229
+ self._input_tokens + self._output_tokens, attributes
230
+ )
231
+ metrics["genai_client_operation_duration"].record(
232
+ self._end_time - self._start_time, attributes
233
+ )
234
+ metrics["genai_server_tbt"].record(
235
+ self._tbt, attributes
236
+ )
237
+ metrics["genai_server_ttft"].record(
238
+ self._ttft, attributes
239
+ )
240
+ metrics["genai_requests"].add(1, attributes)
241
+ metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
242
+ metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
243
+ metrics["genai_cost"].record(cost, attributes)
244
+
245
+ except Exception as e:
246
+ handle_exception(self._span, e)
247
+ logger.error("Error in trace creation: %s", e)
248
+ finally:
249
+ self._span.end()
250
+ raise
251
+
252
+ def wrapper(wrapped, instance, args, kwargs):
253
+ """
254
+ Wraps the 'chat.completions' API call to add telemetry.
255
+
256
+ This collects metrics such as execution time, cost, and token usage, and handles errors
257
+ gracefully, adding details to the trace for observability.
258
+
259
+ Args:
260
+ wrapped: The original 'chat.completions' method to be wrapped.
261
+ instance: The instance of the class where the original method is defined.
262
+ args: Positional arguments for the 'chat.completions' method.
263
+ kwargs: Keyword arguments for the 'chat.completions' method.
264
+
265
+ Returns:
266
+ The response from the original 'chat.completions' method.
267
+ """
268
+
269
+ # Check if streaming is enabled for the API call
270
+ streaming = kwargs.get("stream", False)
271
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
272
+ request_model = kwargs.get("model", "gpt-4o")
273
+
274
+ span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
275
+
276
+ # pylint: disable=no-else-return
277
+ if streaming:
278
+ # Special handling for streaming response to accommodate the nature of data flow
279
+ awaited_wrapped = wrapped(*args, **kwargs)
280
+ span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
281
+
282
+ return TracedSyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
283
+
284
+ # Handling for non-streaming responses
285
+ else:
286
+ with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
287
+ start_time = time.time()
288
+ response = wrapped(*args, **kwargs)
289
+ end_time = time.time()
290
+
291
+ response_dict = response_as_dict(response)
292
+
293
+ try:
294
+ try:
295
+ formatted_messages = extract_and_format_input(kwargs.get('input', ''))
296
+ prompt = concatenate_all_contents(formatted_messages)
297
+ except:
298
+ prompt = kwargs.get('input', '')
299
+
300
+ input_tokens = response_dict.get('usage').get('input_tokens')
301
+ output_tokens = response_dict.get('usage').get('output_tokens')
302
+
303
+ # Calculate cost of the operation
304
+ cost = get_chat_model_cost(request_model,
305
+ pricing_info, input_tokens,
306
+ output_tokens)
307
+
308
+ # Set base span attribues (OTel Semconv)
309
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
310
+ span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
311
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
312
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
313
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
314
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
315
+ request_model)
316
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
317
+ kwargs.get("seed", ""))
318
+ span.set_attribute(SemanticConvetion.SERVER_PORT,
319
+ server_port)
320
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
321
+ kwargs.get("max_output_tokens", -1))
322
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
323
+ kwargs.get("stop", []))
324
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
325
+ str(response_dict.get("temperature", 1.0)))
326
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
327
+ str(response_dict.get("top_p", 1.0)))
328
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
329
+ response_dict.get("id"))
330
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
331
+ response_dict.get('model'))
332
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
333
+ input_tokens)
334
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
335
+ output_tokens)
336
+ span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
337
+ server_address)
338
+
339
+ # Set base span attribues (Extras)
340
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT,
341
+ environment)
342
+ span.set_attribute(SERVICE_NAME,
343
+ application_name)
344
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
345
+ kwargs.get("user", ""))
346
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
347
+ False)
348
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
349
+ input_tokens + output_tokens)
350
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
351
+ cost)
352
+ span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
353
+ end_time - start_time)
354
+ span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
355
+ version)
356
+
357
+ if capture_message_content:
358
+ span.add_event(
359
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
360
+ attributes={
361
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
362
+ },
363
+ )
364
+
365
+ for i in range(kwargs.get('n',1)):
366
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
367
+ [response_dict.get('status')])
368
+ try:
369
+ llm_response = response_dict.get('output')[i].get('content')[0].get('text','')
370
+ except:
371
+ llm_response = ''
372
+
373
+ if capture_message_content:
374
+ span.add_event(
375
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
376
+ attributes={
377
+ # pylint: disable=line-too-long
378
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llm_response,
379
+ },
380
+ )
381
+ if kwargs.get('tools'):
382
+ span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
383
+ str(response_dict.get('tools')))
384
+
385
+ if isinstance(llm_response, str):
386
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
387
+ "text")
388
+ elif llm_response is not None:
389
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
390
+ "json")
391
+
392
+ span.set_status(Status(StatusCode.OK))
393
+
394
+ if disable_metrics is False:
395
+ attributes = create_metrics_attributes(
396
+ service_name=application_name,
397
+ deployment_environment=environment,
398
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
399
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
400
+ request_model=request_model,
401
+ server_address=server_address,
402
+ server_port=server_port,
403
+ response_model=response_dict.get('model'),
404
+ )
405
+
406
+ metrics["genai_client_usage_tokens"].record(
407
+ input_tokens + output_tokens, attributes
408
+ )
409
+ metrics["genai_client_operation_duration"].record(
410
+ end_time - start_time, attributes
411
+ )
412
+ metrics["genai_server_ttft"].record(
413
+ end_time - start_time, attributes
414
+ )
415
+ metrics["genai_requests"].add(1, attributes)
416
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
417
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
418
+ metrics["genai_cost"].record(cost, attributes)
419
+
420
+ # Return original response
421
+ return response
422
+
423
+ except Exception as e:
424
+ handle_exception(span, e)
425
+ logger.error("Error in trace creation: %s", e)
426
+
427
+ # Return original response
428
+ return response
429
+
430
+ return wrapper
431
+
27
432
  def chat_completions(version, environment, application_name,
28
433
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
29
434
  """
@@ -0,0 +1,42 @@
1
+ """Initializer of Auto Instrumentation of OpenAI Agents Functions"""
2
+
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.openai_agents.openai_agents import (
9
+ create_agent
10
+ )
11
+
12
+ _instruments = ('openai-agents >= 0.0.3',)
13
+
14
+ class OpenAIAgentsInstrumentor(BaseInstrumentor):
15
+ """
16
+ An instrumentor for openai-agents's client library.
17
+ """
18
+
19
+ def instrumentation_dependencies(self) -> Collection[str]:
20
+ return _instruments
21
+
22
+ def _instrument(self, **kwargs):
23
+ application_name = kwargs.get('application_name', 'default')
24
+ environment = kwargs.get('environment', 'default')
25
+ tracer = kwargs.get('tracer')
26
+ event_provider = kwargs.get('event_provider')
27
+ metrics = kwargs.get('metrics_dict')
28
+ pricing_info = kwargs.get('pricing_info', {})
29
+ capture_message_content = kwargs.get('capture_message_content', False)
30
+ disable_metrics = kwargs.get('disable_metrics')
31
+ version = importlib.metadata.version('openai-agents')
32
+
33
+ wrap_function_wrapper(
34
+ 'agents.agent',
35
+ 'Agent.__init__',
36
+ create_agent(version, environment, application_name,
37
+ tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics),
38
+ )
39
+
40
+ def _uninstrument(self, **kwargs):
41
+ # Proper uninstrumentation logic to revert patched methods
42
+ pass
@@ -0,0 +1,65 @@
1
+ """
2
+ Module for monitoring AG2 API calls.
3
+ """
4
+
5
+ import logging
6
+ from opentelemetry.trace import SpanKind, Status, StatusCode
7
+ from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
8
+ from openlit.__helpers import (
9
+ handle_exception,
10
+ )
11
+ from openlit.semcov import SemanticConvetion
12
+
13
+ # Initialize logger for logging potential issues and operations
14
+ logger = logging.getLogger(__name__)
15
+
16
+ def set_span_attributes(span, version, operation_name, environment,
17
+ application_name, server_address, server_port, request_model):
18
+ """
19
+ Set common attributes for the span.
20
+ """
21
+
22
+ # Set Span attributes (OTel Semconv)
23
+ span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
24
+ span.set_attribute(SemanticConvetion.GEN_AI_OPERATION, operation_name)
25
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM, SemanticConvetion.GEN_AI_SYSTEM_AG2)
26
+ span.set_attribute(SemanticConvetion.SERVER_ADDRESS, server_address)
27
+ span.set_attribute(SemanticConvetion.SERVER_PORT, server_port)
28
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL, request_model)
29
+
30
+ # Set Span attributes (Extras)
31
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
32
+ span.set_attribute(SERVICE_NAME, application_name)
33
+ span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION, version)
34
+
35
+ def create_agent(version, environment, application_name,
36
+ tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics):
37
+ """
38
+ Generates a telemetry wrapper for GenAI function call
39
+ """
40
+ def wrapper(wrapped, instance, args, kwargs):
41
+ server_address, server_port = '127.0.0.1', 80
42
+
43
+ agent_name = kwargs.get('name', 'openai_agent')
44
+ span_name = f'{SemanticConvetion.GEN_AI_OPERATION_TYPE_CREATE_AGENT} {agent_name}'
45
+
46
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
47
+ try:
48
+ response = wrapped(*args, **kwargs)
49
+
50
+ set_span_attributes(span, version, SemanticConvetion.GEN_AI_OPERATION_TYPE_CREATE_AGENT,
51
+ environment, application_name, server_address, server_port, kwargs.get('model', 'gpt-4o'))
52
+ span.set_attribute(SemanticConvetion.GEN_AI_AGENT_NAME, agent_name)
53
+
54
+ span.set_attribute(SemanticConvetion.GEN_AI_AGENT_DESCRIPTION, kwargs.get('instructions', ''))
55
+
56
+ span.set_status(Status(StatusCode.OK))
57
+
58
+ return response
59
+
60
+ except Exception as e:
61
+ handle_exception(span, e)
62
+ logger.error('Error in trace creation: %s', e)
63
+ return response
64
+
65
+ return wrapper
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openlit
3
- Version: 1.33.15
3
+ Version: 1.33.17
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  License: Apache-2.0
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -1,5 +1,5 @@
1
1
  openlit/__helpers.py,sha256=9K9nz_RunwtnFeAk591uOJZiY3J88HsYv7T2H8elHWA,10262
2
- openlit/__init__.py,sha256=87uE_wi6YF2FKkmVy0VLmRKeNMuJ9e6XrycIbad9T6A,23755
2
+ openlit/__init__.py,sha256=iHGwg8XB2DhNVCktU3FLFqubAOiQVQCp1F7L7OHp6cg,23921
3
3
  openlit/evals/__init__.py,sha256=nJe99nuLo1b5rf7pt9U9BCdSDedzbVi2Fj96cgl7msM,380
4
4
  openlit/evals/all.py,sha256=oWrue3PotE-rB5WePG3MRYSA-ro6WivkclSHjYlAqGs,7154
5
5
  openlit/evals/bias_detection.py,sha256=mCdsfK7x1vX7S3psC3g641IMlZ-7df3h-V6eiICj5N8,8154
@@ -70,7 +70,7 @@ openlit/instrumentation/julep/async_julep.py,sha256=URZQsxXEaQ4nHmOTeM1tsADRp4xQ
70
70
  openlit/instrumentation/julep/julep.py,sha256=0bGlsdW32JGu1fEdsfc-MDbOqqbcCrlkl-ojE98Zqys,5316
71
71
  openlit/instrumentation/langchain/__init__.py,sha256=cNlumZ8fwLMlGVFMjNEndOIzooD4FQEOINX9tGVksII,3853
72
72
  openlit/instrumentation/langchain/async_langchain.py,sha256=u_f7FZThF9VdsOPBlh8W6aytUUTRt9d5z2KD1zbz4UI,18302
73
- openlit/instrumentation/langchain/langchain.py,sha256=cba9_cIDw652XGmdDXd35zRtoCqa6jQqO274MlPOxKw,18248
73
+ openlit/instrumentation/langchain/langchain.py,sha256=tl2kXJU_SSlBAP6w_cb52cFhcP_SPWoTmf-sm6Ro0zo,16973
74
74
  openlit/instrumentation/letta/__init__.py,sha256=K8PtRKxuueyqEYE3LzxWJ74IieNKSI6dmk9sNRd8Mt0,3031
75
75
  openlit/instrumentation/letta/letta.py,sha256=y8yZWGtY6lDv4sA2UlUTZjktXxUOYyXatwz_yso-akA,8455
76
76
  openlit/instrumentation/litellm/__init__.py,sha256=qRqfwDMhP5adKGI2vRaelAkN12i0e8jtJrT31VFFM5A,2374
@@ -92,9 +92,11 @@ openlit/instrumentation/ollama/__init__.py,sha256=JjxSqEegmRoRqIVz7ZAq9dLyXPZ2Dq
92
92
  openlit/instrumentation/ollama/async_ollama.py,sha256=LhDQPy3wLyNO9JWksUEeCx-DK9oIV3K98Cgwnp4RfKg,6538
93
93
  openlit/instrumentation/ollama/ollama.py,sha256=wVyaX0quoiiCj1J3tyTiQx5Du5CmaWmt9e_lpCr7s6A,6434
94
94
  openlit/instrumentation/ollama/utils.py,sha256=zXsWNqfnZLssrcb-GNbWeZeqTKVzQb1bes8vzgl-gbQ,14549
95
- openlit/instrumentation/openai/__init__.py,sha256=dfgMBHd2wAT24uckVBBqTy7pzN34ESzeymKzkUy6t58,4893
96
- openlit/instrumentation/openai/async_openai.py,sha256=DtY26K-mNXqVAIGb_md3V3nVnGzNDn82anw9qzA3RKo,50500
97
- openlit/instrumentation/openai/openai.py,sha256=79ydZrzRDd_44_3WtZ7U68I3HMvTkKysKglyMhjPcNQ,50334
95
+ openlit/instrumentation/openai/__init__.py,sha256=FiL4OHDhs957spa3k9sNC_VLt0-txtwbnujQwnevQ5I,5564
96
+ openlit/instrumentation/openai/async_openai.py,sha256=AMievEMil486B9ibV0Nm54xkxAiHA-XzWWKAGQ4himI,71523
97
+ openlit/instrumentation/openai/openai.py,sha256=d-I-RyJMNcz1m0vdkEW-l6G0WaUNCavT9BvB_EGEFYg,71266
98
+ openlit/instrumentation/openai_agents/__init__.py,sha256=tRTSIrUtkXc_lfQnVanXmQLd2Sy9RqBNTHF5FhhZx7o,1530
99
+ openlit/instrumentation/openai_agents/openai_agents.py,sha256=teVgsn7lIKCGPmdl9RrgPavhdcCXjh3vMeGKskrd2vo,2666
98
100
  openlit/instrumentation/phidata/__init__.py,sha256=tqls5-UI6FzbjxYgq_qqAfALhWJm8dHn2NtgqiQA4f8,1557
99
101
  openlit/instrumentation/phidata/phidata.py,sha256=-BU_g3FpGcttOt-W-QIER5qquCRORob2UFLdaOW3F_s,4819
100
102
  openlit/instrumentation/pinecone/__init__.py,sha256=0guSEPmObaZiOF8yHExpOGY-qW_egHXfZGog3rKGi8M,2596
@@ -121,7 +123,7 @@ openlit/otel/events.py,sha256=VrMjTpvnLtYRBHCiFwJojTQqqNpRCxoD4yJYeQrtPsk,3560
121
123
  openlit/otel/metrics.py,sha256=Iwx6baEiCZPNqsFf92K5mDWU8are8DOF0uQAuNZsCKg,6826
122
124
  openlit/otel/tracing.py,sha256=tjV2bEbEDPUB1Z46gE-UsJsb04sRdFrfbhIDkxViZc0,3103
123
125
  openlit/semcov/__init__.py,sha256=lM0Y3wMYYmCvfcNGD3k0xSn1XZUiGw-bKgCuwcGsOp8,13302
124
- openlit-1.33.15.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
125
- openlit-1.33.15.dist-info/METADATA,sha256=U42XXpGEvUd110xDAVzIqGDJMhOOBjiN75b7ICXifjo,23471
126
- openlit-1.33.15.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
127
- openlit-1.33.15.dist-info/RECORD,,
126
+ openlit-1.33.17.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
127
+ openlit-1.33.17.dist-info/METADATA,sha256=e1xpVcwlcHM70if9z1q85FuYXYFPu3hlj_EnaOG6M3U,23471
128
+ openlit-1.33.17.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
129
+ openlit-1.33.17.dist-info/RECORD,,