openlit 1.33.14__py3-none-any.whl → 1.33.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,6 +13,8 @@ from openlit.__helpers import (
13
13
  get_image_model_cost,
14
14
  general_tokens,
15
15
  handle_exception,
16
+ extract_and_format_input,
17
+ concatenate_all_contents,
16
18
  response_as_dict,
17
19
  calculate_ttft,
18
20
  calculate_tbt,
@@ -24,6 +26,409 @@ from openlit.semcov import SemanticConvetion
24
26
  # Initialize logger for logging potential issues and operations
25
27
  logger = logging.getLogger(__name__)
26
28
 
29
+ def responses(version, environment, application_name,
30
+ tracer, pricing_info, capture_message_content, metrics, disable_metrics):
31
+ """
32
+ Generates a telemetry wrapper for chat completions to collect metrics.
33
+
34
+ Args:
35
+ version: Version of the monitoring package.
36
+ environment: Deployment environment (e.g., production, staging).
37
+ application_name: Name of the application using the OpenAI API.
38
+ tracer: OpenTelemetry tracer for creating spans.
39
+ pricing_info: Information used for calculating the cost of OpenAI usage.
40
+ capture_message_content: Flag indicating whether to trace the actual content.
41
+
42
+ Returns:
43
+ A function that wraps the chat completions method to add telemetry.
44
+ """
45
+
46
+ class TracedSyncStream:
47
+ """
48
+ Wrapper for streaming responses to collect metrics and trace data.
49
+ Wraps the response to collect message IDs and aggregated response.
50
+
51
+ This class implements the '__aiter__' and '__anext__' methods that
52
+ handle asynchronous streaming responses.
53
+
54
+ This class also implements '__aenter__' and '__aexit__' methods that
55
+ handle asynchronous context management protocol.
56
+ """
57
+ def __init__(
58
+ self,
59
+ wrapped,
60
+ span,
61
+ kwargs,
62
+ server_address,
63
+ server_port,
64
+ **args,
65
+ ):
66
+ self.__wrapped__ = wrapped
67
+ self._span = span
68
+ # Placeholder for aggregating streaming response
69
+ self._llmresponse = ""
70
+ self._response_id = ""
71
+ self._response_model = ""
72
+ self._finish_reason = ""
73
+ self._input_tokens = ""
74
+ self._output_tokens = ""
75
+
76
+ self._args = args
77
+ self._kwargs = kwargs
78
+ self._start_time = time.time()
79
+ self._end_time = None
80
+ self._timestamps = []
81
+ self._ttft = 0
82
+ self._tbt = 0
83
+ self._server_address = server_address
84
+ self._server_port = server_port
85
+
86
+ def __enter__(self):
87
+ self.__wrapped__.__enter__()
88
+ return self
89
+
90
+ def __exit__(self, exc_type, exc_value, traceback):
91
+ self.__wrapped__.__exit__(exc_type, exc_value, traceback)
92
+
93
+ def __iter__(self):
94
+ return self
95
+
96
+ def __getattr__(self, name):
97
+ """Delegate attribute access to the wrapped object."""
98
+ return getattr(self.__wrapped__, name)
99
+
100
+ def __next__(self):
101
+ try:
102
+ chunk = self.__wrapped__.__next__()
103
+ end_time = time.time()
104
+ # Record the timestamp for the current chunk
105
+ self._timestamps.append(end_time)
106
+
107
+ if len(self._timestamps) == 1:
108
+ # Calculate time to first chunk
109
+ self._ttft = calculate_ttft(self._timestamps, self._start_time)
110
+
111
+ chunked = response_as_dict(chunk)
112
+ # Collect message IDs and aggregated response from events
113
+ if chunked.get('type') == "response.output_text.delta":
114
+ self._llmresponse += chunked.get('delta')
115
+ if chunked.get('type') == "response.completed":
116
+ self._response_id = chunked.get('response').get('id')
117
+ self._response_model = chunked.get('response').get('model')
118
+ self._finish_reason = chunked.get('response').get('status')
119
+ self._input_tokens = chunked.get('response').get('usage').get('input_tokens')
120
+ self._output_tokens = chunked.get('response').get('usage').get('output_tokens')
121
+ return chunk
122
+ except StopIteration:
123
+ # Handling exception ensure observability without disrupting operation
124
+ try:
125
+ self._end_time = time.time()
126
+ if len(self._timestamps) > 1:
127
+ self._tbt = calculate_tbt(self._timestamps)
128
+
129
+ try:
130
+ formatted_messages = extract_and_format_input(self._kwargs.get('input', ''))
131
+ prompt = concatenate_all_contents(formatted_messages)
132
+ except:
133
+ prompt = self._kwargs.get('input', '')
134
+
135
+ request_model = self._kwargs.get("model", "gpt-4o")
136
+
137
+ # Calculate cost of the operation
138
+ cost = get_chat_model_cost(request_model,
139
+ pricing_info, self._input_tokens,
140
+ self._output_tokens)
141
+
142
+ # Set Span attributes (OTel Semconv)
143
+ self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
144
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
145
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
146
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
147
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
148
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
149
+ request_model)
150
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
151
+ self._kwargs.get("seed", ""))
152
+ self._span.set_attribute(SemanticConvetion.SERVER_PORT,
153
+ self._server_port)
154
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
155
+ self._kwargs.get("max_output_tokens", -1))
156
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
157
+ self._kwargs.get("stop", []))
158
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
159
+ self._kwargs.get("temperature", 1.0))
160
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
161
+ self._kwargs.get("top_p", 1.0))
162
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
163
+ [self._finish_reason])
164
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
165
+ self._response_id)
166
+ self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
167
+ self._response_model)
168
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
169
+ self._input_tokens)
170
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
171
+ self._output_tokens)
172
+ self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
173
+ self._server_address)
174
+ if isinstance(self._llmresponse, str):
175
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
176
+ "text")
177
+ else:
178
+ self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
179
+ "json")
180
+
181
+ # Set Span attributes (Extra)
182
+ self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
183
+ environment)
184
+ self._span.set_attribute(SERVICE_NAME,
185
+ application_name)
186
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
187
+ self._kwargs.get("user", ""))
188
+ self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
189
+ True)
190
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
191
+ self._input_tokens + self._output_tokens)
192
+ self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
193
+ cost)
194
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
195
+ self._tbt)
196
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
197
+ self._ttft)
198
+ self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
199
+ version)
200
+
201
+ if capture_message_content:
202
+ self._span.add_event(
203
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
204
+ attributes={
205
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
206
+ },
207
+ )
208
+ self._span.add_event(
209
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
210
+ attributes={
211
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
212
+ },
213
+ )
214
+ self._span.set_status(Status(StatusCode.OK))
215
+
216
+ if disable_metrics is False:
217
+ attributes = create_metrics_attributes(
218
+ service_name=application_name,
219
+ deployment_environment=environment,
220
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
221
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
222
+ request_model=request_model,
223
+ server_address=self._server_address,
224
+ server_port=self._server_port,
225
+ response_model=self._response_model,
226
+ )
227
+
228
+ metrics["genai_client_usage_tokens"].record(
229
+ self._input_tokens + self._output_tokens, attributes
230
+ )
231
+ metrics["genai_client_operation_duration"].record(
232
+ self._end_time - self._start_time, attributes
233
+ )
234
+ metrics["genai_server_tbt"].record(
235
+ self._tbt, attributes
236
+ )
237
+ metrics["genai_server_ttft"].record(
238
+ self._ttft, attributes
239
+ )
240
+ metrics["genai_requests"].add(1, attributes)
241
+ metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
242
+ metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
243
+ metrics["genai_cost"].record(cost, attributes)
244
+
245
+ except Exception as e:
246
+ handle_exception(self._span, e)
247
+ logger.error("Error in trace creation: %s", e)
248
+ finally:
249
+ self._span.end()
250
+ raise
251
+
252
+ def wrapper(wrapped, instance, args, kwargs):
253
+ """
254
+ Wraps the 'chat.completions' API call to add telemetry.
255
+
256
+ This collects metrics such as execution time, cost, and token usage, and handles errors
257
+ gracefully, adding details to the trace for observability.
258
+
259
+ Args:
260
+ wrapped: The original 'chat.completions' method to be wrapped.
261
+ instance: The instance of the class where the original method is defined.
262
+ args: Positional arguments for the 'chat.completions' method.
263
+ kwargs: Keyword arguments for the 'chat.completions' method.
264
+
265
+ Returns:
266
+ The response from the original 'chat.completions' method.
267
+ """
268
+
269
+ # Check if streaming is enabled for the API call
270
+ streaming = kwargs.get("stream", False)
271
+ server_address, server_port = set_server_address_and_port(instance, "api.openai.com", 443)
272
+ request_model = kwargs.get("model", "gpt-4o")
273
+
274
+ span_name = f"{SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT} {request_model}"
275
+
276
+ # pylint: disable=no-else-return
277
+ if streaming:
278
+ # Special handling for streaming response to accommodate the nature of data flow
279
+ awaited_wrapped = wrapped(*args, **kwargs)
280
+ span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
281
+
282
+ return TracedSyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
283
+
284
+ # Handling for non-streaming responses
285
+ else:
286
+ with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
287
+ start_time = time.time()
288
+ response = wrapped(*args, **kwargs)
289
+ end_time = time.time()
290
+
291
+ response_dict = response_as_dict(response)
292
+
293
+ try:
294
+ try:
295
+ formatted_messages = extract_and_format_input(kwargs.get('input', ''))
296
+ prompt = concatenate_all_contents(formatted_messages)
297
+ except:
298
+ prompt = kwargs.get('input', '')
299
+
300
+ input_tokens = response_dict.get('usage').get('input_tokens')
301
+ output_tokens = response_dict.get('usage').get('output_tokens')
302
+
303
+ # Calculate cost of the operation
304
+ cost = get_chat_model_cost(request_model,
305
+ pricing_info, input_tokens,
306
+ output_tokens)
307
+
308
+ # Set base span attribues (OTel Semconv)
309
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
310
+ span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
311
+ SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
312
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
313
+ SemanticConvetion.GEN_AI_SYSTEM_OPENAI)
314
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
315
+ request_model)
316
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
317
+ kwargs.get("seed", ""))
318
+ span.set_attribute(SemanticConvetion.SERVER_PORT,
319
+ server_port)
320
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
321
+ kwargs.get("max_output_tokens", -1))
322
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
323
+ kwargs.get("stop", []))
324
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
325
+ str(response_dict.get("temperature", 1.0)))
326
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
327
+ str(response_dict.get("top_p", 1.0)))
328
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
329
+ response_dict.get("id"))
330
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
331
+ response_dict.get('model'))
332
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
333
+ input_tokens)
334
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
335
+ output_tokens)
336
+ span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
337
+ server_address)
338
+
339
+ # Set base span attribues (Extras)
340
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT,
341
+ environment)
342
+ span.set_attribute(SERVICE_NAME,
343
+ application_name)
344
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
345
+ kwargs.get("user", ""))
346
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
347
+ False)
348
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
349
+ input_tokens + output_tokens)
350
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
351
+ cost)
352
+ span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
353
+ end_time - start_time)
354
+ span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
355
+ version)
356
+
357
+ if capture_message_content:
358
+ span.add_event(
359
+ name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
360
+ attributes={
361
+ SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
362
+ },
363
+ )
364
+
365
+ for i in range(kwargs.get('n',1)):
366
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
367
+ [response_dict.get('status')])
368
+ try:
369
+ llm_response = response_dict.get('output')[i].get('content')[0].get('text','')
370
+ except:
371
+ llm_response = ''
372
+
373
+ if capture_message_content:
374
+ span.add_event(
375
+ name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
376
+ attributes={
377
+ # pylint: disable=line-too-long
378
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llm_response,
379
+ },
380
+ )
381
+ if kwargs.get('tools'):
382
+ span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
383
+ str(response_dict.get('tools')))
384
+
385
+ if isinstance(llm_response, str):
386
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
387
+ "text")
388
+ elif llm_response is not None:
389
+ span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
390
+ "json")
391
+
392
+ span.set_status(Status(StatusCode.OK))
393
+
394
+ if disable_metrics is False:
395
+ attributes = create_metrics_attributes(
396
+ service_name=application_name,
397
+ deployment_environment=environment,
398
+ operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
399
+ system=SemanticConvetion.GEN_AI_SYSTEM_OPENAI,
400
+ request_model=request_model,
401
+ server_address=server_address,
402
+ server_port=server_port,
403
+ response_model=response_dict.get('model'),
404
+ )
405
+
406
+ metrics["genai_client_usage_tokens"].record(
407
+ input_tokens + output_tokens, attributes
408
+ )
409
+ metrics["genai_client_operation_duration"].record(
410
+ end_time - start_time, attributes
411
+ )
412
+ metrics["genai_server_ttft"].record(
413
+ end_time - start_time, attributes
414
+ )
415
+ metrics["genai_requests"].add(1, attributes)
416
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
417
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
418
+ metrics["genai_cost"].record(cost, attributes)
419
+
420
+ # Return original response
421
+ return response
422
+
423
+ except Exception as e:
424
+ handle_exception(span, e)
425
+ logger.error("Error in trace creation: %s", e)
426
+
427
+ # Return original response
428
+ return response
429
+
430
+ return wrapper
431
+
27
432
  def chat_completions(version, environment, application_name,
28
433
  tracer, pricing_info, capture_message_content, metrics, disable_metrics):
29
434
  """
@@ -0,0 +1,42 @@
1
+ """Initializer of Auto Instrumentation of OpenAI Agents Functions"""
2
+
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.openai_agents.openai_agents import (
9
+ create_agent
10
+ )
11
+
12
+ _instruments = ('openai-agents >= 0.0.3',)
13
+
14
+ class OpenAIAgentsInstrumentor(BaseInstrumentor):
15
+ """
16
+ An instrumentor for openai-agents's client library.
17
+ """
18
+
19
+ def instrumentation_dependencies(self) -> Collection[str]:
20
+ return _instruments
21
+
22
+ def _instrument(self, **kwargs):
23
+ application_name = kwargs.get('application_name', 'default')
24
+ environment = kwargs.get('environment', 'default')
25
+ tracer = kwargs.get('tracer')
26
+ event_provider = kwargs.get('event_provider')
27
+ metrics = kwargs.get('metrics_dict')
28
+ pricing_info = kwargs.get('pricing_info', {})
29
+ capture_message_content = kwargs.get('capture_message_content', False)
30
+ disable_metrics = kwargs.get('disable_metrics')
31
+ version = importlib.metadata.version('openai-agents')
32
+
33
+ wrap_function_wrapper(
34
+ 'agents.agent',
35
+ 'Agent.__init__',
36
+ create_agent(version, environment, application_name,
37
+ tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics),
38
+ )
39
+
40
+ def _uninstrument(self, **kwargs):
41
+ # Proper uninstrumentation logic to revert patched methods
42
+ pass
@@ -0,0 +1,65 @@
1
+ """
2
+ Module for monitoring AG2 API calls.
3
+ """
4
+
5
+ import logging
6
+ from opentelemetry.trace import SpanKind, Status, StatusCode
7
+ from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
8
+ from openlit.__helpers import (
9
+ handle_exception,
10
+ )
11
+ from openlit.semcov import SemanticConvetion
12
+
13
+ # Initialize logger for logging potential issues and operations
14
+ logger = logging.getLogger(__name__)
15
+
16
+ def set_span_attributes(span, version, operation_name, environment,
17
+ application_name, server_address, server_port, request_model):
18
+ """
19
+ Set common attributes for the span.
20
+ """
21
+
22
+ # Set Span attributes (OTel Semconv)
23
+ span.set_attribute(TELEMETRY_SDK_NAME, 'openlit')
24
+ span.set_attribute(SemanticConvetion.GEN_AI_OPERATION, operation_name)
25
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM, SemanticConvetion.GEN_AI_SYSTEM_AG2)
26
+ span.set_attribute(SemanticConvetion.SERVER_ADDRESS, server_address)
27
+ span.set_attribute(SemanticConvetion.SERVER_PORT, server_port)
28
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL, request_model)
29
+
30
+ # Set Span attributes (Extras)
31
+ span.set_attribute(DEPLOYMENT_ENVIRONMENT, environment)
32
+ span.set_attribute(SERVICE_NAME, application_name)
33
+ span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION, version)
34
+
35
+ def create_agent(version, environment, application_name,
36
+ tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics):
37
+ """
38
+ Generates a telemetry wrapper for GenAI function call
39
+ """
40
+ def wrapper(wrapped, instance, args, kwargs):
41
+ server_address, server_port = '127.0.0.1', 80
42
+
43
+ agent_name = kwargs.get('name', 'openai_agent')
44
+ span_name = f'{SemanticConvetion.GEN_AI_OPERATION_TYPE_CREATE_AGENT} {agent_name}'
45
+
46
+ with tracer.start_as_current_span(span_name, kind=SpanKind.CLIENT) as span:
47
+ try:
48
+ response = wrapped(*args, **kwargs)
49
+
50
+ set_span_attributes(span, version, SemanticConvetion.GEN_AI_OPERATION_TYPE_CREATE_AGENT,
51
+ environment, application_name, server_address, server_port, kwargs.get('model', 'gpt-4o'))
52
+ span.set_attribute(SemanticConvetion.GEN_AI_AGENT_NAME, agent_name)
53
+
54
+ span.set_attribute(SemanticConvetion.GEN_AI_AGENT_DESCRIPTION, kwargs.get('instructions', ''))
55
+
56
+ span.set_status(Status(StatusCode.OK))
57
+
58
+ return response
59
+
60
+ except Exception as e:
61
+ handle_exception(span, e)
62
+ logger.error('Error in trace creation: %s', e)
63
+ return response
64
+
65
+ return wrapper
@@ -78,12 +78,12 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
78
78
  application_name)
79
79
  span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
80
80
  SemanticConvetion.GEN_AI_OPERATION_TYPE_VECTORDB)
81
- span.set_attribute(SemanticConvetion.DB_SYSTEM,
81
+ span.set_attribute(SemanticConvetion.DB_SYSTEM_NAME,
82
82
  SemanticConvetion.DB_SYSTEM_PINECONE)
83
83
 
84
84
  if gen_ai_endpoint == "pinecone.create_index":
85
85
  db_operation = SemanticConvetion.DB_OPERATION_CREATE_INDEX
86
- span.set_attribute(SemanticConvetion.DB_OPERATION,
86
+ span.set_attribute(SemanticConvetion.DB_OPERATION_NAME,
87
87
  SemanticConvetion.DB_OPERATION_CREATE_INDEX)
88
88
  span.set_attribute(SemanticConvetion.DB_INDEX_NAME,
89
89
  kwargs.get("name", ""))
@@ -96,7 +96,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
96
96
 
97
97
  elif gen_ai_endpoint == "pinecone.query":
98
98
  db_operation = SemanticConvetion.DB_OPERATION_QUERY
99
- span.set_attribute(SemanticConvetion.DB_OPERATION,
99
+ span.set_attribute(SemanticConvetion.DB_OPERATION_NAME,
100
100
  SemanticConvetion.DB_OPERATION_QUERY)
101
101
  span.set_attribute(SemanticConvetion.DB_STATEMENT,
102
102
  str(kwargs.get("vector")))
@@ -109,7 +109,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
109
109
 
110
110
  elif gen_ai_endpoint == "pinecone.update":
111
111
  db_operation = SemanticConvetion.DB_OPERATION_UPDATE
112
- span.set_attribute(SemanticConvetion.DB_OPERATION,
112
+ span.set_attribute(SemanticConvetion.DB_OPERATION_NAME,
113
113
  SemanticConvetion.DB_OPERATION_UPDATE)
114
114
  span.set_attribute(SemanticConvetion.DB_UPDATE_ID,
115
115
  kwargs.get("id",""))
@@ -122,14 +122,14 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
122
122
 
123
123
  elif gen_ai_endpoint == "pinecone.upsert":
124
124
  db_operation = SemanticConvetion.DB_OPERATION_UPSERT
125
- span.set_attribute(SemanticConvetion.DB_OPERATION,
125
+ span.set_attribute(SemanticConvetion.DB_OPERATION_NAME,
126
126
  SemanticConvetion.DB_OPERATION_UPSERT)
127
127
  span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
128
128
  object_count(kwargs.get("vectors")))
129
129
 
130
130
  elif gen_ai_endpoint == "pinecone.delete":
131
131
  db_operation = SemanticConvetion.DB_OPERATION_DELETE
132
- span.set_attribute(SemanticConvetion.DB_OPERATION,
132
+ span.set_attribute(SemanticConvetion.DB_OPERATION_NAME,
133
133
  SemanticConvetion.DB_OPERATION_DELETE)
134
134
  span.set_attribute(SemanticConvetion.DB_ID_COUNT,
135
135
  object_count(kwargs.get("ids")))
@@ -148,13 +148,13 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
148
148
  "openlit",
149
149
  SERVICE_NAME:
150
150
  application_name,
151
- SemanticConvetion.DB_SYSTEM:
151
+ SemanticConvetion.DB_SYSTEM_NAME:
152
152
  SemanticConvetion.DB_SYSTEM_PINECONE,
153
153
  DEPLOYMENT_ENVIRONMENT:
154
154
  environment,
155
155
  SemanticConvetion.GEN_AI_OPERATION:
156
156
  SemanticConvetion.GEN_AI_OPERATION_TYPE_VECTORDB,
157
- SemanticConvetion.DB_OPERATION:
157
+ SemanticConvetion.DB_OPERATION_NAME:
158
158
  db_operation
159
159
  }
160
160