openlit 1.33.10__py3-none-any.whl → 1.33.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +73 -0
- openlit/__init__.py +38 -11
- openlit/instrumentation/ag2/__init__.py +9 -10
- openlit/instrumentation/ag2/ag2.py +133 -68
- openlit/instrumentation/ai21/__init__.py +6 -5
- openlit/instrumentation/ai21/ai21.py +71 -534
- openlit/instrumentation/ai21/async_ai21.py +71 -534
- openlit/instrumentation/ai21/utils.py +407 -0
- openlit/instrumentation/anthropic/__init__.py +3 -3
- openlit/instrumentation/anthropic/anthropic.py +4 -4
- openlit/instrumentation/anthropic/async_anthropic.py +4 -4
- openlit/instrumentation/assemblyai/__init__.py +2 -2
- openlit/instrumentation/assemblyai/assemblyai.py +3 -3
- openlit/instrumentation/astra/__init__.py +25 -25
- openlit/instrumentation/astra/astra.py +2 -2
- openlit/instrumentation/astra/async_astra.py +2 -2
- openlit/instrumentation/azure_ai_inference/__init__.py +5 -5
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +8 -8
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +8 -8
- openlit/instrumentation/bedrock/__init__.py +2 -2
- openlit/instrumentation/bedrock/bedrock.py +3 -3
- openlit/instrumentation/chroma/__init__.py +9 -9
- openlit/instrumentation/chroma/chroma.py +2 -2
- openlit/instrumentation/cohere/__init__.py +7 -7
- openlit/instrumentation/cohere/async_cohere.py +9 -9
- openlit/instrumentation/cohere/cohere.py +9 -9
- openlit/instrumentation/controlflow/__init__.py +4 -4
- openlit/instrumentation/controlflow/controlflow.py +2 -2
- openlit/instrumentation/crawl4ai/__init__.py +3 -3
- openlit/instrumentation/crawl4ai/async_crawl4ai.py +2 -2
- openlit/instrumentation/crawl4ai/crawl4ai.py +2 -2
- openlit/instrumentation/crewai/__init__.py +3 -3
- openlit/instrumentation/crewai/crewai.py +2 -2
- openlit/instrumentation/dynamiq/__init__.py +5 -5
- openlit/instrumentation/dynamiq/dynamiq.py +2 -2
- openlit/instrumentation/elevenlabs/__init__.py +5 -5
- openlit/instrumentation/elevenlabs/async_elevenlabs.py +3 -3
- openlit/instrumentation/elevenlabs/elevenlabs.py +3 -3
- openlit/instrumentation/embedchain/__init__.py +2 -2
- openlit/instrumentation/embedchain/embedchain.py +4 -4
- openlit/instrumentation/firecrawl/__init__.py +3 -3
- openlit/instrumentation/firecrawl/firecrawl.py +2 -2
- openlit/instrumentation/google_ai_studio/__init__.py +3 -3
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +3 -3
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +3 -3
- openlit/instrumentation/gpt4all/__init__.py +3 -3
- openlit/instrumentation/gpt4all/gpt4all.py +7 -7
- openlit/instrumentation/groq/__init__.py +3 -3
- openlit/instrumentation/groq/async_groq.py +5 -5
- openlit/instrumentation/groq/groq.py +5 -5
- openlit/instrumentation/haystack/__init__.py +2 -2
- openlit/instrumentation/haystack/haystack.py +2 -2
- openlit/instrumentation/julep/__init__.py +7 -7
- openlit/instrumentation/julep/async_julep.py +3 -3
- openlit/instrumentation/julep/julep.py +3 -3
- openlit/instrumentation/langchain/__init__.py +2 -2
- openlit/instrumentation/langchain/async_langchain.py +13 -9
- openlit/instrumentation/langchain/langchain.py +13 -8
- openlit/instrumentation/letta/__init__.py +7 -7
- openlit/instrumentation/letta/letta.py +5 -5
- openlit/instrumentation/litellm/__init__.py +5 -5
- openlit/instrumentation/litellm/async_litellm.py +8 -8
- openlit/instrumentation/litellm/litellm.py +8 -8
- openlit/instrumentation/llamaindex/__init__.py +2 -2
- openlit/instrumentation/llamaindex/llamaindex.py +2 -2
- openlit/instrumentation/mem0/__init__.py +2 -2
- openlit/instrumentation/mem0/mem0.py +2 -2
- openlit/instrumentation/milvus/__init__.py +2 -2
- openlit/instrumentation/milvus/milvus.py +2 -2
- openlit/instrumentation/mistral/__init__.py +7 -7
- openlit/instrumentation/mistral/async_mistral.py +10 -10
- openlit/instrumentation/mistral/mistral.py +10 -10
- openlit/instrumentation/multion/__init__.py +7 -7
- openlit/instrumentation/multion/async_multion.py +5 -5
- openlit/instrumentation/multion/multion.py +5 -5
- openlit/instrumentation/ollama/__init__.py +11 -9
- openlit/instrumentation/ollama/async_ollama.py +71 -465
- openlit/instrumentation/ollama/ollama.py +71 -465
- openlit/instrumentation/ollama/utils.py +333 -0
- openlit/instrumentation/openai/__init__.py +11 -11
- openlit/instrumentation/openai/async_openai.py +18 -18
- openlit/instrumentation/openai/openai.py +18 -18
- openlit/instrumentation/phidata/__init__.py +2 -2
- openlit/instrumentation/phidata/phidata.py +2 -2
- openlit/instrumentation/pinecone/__init__.py +6 -6
- openlit/instrumentation/pinecone/pinecone.py +2 -2
- openlit/instrumentation/premai/__init__.py +3 -3
- openlit/instrumentation/premai/premai.py +7 -7
- openlit/instrumentation/qdrant/__init__.py +2 -2
- openlit/instrumentation/qdrant/async_qdrant.py +2 -2
- openlit/instrumentation/qdrant/qdrant.py +2 -2
- openlit/instrumentation/reka/__init__.py +3 -3
- openlit/instrumentation/reka/async_reka.py +3 -3
- openlit/instrumentation/reka/reka.py +3 -3
- openlit/instrumentation/together/__init__.py +5 -5
- openlit/instrumentation/together/async_together.py +8 -8
- openlit/instrumentation/together/together.py +8 -8
- openlit/instrumentation/transformers/__init__.py +2 -2
- openlit/instrumentation/transformers/transformers.py +4 -4
- openlit/instrumentation/vertexai/__init__.py +9 -9
- openlit/instrumentation/vertexai/async_vertexai.py +4 -4
- openlit/instrumentation/vertexai/vertexai.py +4 -4
- openlit/instrumentation/vllm/__init__.py +2 -2
- openlit/instrumentation/vllm/vllm.py +3 -3
- openlit/otel/events.py +85 -0
- openlit/otel/tracing.py +3 -13
- openlit/semcov/__init__.py +13 -1
- {openlit-1.33.10.dist-info → openlit-1.33.11.dist-info}/METADATA +2 -2
- openlit-1.33.11.dist-info/RECORD +125 -0
- openlit-1.33.10.dist-info/RECORD +0 -122
- {openlit-1.33.10.dist-info → openlit-1.33.11.dist-info}/LICENSE +0 -0
- {openlit-1.33.10.dist-info → openlit-1.33.11.dist-info}/WHEEL +0 -0
@@ -4,55 +4,40 @@ Module for monitoring AI21 calls.
|
|
4
4
|
|
5
5
|
import logging
|
6
6
|
import time
|
7
|
-
from opentelemetry.trace import SpanKind
|
8
|
-
from opentelemetry.sdk.resources import SERVICE_NAME, TELEMETRY_SDK_NAME, DEPLOYMENT_ENVIRONMENT
|
7
|
+
from opentelemetry.trace import SpanKind
|
9
8
|
from openlit.__helpers import (
|
10
|
-
get_chat_model_cost,
|
11
9
|
handle_exception,
|
12
10
|
response_as_dict,
|
13
|
-
calculate_ttft,
|
14
|
-
calculate_tbt,
|
15
|
-
create_metrics_attributes,
|
16
11
|
set_server_address_and_port,
|
17
|
-
general_tokens
|
18
12
|
)
|
13
|
+
from openlit.instrumentation.ai21.utils import (
|
14
|
+
process_chunk,
|
15
|
+
process_chat_response,
|
16
|
+
process_streaming_chat_response,
|
17
|
+
process_chat_rag_response
|
18
|
+
)
|
19
|
+
|
19
20
|
from openlit.semcov import SemanticConvetion
|
20
21
|
|
21
22
|
# Initialize logger for logging potential issues and operations
|
22
23
|
logger = logging.getLogger(__name__)
|
23
24
|
|
24
25
|
def async_chat(version, environment, application_name,
|
25
|
-
tracer, pricing_info,
|
26
|
+
tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics):
|
26
27
|
"""
|
27
|
-
Generates a telemetry wrapper for
|
28
|
-
|
29
|
-
Args:
|
30
|
-
version: Version of the monitoring package.
|
31
|
-
environment: Deployment environment (e.g., production, staging).
|
32
|
-
application_name: Name of the application using the AI21 SDK.
|
33
|
-
tracer: OpenTelemetry tracer for creating spans.
|
34
|
-
pricing_info: Information used for calculating the cost of AI21 usage.
|
35
|
-
trace_content: Flag indicating whether to trace the actual content.
|
36
|
-
|
37
|
-
Returns:
|
38
|
-
A function that wraps the chat completions method to add telemetry.
|
28
|
+
Generates a telemetry wrapper for GenAI function call
|
39
29
|
"""
|
40
30
|
|
41
31
|
class TracedAsyncStream:
|
42
32
|
"""
|
43
|
-
Wrapper for streaming responses to collect
|
44
|
-
Wraps the response to collect message IDs and aggregated response.
|
45
|
-
|
46
|
-
This class implements the '__aiter__' and '__anext__' methods that
|
47
|
-
handle asynchronous streaming responses.
|
48
|
-
|
49
|
-
This class also implements '__aenter__' and '__aexit__' methods that
|
50
|
-
handle asynchronous context management protocol.
|
33
|
+
Wrapper for streaming responses to collect telemetry.
|
51
34
|
"""
|
35
|
+
|
52
36
|
def __init__(
|
53
37
|
self,
|
54
38
|
wrapped,
|
55
39
|
span,
|
40
|
+
span_name,
|
56
41
|
kwargs,
|
57
42
|
server_address,
|
58
43
|
server_port,
|
@@ -60,12 +45,14 @@ def async_chat(version, environment, application_name,
|
|
60
45
|
):
|
61
46
|
self.__wrapped__ = wrapped
|
62
47
|
self._span = span
|
48
|
+
self._span_name = span_name
|
63
49
|
# Placeholder for aggregating streaming response
|
64
50
|
self._llmresponse = ""
|
65
51
|
self._response_id = ""
|
66
52
|
self._finish_reason = ""
|
67
53
|
self._input_tokens = 0
|
68
54
|
self._output_tokens = 0
|
55
|
+
self._choices = []
|
69
56
|
|
70
57
|
self._args = args
|
71
58
|
self._kwargs = kwargs
|
@@ -94,192 +81,36 @@ def async_chat(version, environment, application_name,
|
|
94
81
|
async def __anext__(self):
|
95
82
|
try:
|
96
83
|
chunk = await self.__wrapped__.__anext__()
|
97
|
-
|
98
|
-
# Record the timestamp for the current chunk
|
99
|
-
self._timestamps.append(end_time)
|
100
|
-
|
101
|
-
if len(self._timestamps) == 1:
|
102
|
-
# Calculate time to first chunk
|
103
|
-
self._ttft = calculate_ttft(self._timestamps, self._start_time)
|
104
|
-
|
105
|
-
chunked = response_as_dict(chunk)
|
106
|
-
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
107
|
-
'content' in chunked.get('choices')[0].get('delta'))):
|
108
|
-
|
109
|
-
content = chunked.get('choices')[0].get('delta').get('content')
|
110
|
-
if content:
|
111
|
-
self._llmresponse += content
|
112
|
-
|
113
|
-
if chunked.get('usage'):
|
114
|
-
self._input_tokens = chunked.get('usage').get("prompt_tokens")
|
115
|
-
self._output_tokens = chunked.get('usage').get("completion_tokens")
|
116
|
-
|
117
|
-
self._response_id = chunked.get('id')
|
118
|
-
self._finish_reason = chunked.get('choices')[0].get('finish_reason')
|
84
|
+
process_chunk(self, chunk)
|
119
85
|
return chunk
|
120
86
|
except StopAsyncIteration:
|
121
87
|
# Handling exception ensure observability without disrupting operation
|
122
88
|
try:
|
123
|
-
self.
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
if isinstance(content, list):
|
135
|
-
content_str = ", ".join(
|
136
|
-
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
137
|
-
if "type" in item else f'text: {item["text"]}'
|
138
|
-
for item in content
|
139
|
-
)
|
140
|
-
formatted_messages.append(f"{role}: {content_str}")
|
141
|
-
else:
|
142
|
-
formatted_messages.append(f"{role}: {content}")
|
143
|
-
prompt = "\n".join(formatted_messages)
|
144
|
-
|
145
|
-
request_model = self._kwargs.get("model", "jamba-1.5-mini")
|
146
|
-
|
147
|
-
# Calculate cost of the operation
|
148
|
-
cost = get_chat_model_cost(request_model,
|
149
|
-
pricing_info, self._input_tokens,
|
150
|
-
self._output_tokens)
|
151
|
-
|
152
|
-
# Set Span attributes (OTel Semconv)
|
153
|
-
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
154
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
155
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
156
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
157
|
-
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
158
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
159
|
-
request_model)
|
160
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
161
|
-
self._kwargs.get("seed", ""))
|
162
|
-
self._span.set_attribute(SemanticConvetion.SERVER_PORT,
|
163
|
-
self._server_port)
|
164
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
165
|
-
self._kwargs.get("frequency_penalty", 0.0))
|
166
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
167
|
-
self._kwargs.get("max_tokens", -1))
|
168
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
169
|
-
self._kwargs.get("presence_penalty", 0.0))
|
170
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
171
|
-
self._kwargs.get("stop", []))
|
172
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
173
|
-
self._kwargs.get("temperature", 0.4))
|
174
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
175
|
-
self._kwargs.get("top_p", 1.0))
|
176
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
177
|
-
[self._finish_reason])
|
178
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
179
|
-
self._response_id)
|
180
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
181
|
-
request_model)
|
182
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
183
|
-
self._input_tokens)
|
184
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
185
|
-
self._output_tokens)
|
186
|
-
self._span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
187
|
-
self._server_address)
|
188
|
-
|
189
|
-
if isinstance(self._llmresponse, str):
|
190
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
191
|
-
"text")
|
192
|
-
else:
|
193
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
194
|
-
"json")
|
195
|
-
|
196
|
-
# Set Span attributes (Extra)
|
197
|
-
self._span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
198
|
-
environment)
|
199
|
-
self._span.set_attribute(SERVICE_NAME,
|
200
|
-
application_name)
|
201
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
202
|
-
True)
|
203
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
204
|
-
self._input_tokens + self._output_tokens)
|
205
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
206
|
-
cost)
|
207
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TBT,
|
208
|
-
self._tbt)
|
209
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
210
|
-
self._ttft)
|
211
|
-
self._span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
212
|
-
version)
|
213
|
-
if trace_content:
|
214
|
-
self._span.add_event(
|
215
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
216
|
-
attributes={
|
217
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
218
|
-
},
|
219
|
-
)
|
220
|
-
self._span.add_event(
|
221
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
222
|
-
attributes={
|
223
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
224
|
-
},
|
89
|
+
with tracer.start_as_current_span(self._span_name, kind= SpanKind.CLIENT) as self._span:
|
90
|
+
process_streaming_chat_response(
|
91
|
+
self,
|
92
|
+
pricing_info=pricing_info,
|
93
|
+
environment=environment,
|
94
|
+
application_name=application_name,
|
95
|
+
metrics=metrics,
|
96
|
+
event_provider=event_provider,
|
97
|
+
capture_message_content=capture_message_content,
|
98
|
+
disable_metrics=disable_metrics,
|
99
|
+
version=version
|
225
100
|
)
|
226
|
-
self._span.set_status(Status(StatusCode.OK))
|
227
|
-
|
228
|
-
if disable_metrics is False:
|
229
|
-
attributes = create_metrics_attributes(
|
230
|
-
service_name=application_name,
|
231
|
-
deployment_environment=environment,
|
232
|
-
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
233
|
-
system=SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
234
|
-
request_model=request_model,
|
235
|
-
server_address=self._server_address,
|
236
|
-
server_port=self._server_port,
|
237
|
-
response_model=request_model,
|
238
|
-
)
|
239
|
-
|
240
|
-
metrics["genai_client_usage_tokens"].record(
|
241
|
-
self._input_tokens + self._output_tokens, attributes
|
242
|
-
)
|
243
|
-
metrics["genai_client_operation_duration"].record(
|
244
|
-
self._end_time - self._start_time, attributes
|
245
|
-
)
|
246
|
-
metrics["genai_server_tbt"].record(
|
247
|
-
self._tbt, attributes
|
248
|
-
)
|
249
|
-
metrics["genai_server_ttft"].record(
|
250
|
-
self._ttft, attributes
|
251
|
-
)
|
252
|
-
metrics["genai_requests"].add(1, attributes)
|
253
|
-
metrics["genai_completion_tokens"].add(self._output_tokens, attributes)
|
254
|
-
metrics["genai_prompt_tokens"].add(self._input_tokens, attributes)
|
255
|
-
metrics["genai_cost"].record(cost, attributes)
|
256
|
-
|
257
101
|
except Exception as e:
|
258
102
|
handle_exception(self._span, e)
|
259
103
|
logger.error("Error in trace creation: %s", e)
|
260
|
-
finally:
|
261
|
-
self._span.end()
|
262
104
|
raise
|
263
105
|
|
264
106
|
async def wrapper(wrapped, instance, args, kwargs):
|
265
107
|
"""
|
266
|
-
Wraps the
|
267
|
-
|
268
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
269
|
-
gracefully, adding details to the trace for observability.
|
270
|
-
|
271
|
-
Args:
|
272
|
-
wrapped: The original 'chat.completions' method to be wrapped.
|
273
|
-
instance: The instance of the class where the original method is defined.
|
274
|
-
args: Positional arguments for the 'chat.completions' method.
|
275
|
-
kwargs: Keyword arguments for the 'chat.completions' method.
|
276
|
-
|
277
|
-
Returns:
|
278
|
-
The response from the original 'chat.completions' method.
|
108
|
+
Wraps the GenAI function call.
|
279
109
|
"""
|
280
110
|
|
281
111
|
# Check if streaming is enabled for the API call
|
282
112
|
streaming = kwargs.get("stream", False)
|
113
|
+
|
283
114
|
server_address, server_port = set_server_address_and_port(instance, "api.ai21.com", 443)
|
284
115
|
request_model = kwargs.get("model", "jamba-1.5-mini")
|
285
116
|
|
@@ -290,197 +121,44 @@ def async_chat(version, environment, application_name,
|
|
290
121
|
# Special handling for streaming response to accommodate the nature of data flow
|
291
122
|
awaited_wrapped = await wrapped(*args, **kwargs)
|
292
123
|
span = tracer.start_span(span_name, kind=SpanKind.CLIENT)
|
293
|
-
|
294
|
-
return TracedAsyncStream(awaited_wrapped, span, kwargs, server_address, server_port)
|
124
|
+
return TracedAsyncStream(awaited_wrapped, span, span_name, kwargs, server_address, server_port)
|
295
125
|
|
296
126
|
# Handling for non-streaming responses
|
297
127
|
else:
|
298
128
|
with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
|
299
129
|
start_time = time.time()
|
300
130
|
response = await wrapped(*args, **kwargs)
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
else:
|
321
|
-
formatted_messages.append(f"{role}: {content}")
|
322
|
-
prompt = "\n".join(formatted_messages)
|
323
|
-
|
324
|
-
input_tokens = response_dict.get('usage').get('prompt_tokens')
|
325
|
-
output_tokens = response_dict.get('usage').get('completion_tokens')
|
326
|
-
|
327
|
-
# Calculate cost of the operation
|
328
|
-
cost = get_chat_model_cost(request_model,
|
329
|
-
pricing_info, input_tokens,
|
330
|
-
output_tokens)
|
331
|
-
|
332
|
-
# Set base span attribues (OTel Semconv)
|
333
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
334
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
335
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
336
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
337
|
-
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
338
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
339
|
-
request_model)
|
340
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
341
|
-
kwargs.get("seed", ""))
|
342
|
-
span.set_attribute(SemanticConvetion.SERVER_PORT,
|
343
|
-
server_port)
|
344
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
345
|
-
kwargs.get("frequency_penalty", 0.0))
|
346
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
347
|
-
kwargs.get("max_tokens", -1))
|
348
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
349
|
-
kwargs.get("presence_penalty", 0.0))
|
350
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
351
|
-
kwargs.get("stop", []))
|
352
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
353
|
-
kwargs.get("temperature", 0.4))
|
354
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
355
|
-
kwargs.get("top_p", 1.0))
|
356
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
357
|
-
response_dict.get("id"))
|
358
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
359
|
-
request_model)
|
360
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
361
|
-
input_tokens)
|
362
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
363
|
-
output_tokens)
|
364
|
-
span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
365
|
-
server_address)
|
366
|
-
|
367
|
-
# Set base span attribues (Extras)
|
368
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
369
|
-
environment)
|
370
|
-
span.set_attribute(SERVICE_NAME,
|
371
|
-
application_name)
|
372
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
373
|
-
False)
|
374
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
375
|
-
input_tokens + output_tokens)
|
376
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
377
|
-
cost)
|
378
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
379
|
-
end_time - start_time)
|
380
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
381
|
-
version)
|
382
|
-
if trace_content:
|
383
|
-
span.add_event(
|
384
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
385
|
-
attributes={
|
386
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
387
|
-
},
|
388
|
-
)
|
389
|
-
|
390
|
-
for i in range(kwargs.get('n',1)):
|
391
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
392
|
-
[response_dict.get('choices')[i].get('finish_reason')])
|
393
|
-
if trace_content:
|
394
|
-
span.add_event(
|
395
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
396
|
-
attributes={
|
397
|
-
# pylint: disable=line-too-long
|
398
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: str(response_dict.get('choices')[i].get('message').get('content')),
|
399
|
-
},
|
400
|
-
)
|
401
|
-
if kwargs.get('tools'):
|
402
|
-
span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
|
403
|
-
str(response_dict.get('choices')[i].get('message').get('tool_calls')))
|
404
|
-
|
405
|
-
if isinstance(response_dict.get('choices')[i].get('message').get('content'), str):
|
406
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
407
|
-
"text")
|
408
|
-
elif response_dict.get('choices')[i].get('message').get('content') is not None:
|
409
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
410
|
-
"json")
|
411
|
-
|
412
|
-
span.set_status(Status(StatusCode.OK))
|
413
|
-
|
414
|
-
if disable_metrics is False:
|
415
|
-
attributes = create_metrics_attributes(
|
416
|
-
service_name=application_name,
|
417
|
-
deployment_environment=environment,
|
418
|
-
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
419
|
-
system=SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
420
|
-
request_model=request_model,
|
421
|
-
server_address=server_address,
|
422
|
-
server_port=server_port,
|
423
|
-
response_model=request_model,
|
424
|
-
)
|
425
|
-
|
426
|
-
metrics["genai_client_usage_tokens"].record(
|
427
|
-
input_tokens + output_tokens, attributes
|
428
|
-
)
|
429
|
-
metrics["genai_client_operation_duration"].record(
|
430
|
-
end_time - start_time, attributes
|
431
|
-
)
|
432
|
-
metrics["genai_server_ttft"].record(
|
433
|
-
end_time - start_time, attributes
|
434
|
-
)
|
435
|
-
metrics["genai_requests"].add(1, attributes)
|
436
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
437
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
438
|
-
metrics["genai_cost"].record(cost, attributes)
|
439
|
-
|
440
|
-
# Return original response
|
441
|
-
return response
|
442
|
-
|
443
|
-
except Exception as e:
|
444
|
-
handle_exception(span, e)
|
445
|
-
logger.error("Error in trace creation: %s", e)
|
446
|
-
|
447
|
-
# Return original response
|
448
|
-
return response
|
131
|
+
response = process_chat_response(
|
132
|
+
response=response_as_dict(response),
|
133
|
+
request_model=request_model,
|
134
|
+
pricing_info=pricing_info,
|
135
|
+
server_port=server_port,
|
136
|
+
server_address=server_address,
|
137
|
+
environment=environment,
|
138
|
+
application_name=application_name,
|
139
|
+
metrics=metrics,
|
140
|
+
event_provider=event_provider,
|
141
|
+
start_time=start_time,
|
142
|
+
span=span,
|
143
|
+
capture_message_content=capture_message_content,
|
144
|
+
disable_metrics=disable_metrics,
|
145
|
+
version=version,
|
146
|
+
**kwargs
|
147
|
+
)
|
148
|
+
|
149
|
+
return response
|
449
150
|
|
450
151
|
return wrapper
|
451
152
|
|
452
153
|
def async_chat_rag(version, environment, application_name,
|
453
|
-
|
154
|
+
tracer, event_provider, pricing_info, capture_message_content, metrics, disable_metrics):
|
454
155
|
"""
|
455
|
-
Generates a telemetry wrapper for
|
456
|
-
|
457
|
-
Args:
|
458
|
-
version: Version of the monitoring package.
|
459
|
-
environment: Deployment environment (e.g., production, staging).
|
460
|
-
application_name: Name of the application using the AI21 SDK.
|
461
|
-
tracer: OpenTelemetry tracer for creating spans.
|
462
|
-
pricing_info: Information used for calculating the cost of AI21 usage.
|
463
|
-
trace_content: Flag indicating whether to trace the actual content.
|
464
|
-
|
465
|
-
Returns:
|
466
|
-
A function that wraps the chat completions method to add telemetry.
|
156
|
+
Generates a telemetry wrapper for GenAI function call
|
467
157
|
"""
|
468
158
|
|
469
159
|
async def wrapper(wrapped, instance, args, kwargs):
|
470
160
|
"""
|
471
|
-
Wraps the
|
472
|
-
|
473
|
-
This collects metrics such as execution time, cost, and token usage, and handles errors
|
474
|
-
gracefully, adding details to the trace for observability.
|
475
|
-
|
476
|
-
Args:
|
477
|
-
wrapped: The original 'chat.completions' method to be wrapped.
|
478
|
-
instance: The instance of the class where the original method is defined.
|
479
|
-
args: Positional arguments for the 'chat.completions' method.
|
480
|
-
kwargs: Keyword arguments for the 'chat.completions' method.
|
481
|
-
|
482
|
-
Returns:
|
483
|
-
The response from the original 'chat.completions' method.
|
161
|
+
Wraps the GenAI function call.
|
484
162
|
"""
|
485
163
|
|
486
164
|
server_address, server_port = set_server_address_and_port(instance, "api.ai21.com", 443)
|
@@ -491,165 +169,24 @@ def async_chat_rag(version, environment, application_name,
|
|
491
169
|
with tracer.start_as_current_span(span_name, kind= SpanKind.CLIENT) as span:
|
492
170
|
start_time = time.time()
|
493
171
|
response = await wrapped(*args, **kwargs)
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
else:
|
514
|
-
formatted_messages.append(f"{role}: {content}")
|
515
|
-
prompt = "\n".join(formatted_messages)
|
516
|
-
|
517
|
-
input_tokens = general_tokens(prompt)
|
518
|
-
|
519
|
-
# Set base span attribues (OTel Semconv)
|
520
|
-
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
521
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OPERATION,
|
522
|
-
SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT)
|
523
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
524
|
-
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
525
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
526
|
-
request_model)
|
527
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
528
|
-
kwargs.get("seed", ""))
|
529
|
-
span.set_attribute(SemanticConvetion.SERVER_PORT,
|
530
|
-
server_port)
|
531
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
532
|
-
kwargs.get("frequency_penalty", 0.0))
|
533
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
534
|
-
kwargs.get("max_tokens", -1))
|
535
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
536
|
-
kwargs.get("presence_penalty", 0.0))
|
537
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_STOP_SEQUENCES,
|
538
|
-
kwargs.get("stop", []))
|
539
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
540
|
-
kwargs.get("temperature", 0.4))
|
541
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
542
|
-
kwargs.get("top_p", 1.0))
|
543
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
544
|
-
response_dict.get("id"))
|
545
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_MODEL,
|
546
|
-
request_model)
|
547
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_INPUT_TOKENS,
|
548
|
-
input_tokens)
|
549
|
-
span.set_attribute(SemanticConvetion.SERVER_ADDRESS,
|
550
|
-
server_address)
|
551
|
-
|
552
|
-
# Set base span attribues (Extras)
|
553
|
-
span.set_attribute(DEPLOYMENT_ENVIRONMENT,
|
554
|
-
environment)
|
555
|
-
span.set_attribute(SERVICE_NAME,
|
556
|
-
application_name)
|
557
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
558
|
-
False)
|
559
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SERVER_TTFT,
|
560
|
-
end_time - start_time)
|
561
|
-
span.set_attribute(SemanticConvetion.GEN_AI_SDK_VERSION,
|
562
|
-
version)
|
563
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_MAX_SEGMENTS,
|
564
|
-
kwargs.get("max_segments", -1))
|
565
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_STRATEGY,
|
566
|
-
kwargs.get("retrieval_strategy", "segments"))
|
567
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_SIMILARITY_THRESHOLD,
|
568
|
-
kwargs.get("retrieval_similarity_threshold", -1))
|
569
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_MAX_NEIGHBORS,
|
570
|
-
kwargs.get("max_neighbors", -1))
|
571
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_FILE_IDS,
|
572
|
-
str(kwargs.get("file_ids", "")))
|
573
|
-
span.set_attribute(SemanticConvetion.GEN_AI_RAG_DOCUMENTS_PATH,
|
574
|
-
kwargs.get("path", ""))
|
575
|
-
if trace_content:
|
576
|
-
span.add_event(
|
577
|
-
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
578
|
-
attributes={
|
579
|
-
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
580
|
-
},
|
581
|
-
)
|
582
|
-
|
583
|
-
output_tokens = 0
|
584
|
-
for i in range(kwargs.get('n',1)):
|
585
|
-
output_tokens += general_tokens(response_dict.get('choices')[i].get('content'))
|
586
|
-
|
587
|
-
if trace_content:
|
588
|
-
span.add_event(
|
589
|
-
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
590
|
-
attributes={
|
591
|
-
# pylint: disable=line-too-long
|
592
|
-
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: str(response_dict.get('choices')[i].get('content')),
|
593
|
-
},
|
594
|
-
)
|
595
|
-
if kwargs.get('tools'):
|
596
|
-
span.set_attribute(SemanticConvetion.GEN_AI_TOOL_CALLS,
|
597
|
-
str(response_dict.get('choices')[i].get('message').get('tool_calls')))
|
598
|
-
|
599
|
-
if isinstance(response_dict.get('choices')[i].get('content'), str):
|
600
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
601
|
-
"text")
|
602
|
-
elif response_dict.get('choices')[i].get('content') is not None:
|
603
|
-
span.set_attribute(SemanticConvetion.GEN_AI_OUTPUT_TYPE,
|
604
|
-
"json")
|
605
|
-
|
606
|
-
# Calculate cost of the operation
|
607
|
-
cost = get_chat_model_cost(request_model,
|
608
|
-
pricing_info, input_tokens,
|
609
|
-
output_tokens)
|
610
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
611
|
-
cost)
|
612
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_OUTPUT_TOKENS,
|
613
|
-
output_tokens)
|
614
|
-
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
615
|
-
input_tokens + output_tokens)
|
616
|
-
|
617
|
-
span.set_status(Status(StatusCode.OK))
|
618
|
-
|
619
|
-
if disable_metrics is False:
|
620
|
-
attributes = create_metrics_attributes(
|
621
|
-
service_name=application_name,
|
622
|
-
deployment_environment=environment,
|
623
|
-
operation=SemanticConvetion.GEN_AI_OPERATION_TYPE_CHAT,
|
624
|
-
system=SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
625
|
-
request_model=request_model,
|
626
|
-
server_address=server_address,
|
627
|
-
server_port=server_port,
|
628
|
-
response_model=request_model,
|
629
|
-
)
|
630
|
-
|
631
|
-
metrics["genai_client_usage_tokens"].record(
|
632
|
-
input_tokens + output_tokens, attributes
|
633
|
-
)
|
634
|
-
metrics["genai_client_operation_duration"].record(
|
635
|
-
end_time - start_time, attributes
|
636
|
-
)
|
637
|
-
metrics["genai_server_ttft"].record(
|
638
|
-
end_time - start_time, attributes
|
639
|
-
)
|
640
|
-
metrics["genai_requests"].add(1, attributes)
|
641
|
-
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
642
|
-
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
643
|
-
metrics["genai_cost"].record(cost, attributes)
|
644
|
-
|
645
|
-
# Return original response
|
646
|
-
return response
|
647
|
-
|
648
|
-
except Exception as e:
|
649
|
-
handle_exception(span, e)
|
650
|
-
logger.error("Error in trace creation: %s", e)
|
651
|
-
|
652
|
-
# Return original response
|
653
|
-
return response
|
172
|
+
response = process_chat_rag_response(
|
173
|
+
response=response_as_dict(response),
|
174
|
+
request_model=request_model,
|
175
|
+
pricing_info=pricing_info,
|
176
|
+
server_port=server_port,
|
177
|
+
server_address=server_address,
|
178
|
+
environment=environment,
|
179
|
+
application_name=application_name,
|
180
|
+
metrics=metrics,
|
181
|
+
event_provider=event_provider,
|
182
|
+
start_time=start_time,
|
183
|
+
span=span,
|
184
|
+
capture_message_content=capture_message_content,
|
185
|
+
disable_metrics=disable_metrics,
|
186
|
+
version=version,
|
187
|
+
**kwargs
|
188
|
+
)
|
189
|
+
|
190
|
+
return response
|
654
191
|
|
655
192
|
return wrapper
|