openlit 1.32.2__py3-none-any.whl → 1.32.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +6 -0
- openlit/instrumentation/ai21/__init__.py +66 -0
- openlit/instrumentation/ai21/ai21.py +604 -0
- openlit/instrumentation/ai21/async_ai21.py +603 -0
- openlit/instrumentation/astra/__init__.py +179 -0
- openlit/instrumentation/astra/astra.py +226 -0
- openlit/instrumentation/astra/async_astra.py +226 -0
- openlit/semcov/__init__.py +14 -0
- {openlit-1.32.2.dist-info → openlit-1.32.4.dist-info}/METADATA +15 -16
- {openlit-1.32.2.dist-info → openlit-1.32.4.dist-info}/RECORD +12 -6
- {openlit-1.32.2.dist-info → openlit-1.32.4.dist-info}/LICENSE +0 -0
- {openlit-1.32.2.dist-info → openlit-1.32.4.dist-info}/WHEEL +0 -0
@@ -0,0 +1,603 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, too-many-branches, too-many-instance-attributes, inconsistent-return-statements
|
2
|
+
"""
|
3
|
+
Module for monitoring AI21 calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
handle_exception,
|
12
|
+
response_as_dict,
|
13
|
+
general_tokens
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvetion
|
16
|
+
|
17
|
+
# Initialize logger for logging potential issues and operations
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
def async_chat(gen_ai_endpoint, version, environment, application_name,
|
21
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
22
|
+
"""
|
23
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
27
|
+
version: Version of the monitoring package.
|
28
|
+
environment: Deployment environment (e.g., production, staging).
|
29
|
+
application_name: Name of the application using the AI21 SDK.
|
30
|
+
tracer: OpenTelemetry tracer for creating spans.
|
31
|
+
pricing_info: Information used for calculating the cost of AI21 usage.
|
32
|
+
trace_content: Flag indicating whether to trace the actual content.
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
A function that wraps the chat completions method to add telemetry.
|
36
|
+
"""
|
37
|
+
|
38
|
+
class TracedAsyncStream:
|
39
|
+
"""
|
40
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
41
|
+
|
42
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
43
|
+
handle asynchronous streaming responses.
|
44
|
+
|
45
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
46
|
+
handle asynchronous context management protocol.
|
47
|
+
"""
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
wrapped,
|
51
|
+
span,
|
52
|
+
kwargs,
|
53
|
+
**args,
|
54
|
+
):
|
55
|
+
self.__wrapped__ = wrapped
|
56
|
+
self._span = span
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
self._llmresponse = ""
|
59
|
+
self._response_id = ""
|
60
|
+
self._prompt_tokens = 0
|
61
|
+
self._completion_tokens = 0
|
62
|
+
|
63
|
+
self._args = args
|
64
|
+
self._kwargs = kwargs
|
65
|
+
|
66
|
+
async def __aenter__(self):
|
67
|
+
await self.__wrapped__.__aenter__()
|
68
|
+
return self
|
69
|
+
|
70
|
+
async def __aexit__(self, exc_type, exc_value, traceback):
|
71
|
+
await self.__wrapped__.__aexit__(exc_type, exc_value, traceback)
|
72
|
+
|
73
|
+
def __aiter__(self):
|
74
|
+
return self
|
75
|
+
|
76
|
+
async def __getattr__(self, name):
|
77
|
+
"""Delegate attribute access to the wrapped object."""
|
78
|
+
return getattr(await self.__wrapped__, name)
|
79
|
+
|
80
|
+
async def __anext__(self):
|
81
|
+
try:
|
82
|
+
chunk = await self.__wrapped__.__anext__()
|
83
|
+
chunked = response_as_dict(chunk)
|
84
|
+
# Collect message IDs and aggregated response from events
|
85
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
86
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
87
|
+
|
88
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
89
|
+
if content:
|
90
|
+
self._llmresponse += content
|
91
|
+
|
92
|
+
if chunked.get('usage'):
|
93
|
+
self._prompt_tokens = chunked.get('usage').get("prompt_tokens")
|
94
|
+
self._completion_tokens = chunked.get('usage').get("completion_tokens")
|
95
|
+
|
96
|
+
self._response_id = chunked.get('id')
|
97
|
+
return chunk
|
98
|
+
except StopAsyncIteration:
|
99
|
+
# Handling exception ensure observability without disrupting operation
|
100
|
+
try:
|
101
|
+
# Format 'messages' into a single string
|
102
|
+
message_prompt = self._kwargs.get("messages", "")
|
103
|
+
formatted_messages = []
|
104
|
+
for message in message_prompt:
|
105
|
+
role = message.role
|
106
|
+
content = message.content
|
107
|
+
|
108
|
+
if isinstance(content, list):
|
109
|
+
content_str = ", ".join(
|
110
|
+
# pylint: disable=line-too-long
|
111
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
112
|
+
if "type" in item else f'text: {item["text"]}'
|
113
|
+
for item in content
|
114
|
+
)
|
115
|
+
formatted_messages.append(f"{role}: {content_str}")
|
116
|
+
else:
|
117
|
+
formatted_messages.append(f"{role}: {content}")
|
118
|
+
prompt = "\n".join(formatted_messages)
|
119
|
+
|
120
|
+
# Calculate cost of the operation
|
121
|
+
cost = get_chat_model_cost(self._kwargs.get("model", "jamba-1.5-mini"),
|
122
|
+
pricing_info, self._prompt_tokens,
|
123
|
+
self._completion_tokens)
|
124
|
+
|
125
|
+
# Set Span attributes
|
126
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
127
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
128
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
129
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
130
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
131
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
132
|
+
gen_ai_endpoint)
|
133
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
134
|
+
self._response_id)
|
135
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
136
|
+
environment)
|
137
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
138
|
+
application_name)
|
139
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
140
|
+
self._kwargs.get("model", "jamba-1.5-mini"))
|
141
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
142
|
+
self._kwargs.get("top_p", 1.0))
|
143
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
144
|
+
self._kwargs.get("max_tokens", -1))
|
145
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
146
|
+
self._kwargs.get("temperature", 1.0))
|
147
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
148
|
+
True)
|
149
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
150
|
+
self._prompt_tokens)
|
151
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
152
|
+
self._completion_tokens)
|
153
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
154
|
+
self._prompt_tokens + self._completion_tokens)
|
155
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
156
|
+
cost)
|
157
|
+
if trace_content:
|
158
|
+
self._span.add_event(
|
159
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
160
|
+
attributes={
|
161
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
162
|
+
},
|
163
|
+
)
|
164
|
+
self._span.add_event(
|
165
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
166
|
+
attributes={
|
167
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
168
|
+
},
|
169
|
+
)
|
170
|
+
|
171
|
+
self._span.set_status(Status(StatusCode.OK))
|
172
|
+
|
173
|
+
if disable_metrics is False:
|
174
|
+
attributes = {
|
175
|
+
TELEMETRY_SDK_NAME:
|
176
|
+
"openlit",
|
177
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
178
|
+
application_name,
|
179
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
180
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
181
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
182
|
+
environment,
|
183
|
+
SemanticConvetion.GEN_AI_TYPE:
|
184
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
185
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
186
|
+
self._kwargs.get("model", "jamba-1.5-mini")
|
187
|
+
}
|
188
|
+
|
189
|
+
metrics["genai_requests"].add(1, attributes)
|
190
|
+
metrics["genai_total_tokens"].add(
|
191
|
+
self._prompt_tokens + self._completion_tokens, attributes
|
192
|
+
)
|
193
|
+
metrics["genai_completion_tokens"].add(self._completion_tokens, attributes)
|
194
|
+
metrics["genai_prompt_tokens"].add(self._prompt_tokens, attributes)
|
195
|
+
metrics["genai_cost"].record(cost, attributes)
|
196
|
+
|
197
|
+
except Exception as e:
|
198
|
+
handle_exception(self._span, e)
|
199
|
+
logger.error("Error in trace creation: %s", e)
|
200
|
+
finally:
|
201
|
+
self._span.end()
|
202
|
+
raise
|
203
|
+
|
204
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
205
|
+
"""
|
206
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
207
|
+
|
208
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
209
|
+
gracefully, adding details to the trace for observability.
|
210
|
+
|
211
|
+
Args:
|
212
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
213
|
+
instance: The instance of the class where the original method is defined.
|
214
|
+
args: Positional arguments for the 'chat.completions' method.
|
215
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
216
|
+
|
217
|
+
Returns:
|
218
|
+
The response from the original 'chat.completions' method.
|
219
|
+
"""
|
220
|
+
|
221
|
+
# Check if streaming is enabled for the API call
|
222
|
+
streaming = kwargs.get("stream", False)
|
223
|
+
# pylint: disable=no-else-return
|
224
|
+
if streaming:
|
225
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
226
|
+
awaited_wrapped = await wrapped(*args, **kwargs)
|
227
|
+
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
228
|
+
|
229
|
+
return TracedAsyncStream(awaited_wrapped, span, kwargs)
|
230
|
+
|
231
|
+
# Handling for non-streaming responses
|
232
|
+
else:
|
233
|
+
# pylint: disable=line-too-long
|
234
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
235
|
+
response = await wrapped(*args, **kwargs)
|
236
|
+
|
237
|
+
response_dict = response_as_dict(response)
|
238
|
+
|
239
|
+
try:
|
240
|
+
# Format 'messages' into a single string
|
241
|
+
message_prompt = kwargs.get("messages", "")
|
242
|
+
formatted_messages = []
|
243
|
+
for message in message_prompt:
|
244
|
+
role = message.role
|
245
|
+
content = message.content
|
246
|
+
|
247
|
+
if isinstance(content, list):
|
248
|
+
content_str = ", ".join(
|
249
|
+
# pylint: disable=line-too-long
|
250
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
251
|
+
if "type" in item else f'text: {item["text"]}'
|
252
|
+
for item in content
|
253
|
+
)
|
254
|
+
formatted_messages.append(f"{role}: {content_str}")
|
255
|
+
else:
|
256
|
+
formatted_messages.append(f"{role}: {content}")
|
257
|
+
prompt = "\n".join(formatted_messages)
|
258
|
+
|
259
|
+
# Set base span attribues
|
260
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
261
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
262
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
263
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
264
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
265
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
266
|
+
gen_ai_endpoint)
|
267
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
268
|
+
response_dict.get("id"))
|
269
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
270
|
+
environment)
|
271
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
272
|
+
application_name)
|
273
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
274
|
+
kwargs.get("model", "jamba-1.5-mini"))
|
275
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
276
|
+
kwargs.get("top_p", 1.0))
|
277
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
278
|
+
kwargs.get("max_tokens", -1))
|
279
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
280
|
+
kwargs.get("temperature", 1.0))
|
281
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
282
|
+
False)
|
283
|
+
if trace_content:
|
284
|
+
span.add_event(
|
285
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
286
|
+
attributes={
|
287
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
288
|
+
},
|
289
|
+
)
|
290
|
+
|
291
|
+
# Set span attributes when tools is not passed to the function call
|
292
|
+
if "tools" not in kwargs:
|
293
|
+
# Calculate cost of the operation
|
294
|
+
cost = get_chat_model_cost(kwargs.get("model", "jamba-1.5-mini"),
|
295
|
+
pricing_info, response_dict.get('usage', {}).get('prompt_tokens', None),
|
296
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
297
|
+
|
298
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
299
|
+
response_dict.get('usage', {}).get('prompt_tokens', None))
|
300
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
301
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
302
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
303
|
+
response_dict.get('usage', {}).get('total_tokens', None))
|
304
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
305
|
+
[response_dict.get('choices', [])[0].get('finish_reason', None)])
|
306
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
307
|
+
cost)
|
308
|
+
|
309
|
+
# Set span attributes for when n = 1 (default)
|
310
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
311
|
+
if trace_content:
|
312
|
+
span.add_event(
|
313
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
314
|
+
attributes={
|
315
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("message").get("content"),
|
316
|
+
},
|
317
|
+
)
|
318
|
+
|
319
|
+
# Set span attributes for when n > 0
|
320
|
+
else:
|
321
|
+
i = 0
|
322
|
+
while i < kwargs["n"] and trace_content is True:
|
323
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
324
|
+
span.add_event(
|
325
|
+
name=attribute_name,
|
326
|
+
attributes={
|
327
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
328
|
+
},
|
329
|
+
)
|
330
|
+
i += 1
|
331
|
+
|
332
|
+
# Return original response
|
333
|
+
return response
|
334
|
+
|
335
|
+
# Set span attributes when tools is passed to the function call
|
336
|
+
elif "tools" in kwargs:
|
337
|
+
# Calculate cost of the operation
|
338
|
+
cost = get_chat_model_cost(kwargs.get("model", "jamba-1.5-mini"),
|
339
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
340
|
+
response_dict.get('usage').get('completion_tokens'))
|
341
|
+
span.add_event(
|
342
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
343
|
+
attributes={
|
344
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: "Function called with tools",
|
345
|
+
},
|
346
|
+
)
|
347
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
348
|
+
response_dict.get('usage').get('prompt_tokens'))
|
349
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
350
|
+
response_dict.get('usage').get('completion_tokens'))
|
351
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
352
|
+
response_dict.get('usage').get('total_tokens'))
|
353
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
354
|
+
cost)
|
355
|
+
|
356
|
+
span.set_status(Status(StatusCode.OK))
|
357
|
+
|
358
|
+
if disable_metrics is False:
|
359
|
+
attributes = {
|
360
|
+
TELEMETRY_SDK_NAME:
|
361
|
+
"openlit",
|
362
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
363
|
+
application_name,
|
364
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
365
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
366
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
367
|
+
environment,
|
368
|
+
SemanticConvetion.GEN_AI_TYPE:
|
369
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
370
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
371
|
+
kwargs.get("model", "jamba-1.5-mini")
|
372
|
+
}
|
373
|
+
|
374
|
+
metrics["genai_requests"].add(1, attributes)
|
375
|
+
metrics["genai_total_tokens"].add(response_dict.get('usage').get('total_tokens'), attributes)
|
376
|
+
metrics["genai_completion_tokens"].add(response_dict.get('usage').get('completion_tokens'), attributes)
|
377
|
+
metrics["genai_prompt_tokens"].add(response_dict.get('usage').get('prompt_tokens'), attributes)
|
378
|
+
metrics["genai_cost"].record(cost, attributes)
|
379
|
+
|
380
|
+
# Return original response
|
381
|
+
return response
|
382
|
+
|
383
|
+
except Exception as e:
|
384
|
+
handle_exception(span, e)
|
385
|
+
logger.error("Error in trace creation: %s", e)
|
386
|
+
|
387
|
+
# Return original response
|
388
|
+
return response
|
389
|
+
|
390
|
+
return wrapper
|
391
|
+
|
392
|
+
def async_chat_rag(gen_ai_endpoint, version, environment, application_name,
|
393
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
394
|
+
"""
|
395
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
396
|
+
|
397
|
+
Args:
|
398
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
399
|
+
version: Version of the monitoring package.
|
400
|
+
environment: Deployment environment (e.g., production, staging).
|
401
|
+
application_name: Name of the application using the AI21 SDK.
|
402
|
+
tracer: OpenTelemetry tracer for creating spans.
|
403
|
+
pricing_info: Information used for calculating the cost of AI21 usage.
|
404
|
+
trace_content: Flag indicating whether to trace the actual content.
|
405
|
+
|
406
|
+
Returns:
|
407
|
+
A function that wraps the chat completions method to add telemetry.
|
408
|
+
"""
|
409
|
+
|
410
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
411
|
+
"""
|
412
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
413
|
+
|
414
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
415
|
+
gracefully, adding details to the trace for observability.
|
416
|
+
|
417
|
+
Args:
|
418
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
419
|
+
instance: The instance of the class where the original method is defined.
|
420
|
+
args: Positional arguments for the 'chat.completions' method.
|
421
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
422
|
+
|
423
|
+
Returns:
|
424
|
+
The response from the original 'chat.completions' method.
|
425
|
+
"""
|
426
|
+
|
427
|
+
# Check if streaming is enabled for the API call
|
428
|
+
streaming = kwargs.get("stream", False)
|
429
|
+
|
430
|
+
# pylint: disable=no-else-return
|
431
|
+
if streaming:
|
432
|
+
# # Special handling for streaming response to accommodate the nature of data flow
|
433
|
+
# awaited_wrapped = wrapped(*args, **kwargs)
|
434
|
+
# span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
435
|
+
|
436
|
+
# return TracedSyncStream(awaited_wrapped, span, kwargs)
|
437
|
+
|
438
|
+
return
|
439
|
+
|
440
|
+
# Handling for non-streaming responses
|
441
|
+
else:
|
442
|
+
# pylint: disable=line-too-long
|
443
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
444
|
+
response = await wrapped(*args, **kwargs)
|
445
|
+
|
446
|
+
response_dict = response_as_dict(response)
|
447
|
+
|
448
|
+
try:
|
449
|
+
# Format 'messages' into a single string
|
450
|
+
message_prompt = kwargs.get("messages", "")
|
451
|
+
formatted_messages = []
|
452
|
+
for message in message_prompt:
|
453
|
+
role = message.role
|
454
|
+
content = message.content
|
455
|
+
|
456
|
+
if isinstance(content, list):
|
457
|
+
content_str = ", ".join(
|
458
|
+
# pylint: disable=line-too-long
|
459
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
460
|
+
if "type" in item else f'text: {item["text"]}'
|
461
|
+
for item in content
|
462
|
+
)
|
463
|
+
formatted_messages.append(f"{role}: {content_str}")
|
464
|
+
else:
|
465
|
+
formatted_messages.append(f"{role}: {content}")
|
466
|
+
prompt = "\n".join(formatted_messages)
|
467
|
+
|
468
|
+
# Set base span attribues
|
469
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
470
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
471
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21)
|
472
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
473
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
474
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
475
|
+
gen_ai_endpoint)
|
476
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
477
|
+
response_dict.get("id"))
|
478
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
479
|
+
environment)
|
480
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
481
|
+
application_name)
|
482
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
483
|
+
kwargs.get("model", "jamba-1.5-mini"))
|
484
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
485
|
+
False)
|
486
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_MAX_SEGMENTS,
|
487
|
+
kwargs.get("max_segments", -1))
|
488
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_STRATEGY,
|
489
|
+
kwargs.get("retrieval_strategy", "segments"))
|
490
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_SIMILARITY_THRESHOLD,
|
491
|
+
kwargs.get("retrieval_similarity_threshold", -1))
|
492
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_MAX_NEIGHBORS,
|
493
|
+
kwargs.get("max_neighbors", -1))
|
494
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_FILE_IDS,
|
495
|
+
str(kwargs.get("file_ids", "")))
|
496
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RAG_DOCUMENTS_PATH,
|
497
|
+
kwargs.get("path", ""))
|
498
|
+
|
499
|
+
if trace_content:
|
500
|
+
span.add_event(
|
501
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
502
|
+
attributes={
|
503
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
504
|
+
},
|
505
|
+
)
|
506
|
+
prompt_tokens = general_tokens(prompt)
|
507
|
+
|
508
|
+
|
509
|
+
# Set span attributes when tools is not passed to the function call
|
510
|
+
if "tools" not in kwargs:
|
511
|
+
prompt_tokens = general_tokens(prompt)
|
512
|
+
|
513
|
+
# Set span attributes for when n = 1 (default)
|
514
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
515
|
+
completion_tokens = general_tokens(response_dict.get('choices', [])[0].get("content"))
|
516
|
+
if trace_content:
|
517
|
+
span.add_event(
|
518
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
519
|
+
attributes={
|
520
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("content"),
|
521
|
+
},
|
522
|
+
)
|
523
|
+
|
524
|
+
# Set span attributes for when n > 0
|
525
|
+
else:
|
526
|
+
i = 0
|
527
|
+
completion_tokens = 0
|
528
|
+
while i < kwargs["n"] and trace_content is True:
|
529
|
+
completion_tokens += general_tokens(response_dict.get('choices')[i].get("message").get("content"))
|
530
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
531
|
+
span.add_event(
|
532
|
+
name=attribute_name,
|
533
|
+
attributes={
|
534
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
535
|
+
},
|
536
|
+
)
|
537
|
+
i += 1
|
538
|
+
|
539
|
+
# Return original response
|
540
|
+
return response
|
541
|
+
|
542
|
+
# Set span attributes when tools is passed to the function call
|
543
|
+
elif "tools" in kwargs:
|
544
|
+
completion_tokens = -1
|
545
|
+
# Calculate cost of the operation
|
546
|
+
cost = get_chat_model_cost(kwargs.get("model", "jamba-1.5-mini"),
|
547
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
548
|
+
response_dict.get('usage').get('completion_tokens'))
|
549
|
+
span.add_event(
|
550
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
551
|
+
attributes={
|
552
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: "Function called with tools",
|
553
|
+
},
|
554
|
+
)
|
555
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
556
|
+
prompt_tokens)
|
557
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
558
|
+
completion_tokens)
|
559
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
560
|
+
prompt_tokens + completion_tokens)
|
561
|
+
|
562
|
+
# Calculate cost of the operation
|
563
|
+
cost = get_chat_model_cost(kwargs.get("model", "jamba-1.5-mini"),
|
564
|
+
pricing_info, prompt_tokens,
|
565
|
+
completion_tokens)
|
566
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
567
|
+
cost)
|
568
|
+
|
569
|
+
span.set_status(Status(StatusCode.OK))
|
570
|
+
|
571
|
+
if disable_metrics is False:
|
572
|
+
attributes = {
|
573
|
+
TELEMETRY_SDK_NAME:
|
574
|
+
"openlit",
|
575
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
576
|
+
application_name,
|
577
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
578
|
+
SemanticConvetion.GEN_AI_SYSTEM_AI21,
|
579
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
580
|
+
environment,
|
581
|
+
SemanticConvetion.GEN_AI_TYPE:
|
582
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
583
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
584
|
+
kwargs.get("model", "jamba-1.5-mini")
|
585
|
+
}
|
586
|
+
|
587
|
+
metrics["genai_requests"].add(1, attributes)
|
588
|
+
metrics["genai_total_tokens"].add(prompt_tokens + completion_tokens, attributes)
|
589
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
590
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
591
|
+
metrics["genai_cost"].record(cost, attributes)
|
592
|
+
|
593
|
+
# Return original response
|
594
|
+
return response
|
595
|
+
|
596
|
+
except Exception as e:
|
597
|
+
handle_exception(span, e)
|
598
|
+
logger.error("Error in trace creation: %s", e)
|
599
|
+
|
600
|
+
# Return original response
|
601
|
+
return response
|
602
|
+
|
603
|
+
return wrapper
|