openlit 1.30.4__py3-none-any.whl → 1.31.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openlit/__init__.py CHANGED
@@ -48,6 +48,7 @@ from openlit.instrumentation.milvus import MilvusInstrumentor
48
48
  from openlit.instrumentation.transformers import TransformersInstrumentor
49
49
  from openlit.instrumentation.litellm import LiteLLMInstrumentor
50
50
  from openlit.instrumentation.crewai import CrewAIInstrumentor
51
+ from openlit.instrumentation.ag2 import AG2Instrumentor
51
52
  from openlit.instrumentation.gpu import GPUInstrumentor
52
53
  import openlit.guard
53
54
  import openlit.evals
@@ -232,6 +233,9 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
232
233
  "transformers": "transformers",
233
234
  "litellm": "litellm",
234
235
  "crewai": "crewai",
236
+ "ag2": "ag2",
237
+ "autogen": "autogen",
238
+ "pyautogen": "pyautogen",
235
239
  }
236
240
 
237
241
  invalid_instrumentors = [
@@ -311,6 +315,9 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
311
315
  "transformers": TransformersInstrumentor(),
312
316
  "litellm": LiteLLMInstrumentor(),
313
317
  "crewai": CrewAIInstrumentor(),
318
+ "ag2": AG2Instrumentor(),
319
+ "autogen": AG2Instrumentor(),
320
+ "pyautogen": AG2Instrumentor(),
314
321
  }
315
322
 
316
323
  # Initialize and instrument only the enabled instrumentors
@@ -0,0 +1,50 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of AG2 Functions"""
3
+
4
+ from typing import Collection
5
+ import importlib.metadata
6
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
7
+ from wrapt import wrap_function_wrapper
8
+
9
+ from openlit.instrumentation.ag2.ag2 import (
10
+ wrap_ag2
11
+ )
12
+
13
+ _instruments = ("ag2 >= 0.3.2",)
14
+
15
+ class AG2Instrumentor(BaseInstrumentor):
16
+ """
17
+ An instrumentor for AG2's client library.
18
+ """
19
+
20
+ def instrumentation_dependencies(self) -> Collection[str]:
21
+ return _instruments
22
+
23
+ def _instrument(self, **kwargs):
24
+ application_name = kwargs.get("application_name", "default_application")
25
+ environment = kwargs.get("environment", "default_environment")
26
+ tracer = kwargs.get("tracer")
27
+ metrics = kwargs.get("metrics_dict")
28
+ pricing_info = kwargs.get("pricing_info", {})
29
+ trace_content = kwargs.get("trace_content", False)
30
+ disable_metrics = kwargs.get("disable_metrics")
31
+ version = importlib.metadata.version("ag2")
32
+
33
+ wrap_function_wrapper(
34
+ "autogen.agentchat.conversable_agent",
35
+ "ConversableAgent.initiate_chat",
36
+ wrap_ag2("ag2.initiate_chat", version, environment, application_name,
37
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
38
+ )
39
+
40
+ wrap_function_wrapper(
41
+ "autogen.agentchat.conversable_agent",
42
+ "ConversableAgent.generate_reply",
43
+ wrap_ag2("ag2.generate_reply", version, environment, application_name,
44
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
45
+ )
46
+
47
+
48
+ def _uninstrument(self, **kwargs):
49
+ # Proper uninstrumentation logic to revert patched methods
50
+ pass
@@ -0,0 +1,98 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
2
+ """
3
+ Module for monitoring AG2.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def wrap_ag2(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Creates a wrapper around a function call to trace and log its execution metrics.
19
+
20
+ This function wraps any given function to measure its execution time,
21
+ log its operation, and trace its execution using OpenTelemetry.
22
+
23
+ Parameters:
24
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
25
+ - version (str): The version of the Langchain application.
26
+ - environment (str): The deployment environment (e.g., 'production', 'development').
27
+ - application_name (str): Name of the Langchain application.
28
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
29
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
30
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
31
+
32
+ Returns:
33
+ - function: A higher-order function that takes a function 'wrapped' and returns
34
+ a new function that wraps 'wrapped' with additional tracing and logging.
35
+ """
36
+
37
+ def wrapper(wrapped, instance, args, kwargs):
38
+ """
39
+ An inner wrapper function that executes the wrapped function, measures execution
40
+ time, and records trace data using OpenTelemetry.
41
+
42
+ Parameters:
43
+ - wrapped (Callable): The original function that this wrapper will execute.
44
+ - instance (object): The instance to which the wrapped function belongs. This
45
+ is used for instance methods. For static and classmethods,
46
+ this may be None.
47
+ - args (tuple): Positional arguments passed to the wrapped function.
48
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
49
+
50
+ Returns:
51
+ - The result of the wrapped function call.
52
+
53
+ The wrapper initiates a span with the provided tracer, sets various attributes
54
+ on the span based on the function's execution and response, and ensures
55
+ errors are handled and logged appropriately.
56
+ """
57
+
58
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
59
+ response = wrapped(*args, **kwargs)
60
+
61
+ if isinstance(instance.__dict__.get('llm_config'), dict):
62
+ llm_model = instance.__dict__['llm_config'].get('model', 'gpt-4')
63
+ else:
64
+ # Fallback to default if 'llm_config' is not a dictionary
65
+ llm_model = None
66
+
67
+ try:
68
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
69
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
70
+ gen_ai_endpoint)
71
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
72
+ SemanticConvetion.GEN_AI_SYSTEM_AG2)
73
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
74
+ environment)
75
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
76
+ application_name)
77
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
78
+ SemanticConvetion.GEN_AI_TYPE_AGENT)
79
+ span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ROLE,
80
+ instance.name)
81
+ if llm_model:
82
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
83
+ llm_model)
84
+
85
+
86
+ span.set_status(Status(StatusCode.OK))
87
+
88
+ # Return original response
89
+ return response
90
+
91
+ except Exception as e:
92
+ handle_exception(span, e)
93
+ logger.error("Error in trace creation: %s", e)
94
+
95
+ # Return original response
96
+ return response
97
+
98
+ return wrapper
@@ -12,6 +12,26 @@ from openlit.semcov import SemanticConvetion
12
12
  # Initialize logger for logging potential issues and operations
13
13
  logger = logging.getLogger(__name__)
14
14
 
15
+ def get_attribute_from_instance_or_kwargs(instance, attribute_name, default=-1):
16
+ """Return attribute from instance or kwargs"""
17
+ # Attempt to retrieve model_kwargs from the instance
18
+ model_kwargs = getattr(instance, 'model_kwargs', None)
19
+
20
+ # Check for attribute in model_kwargs if it exists
21
+ if model_kwargs and attribute_name in model_kwargs:
22
+ return model_kwargs[attribute_name]
23
+
24
+ # Attempt to get the attribute directly from the instance
25
+ try:
26
+ return getattr(instance, attribute_name)
27
+ except AttributeError:
28
+ # Special handling for 'model' attribute to consider 'model_id'
29
+ if attribute_name == 'model':
30
+ return getattr(instance, 'model_id', 'default_model_id')
31
+
32
+ # Default if the attribute isn't found in model_kwargs or the instance
33
+ return default
34
+
15
35
  def general_wrap(gen_ai_endpoint, version, environment, application_name,
16
36
  tracer, pricing_info, trace_content, metrics, disable_metrics):
17
37
  """
@@ -207,15 +227,18 @@ def allm(gen_ai_endpoint, version, environment, application_name,
207
227
  response = await wrapped(*args, **kwargs)
208
228
 
209
229
  try:
210
- prompt = args[0] or ""
211
- # input_tokens = general_tokens(prompt)
212
- # output_tokens = general_tokens(response)
230
+ if args:
231
+ prompt = str(args[0]) if args[0] is not None else ""
232
+ else:
233
+ prompt = ""
234
+ input_tokens = general_tokens(prompt)
235
+ output_tokens = general_tokens(response)
213
236
 
214
- # # Calculate cost of the operation
215
- # cost = get_chat_model_cost(
216
- # str(getattr(instance, 'model')),
217
- # pricing_info, input_tokens, output_tokens
218
- # )
237
+ # Calculate cost of the operation
238
+ cost = get_chat_model_cost(
239
+ str(get_attribute_from_instance_or_kwargs(instance, 'model')),
240
+ pricing_info, input_tokens, output_tokens
241
+ )
219
242
 
220
243
  span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
221
244
  span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
@@ -229,23 +252,23 @@ def allm(gen_ai_endpoint, version, environment, application_name,
229
252
  span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
230
253
  application_name)
231
254
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
232
- str(getattr(instance, 'model')))
255
+ str(get_attribute_from_instance_or_kwargs(instance, 'model')))
233
256
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
234
- str(getattr(instance, 'temperature')))
257
+ str(get_attribute_from_instance_or_kwargs(instance, 'temperature')))
235
258
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
236
- str(getattr(instance, 'top_k')))
259
+ str(get_attribute_from_instance_or_kwargs(instance, 'top_k')))
237
260
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
238
- str(getattr(instance, 'top_p')))
261
+ str(get_attribute_from_instance_or_kwargs(instance, 'top_p')))
239
262
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
240
263
  False)
241
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
242
- # input_tokens)
243
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
244
- # output_tokens)
245
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
246
- # input_tokens + output_tokens)
247
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
248
- # cost)
264
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
265
+ input_tokens)
266
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
267
+ output_tokens)
268
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
269
+ input_tokens + output_tokens)
270
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
271
+ cost)
249
272
  if trace_content:
250
273
  span.add_event(
251
274
  name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
@@ -262,29 +285,29 @@ def allm(gen_ai_endpoint, version, environment, application_name,
262
285
 
263
286
  span.set_status(Status(StatusCode.OK))
264
287
 
265
- # if disable_metrics is False:
266
- # attributes = {
267
- # TELEMETRY_SDK_NAME:
268
- # "openlit",
269
- # SemanticConvetion.GEN_AI_APPLICATION_NAME:
270
- # application_name,
271
- # SemanticConvetion.GEN_AI_SYSTEM:
272
- # SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
273
- # SemanticConvetion.GEN_AI_ENVIRONMENT:
274
- # environment,
275
- # SemanticConvetion.GEN_AI_TYPE:
276
- # SemanticConvetion.GEN_AI_TYPE_CHAT,
277
- # SemanticConvetion.GEN_AI_REQUEST_MODEL:
278
- # str(getattr(instance, 'model'))
279
- # }
280
-
281
- # metrics["genai_requests"].add(1, attributes)
282
- # metrics["genai_total_tokens"].add(
283
- # input_tokens + output_tokens, attributes
284
- # )
285
- # metrics["genai_completion_tokens"].add(output_tokens, attributes)
286
- # metrics["genai_prompt_tokens"].add(input_tokens, attributes)
287
- # metrics["genai_cost"].record(cost, attributes)
288
+ if disable_metrics is False:
289
+ attributes = {
290
+ TELEMETRY_SDK_NAME:
291
+ "openlit",
292
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
293
+ application_name,
294
+ SemanticConvetion.GEN_AI_SYSTEM:
295
+ SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
296
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
297
+ environment,
298
+ SemanticConvetion.GEN_AI_TYPE:
299
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
300
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
301
+ str(get_attribute_from_instance_or_kwargs(instance, 'model'))
302
+ }
303
+
304
+ metrics["genai_requests"].add(1, attributes)
305
+ metrics["genai_total_tokens"].add(
306
+ input_tokens + output_tokens, attributes
307
+ )
308
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
309
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
310
+ metrics["genai_cost"].record(cost, attributes)
288
311
 
289
312
  # Return original response
290
313
  return response
@@ -344,15 +367,18 @@ def llm(gen_ai_endpoint, version, environment, application_name,
344
367
  response = wrapped(*args, **kwargs)
345
368
 
346
369
  try:
347
- prompt = args[0] or ""
348
- # input_tokens = general_tokens(prompt)
349
- # output_tokens = general_tokens(response)
370
+ if args:
371
+ prompt = str(args[0]) if args[0] is not None else ""
372
+ else:
373
+ prompt = ""
374
+ input_tokens = general_tokens(prompt)
375
+ output_tokens = general_tokens(response)
350
376
 
351
- # # Calculate cost of the operation
352
- # cost = get_chat_model_cost(
353
- # str(getattr(instance, 'model')),
354
- # pricing_info, input_tokens, output_tokens
355
- # )
377
+ # Calculate cost of the operation
378
+ cost = get_chat_model_cost(
379
+ str(get_attribute_from_instance_or_kwargs(instance, 'model')),
380
+ pricing_info, input_tokens, output_tokens
381
+ )
356
382
 
357
383
  span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
358
384
  span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
@@ -366,23 +392,23 @@ def llm(gen_ai_endpoint, version, environment, application_name,
366
392
  span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
367
393
  application_name)
368
394
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
369
- str(getattr(instance, 'model')))
395
+ str(get_attribute_from_instance_or_kwargs(instance, 'model')))
370
396
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
371
- str(getattr(instance, 'temperature')))
397
+ str(get_attribute_from_instance_or_kwargs(instance, 'temperature')))
372
398
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
373
- str(getattr(instance, 'top_k')))
399
+ str(get_attribute_from_instance_or_kwargs(instance, 'top_k')))
374
400
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
375
- str(getattr(instance, 'top_p')))
401
+ str(get_attribute_from_instance_or_kwargs(instance, 'top_p')))
376
402
  span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
377
403
  False)
378
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
379
- # input_tokens)
380
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
381
- # output_tokens)
382
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
383
- # input_tokens + output_tokens)
384
- # span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
385
- # cost)
404
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
405
+ input_tokens)
406
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
407
+ output_tokens)
408
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
409
+ input_tokens + output_tokens)
410
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
411
+ cost)
386
412
  if trace_content:
387
413
  span.add_event(
388
414
  name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
@@ -399,29 +425,29 @@ def llm(gen_ai_endpoint, version, environment, application_name,
399
425
 
400
426
  span.set_status(Status(StatusCode.OK))
401
427
 
402
- # if disable_metrics is False:
403
- # attributes = {
404
- # TELEMETRY_SDK_NAME:
405
- # "openlit",
406
- # SemanticConvetion.GEN_AI_APPLICATION_NAME:
407
- # application_name,
408
- # SemanticConvetion.GEN_AI_SYSTEM:
409
- # SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
410
- # SemanticConvetion.GEN_AI_ENVIRONMENT:
411
- # environment,
412
- # SemanticConvetion.GEN_AI_TYPE:
413
- # SemanticConvetion.GEN_AI_TYPE_CHAT,
414
- # SemanticConvetion.GEN_AI_REQUEST_MODEL:
415
- # str(getattr(instance, 'model'))
416
- # }
417
-
418
- # metrics["genai_requests"].add(1, attributes)
419
- # metrics["genai_total_tokens"].add(
420
- # input_tokens + output_tokens, attributes
421
- # )
422
- # metrics["genai_completion_tokens"].add(output_tokens, attributes)
423
- # metrics["genai_prompt_tokens"].add(input_tokens, attributes)
424
- # metrics["genai_cost"].record(cost, attributes)
428
+ if disable_metrics is False:
429
+ attributes = {
430
+ TELEMETRY_SDK_NAME:
431
+ "openlit",
432
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
433
+ application_name,
434
+ SemanticConvetion.GEN_AI_SYSTEM:
435
+ SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
436
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
437
+ environment,
438
+ SemanticConvetion.GEN_AI_TYPE:
439
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
440
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
441
+ str(get_attribute_from_instance_or_kwargs(instance, 'model'))
442
+ }
443
+
444
+ metrics["genai_requests"].add(1, attributes)
445
+ metrics["genai_total_tokens"].add(
446
+ input_tokens + output_tokens, attributes
447
+ )
448
+ metrics["genai_completion_tokens"].add(output_tokens, attributes)
449
+ metrics["genai_prompt_tokens"].add(input_tokens, attributes)
450
+ metrics["genai_cost"].record(cost, attributes)
425
451
 
426
452
  # Return original response
427
453
  return response
@@ -67,7 +67,7 @@ def text_wrap(gen_ai_endpoint, version, environment, application_name,
67
67
  else:
68
68
  prompt = kwargs.get("args", "")
69
69
 
70
- prompt_tokens = general_tokens(prompt)
70
+ prompt_tokens = general_tokens(prompt[0])
71
71
 
72
72
  span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
73
73
  span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
@@ -106,14 +106,20 @@ def text_wrap(gen_ai_endpoint, version, environment, application_name,
106
106
  else:
107
107
  attribute_name = SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT
108
108
  if trace_content:
109
+ # pylint: disable=bare-except
110
+ try:
111
+ llm_response = completion.get('generated_text', '')
112
+ except:
113
+ llm_response = completion[i].get('generated_text', '')
114
+
109
115
  span.add_event(
110
116
  name=attribute_name,
111
117
  attributes={
112
118
  # pylint: disable=line-too-long
113
- SemanticConvetion.GEN_AI_CONTENT_COMPLETION: completion["generated_text"],
119
+ SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llm_response,
114
120
  },
115
121
  )
116
- completion_tokens += general_tokens(completion["generated_text"])
122
+ completion_tokens += general_tokens(llm_response)
117
123
 
118
124
  i=i+1
119
125
  span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
@@ -111,6 +111,7 @@ class SemanticConvetion:
111
111
  GEN_AI_SYSTEM_EMBEDCHAIN = "embedchain"
112
112
  GEN_AI_SYSTEM_LITELLM = "litellm"
113
113
  GEN_AI_SYSTEM_CREWAI = "crewai"
114
+ GEN_AI_SYSTEM_AG2 = "ag2"
114
115
 
115
116
  # Vector DB
116
117
  DB_REQUESTS = "db.total.requests"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openlit
3
- Version: 1.30.4
3
+ Version: 1.31.0
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
5
5
  Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
@@ -66,14 +66,14 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
66
66
  | LLMs | Vector DBs | Frameworks | GPUs |
67
67
  |--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------|
68
68
  | [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain) | [✅ NVIDIA](https://docs.openlit.io/latest/integrations/nvidia-gpu) |
69
- | [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | [✅ AMD](#) |
69
+ | [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | [✅ AMD](https://docs.openlit.io/latest/integrations/amd-gpu) |
70
70
  | [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
71
71
  | [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
72
72
  | [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
73
73
  | [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
74
74
  | [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | [✅ CrewAI](https://docs.openlit.io/latest/integrations/crewai) | |
75
- | [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | [✅ DSPy](https://docs.openlit.io/latest/integrations/dspy) | |
76
- | [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | | |
75
+ | [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | [✅ DSPy](https://docs.openlit.io/latest/integrations/dspy) | |
76
+ | [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | [✅ AG2](https://docs.openlit.io/latest/integrations/ag2) | |
77
77
  | [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
78
78
  | [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
79
79
  | [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | | | |
@@ -84,7 +84,6 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
84
84
  | [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
85
85
  | [✅ NVIDIA NIM](https://docs.openlit.io/latest/integrations/nvidia-nim) | | | |
86
86
 
87
-
88
87
  ## Supported Destinations
89
88
  - [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
90
89
  - [✅ Prometheus + Tempo](https://docs.openlit.io/latest/connections/prometheus-tempo)
@@ -92,6 +91,7 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
92
91
  - [✅ Grafana Cloud](https://docs.openlit.io/latest/connections/grafanacloud)
93
92
  - [✅ New Relic](https://docs.openlit.io/latest/connections/new-relic)
94
93
  - [✅ Elastic](https://docs.openlit.io/latest/connections/elastic)
94
+ - [✅ Middleware.io](https://docs.openlit.io/latest/connections/middleware)
95
95
  - [✅ HyperDX](https://docs.openlit.io/latest/connections/hyperdx)
96
96
  - [✅ DataDog](https://docs.openlit.io/latest/connections/datadog)
97
97
  - [✅ SigNoz](https://docs.openlit.io/latest/connections/signoz)
@@ -1,5 +1,5 @@
1
1
  openlit/__helpers.py,sha256=2OkGKOdsd9Hc011WxR70OqDlO6c4mZcu6McGuW1uAdA,6316
2
- openlit/__init__.py,sha256=ljBkmw6Kjigjz5169kDTsyJ3GmFCtXEsKLz6Kg-dzMs,19674
2
+ openlit/__init__.py,sha256=gLhGox66F9JdxwSBYyhCvXRmBluFJN-naNnP_5rG3jI,19940
3
3
  openlit/evals/__init__.py,sha256=nJe99nuLo1b5rf7pt9U9BCdSDedzbVi2Fj96cgl7msM,380
4
4
  openlit/evals/all.py,sha256=oWrue3PotE-rB5WePG3MRYSA-ro6WivkclSHjYlAqGs,7154
5
5
  openlit/evals/bias_detection.py,sha256=mCdsfK7x1vX7S3psC3g641IMlZ-7df3h-V6eiICj5N8,8154
@@ -12,6 +12,8 @@ openlit/guard/prompt_injection.py,sha256=3e4DKxB7QDzM-xPCpwEuureiH_2s_OTJ9BSckkn
12
12
  openlit/guard/restrict_topic.py,sha256=KTuWa7XeMsV4oXxOrD1CYZV0wXWxTfA0H3p_6q_IOsk,6444
13
13
  openlit/guard/sensitive_topic.py,sha256=RgVw_laFERv0nNdzBsAd2_3yLomMOK-gVq-P7oj1bTk,5552
14
14
  openlit/guard/utils.py,sha256=x0-_hAtNa_ogYR2GfnwiBF1rlqaXtaJ-rJeGguTDe-Q,7663
15
+ openlit/instrumentation/ag2/__init__.py,sha256=Nf9cDoXB16NYgZisvVQduFYJ5fpU90CNlMrIF4pSH-Y,1827
16
+ openlit/instrumentation/ag2/ag2.py,sha256=_ncg8RqUH-wXMYfaOYx2bcQOrOrDMVVm0EZAEkWdBn0,4444
15
17
  openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
16
18
  openlit/instrumentation/anthropic/anthropic.py,sha256=y7CEGhKOGHWt8G_5Phr4qPJTfPGRJIAr9Yk6nM3CcvM,16775
17
19
  openlit/instrumentation/anthropic/async_anthropic.py,sha256=Zz1KRKIG9wGn0quOoLvjORC-49IvHQpJ6GBdB-4PfCQ,16816
@@ -43,7 +45,7 @@ openlit/instrumentation/groq/groq.py,sha256=m4gFPbYzjUUIgjXZ0Alu2Zy1HcO5takCFA2X
43
45
  openlit/instrumentation/haystack/__init__.py,sha256=QK6XxxZUHX8vMv2Crk7rNBOc64iOOBLhJGL_lPlAZ8s,1758
44
46
  openlit/instrumentation/haystack/haystack.py,sha256=oQIZiDhdp3gnJnhYQ1OouJMc9YT0pQ-_31cmNuopa68,3891
45
47
  openlit/instrumentation/langchain/__init__.py,sha256=0AI2Dnqw81IcJw3jM--gGkv_HRh2GtosOGJjvOpw7Zk,3431
46
- openlit/instrumentation/langchain/langchain.py,sha256=rDGfneqnarCQTRXrVZocMStkXKgnFdzH3wHqXuWnWiw,35668
48
+ openlit/instrumentation/langchain/langchain.py,sha256=jZgWBBWYHYSNnkf5wKyNFF_z9M9YxaZKGI_uyfvtMBU,36909
47
49
  openlit/instrumentation/litellm/__init__.py,sha256=Z-LsVHKJdPganHfJA_rWg7xAfQYkvLfpLdF-eckU4qY,2401
48
50
  openlit/instrumentation/litellm/async_litellm.py,sha256=1MKNZbvKaf1lFWbXi1MQy3qFNNeXawav34SDlOQ_H3w,27544
49
51
  openlit/instrumentation/litellm/litellm.py,sha256=4YqCQ4CEQ4sfDu7pTlnflL_AfUqYEQdJDTO7nHJ6noY,27450
@@ -68,7 +70,7 @@ openlit/instrumentation/qdrant/__init__.py,sha256=GMlZgRBKoQMgrL4cFbAKwytfdTHLzJ
68
70
  openlit/instrumentation/qdrant/async_qdrant.py,sha256=Xuyw2N75mRIjltrmY8wJes5DHal0Ku3A8VcUqfbsOl0,15071
69
71
  openlit/instrumentation/qdrant/qdrant.py,sha256=K0cvEUbNx0hnk8AbEheYPSHcCgjFC482IZyHF9-P_b8,15488
70
72
  openlit/instrumentation/transformers/__init__.py,sha256=4GBtjzcJU4XiPexIUYEqF3pNZMeQw4Gm5B-cyumaFjs,1468
71
- openlit/instrumentation/transformers/transformers.py,sha256=KNAT2ROjziW6OAP6Y0Ec4oS2T2jx9y2mzpBgR_e78bI,7625
73
+ openlit/instrumentation/transformers/transformers.py,sha256=MWEVkxHRWTHrpD85I1leksDIVtBiTtR5fQCO3Z62qb4,7875
72
74
  openlit/instrumentation/vertexai/__init__.py,sha256=N3E9HtzefD-zC0fvmfGYiDmSqssoavp_i59wfuYLyMw,6079
73
75
  openlit/instrumentation/vertexai/async_vertexai.py,sha256=8JwSwLPPA4lAatf4w_5kJ5_YZDLwl5yG8N59cTD-EZM,55198
74
76
  openlit/instrumentation/vertexai/vertexai.py,sha256=R6dDQfC3YFoZDygxU2fkflcMsqIv8AVoU3XOwWSvpwA,54951
@@ -76,8 +78,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
76
78
  openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
77
79
  openlit/otel/metrics.py,sha256=y7SQDTyfLakMrz0V4DThN-WAeap7YZzyndeYGSP6nVg,4516
78
80
  openlit/otel/tracing.py,sha256=fG3vl-flSZ30whCi7rrG25PlkIhhr8PhnfJYCkZzCD0,3895
79
- openlit/semcov/__init__.py,sha256=_IjU498Sc0Rjz55y9S3dUelgRalmrzzBgFglPzOlIfk,9137
80
- openlit-1.30.4.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
81
- openlit-1.30.4.dist-info/METADATA,sha256=vpRhJggYW01tCPU-klJ6LMVzi6WB32N2OmM41MVBCfg,20915
82
- openlit-1.30.4.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
83
- openlit-1.30.4.dist-info/RECORD,,
81
+ openlit/semcov/__init__.py,sha256=mXDJNyz6dFAaNPtu90iWYBclP8tz0Ia22QVjHq1Mxz8,9167
82
+ openlit-1.31.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
83
+ openlit-1.31.0.dist-info/METADATA,sha256=Jn8RmER5JZRfC0PJ1Kpvm-pozhh6pHDPhWM4N9ro5ns,21046
84
+ openlit-1.31.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
85
+ openlit-1.31.0.dist-info/RECORD,,