openlit 1.29.4__py3-none-any.whl → 1.30.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +6 -0
- openlit/instrumentation/crewai/__init__.py +50 -0
- openlit/instrumentation/crewai/crewai.py +149 -0
- openlit/instrumentation/litellm/__init__.py +54 -0
- openlit/instrumentation/litellm/async_litellm.py +406 -0
- openlit/instrumentation/litellm/litellm.py +406 -0
- openlit/instrumentation/openai/async_openai.py +2 -2
- openlit/instrumentation/openai/openai.py +2 -2
- openlit/semcov/__init__.py +21 -0
- {openlit-1.29.4.dist-info → openlit-1.30.1.dist-info}/METADATA +11 -11
- {openlit-1.29.4.dist-info → openlit-1.30.1.dist-info}/RECORD +13 -8
- {openlit-1.29.4.dist-info → openlit-1.30.1.dist-info}/LICENSE +0 -0
- {openlit-1.29.4.dist-info → openlit-1.30.1.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -46,6 +46,8 @@ from openlit.instrumentation.pinecone import PineconeInstrumentor
|
|
46
46
|
from openlit.instrumentation.qdrant import QdrantInstrumentor
|
47
47
|
from openlit.instrumentation.milvus import MilvusInstrumentor
|
48
48
|
from openlit.instrumentation.transformers import TransformersInstrumentor
|
49
|
+
from openlit.instrumentation.litellm import LiteLLMInstrumentor
|
50
|
+
from openlit.instrumentation.crewai import CrewAIInstrumentor
|
49
51
|
from openlit.instrumentation.gpu import GPUInstrumentor
|
50
52
|
import openlit.guard
|
51
53
|
import openlit.evals
|
@@ -228,6 +230,8 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
228
230
|
"qdrant": "qdrant_client",
|
229
231
|
"milvus": "pymilvus",
|
230
232
|
"transformers": "transformers",
|
233
|
+
"litellm": "litellm",
|
234
|
+
"crewai": "crewai",
|
231
235
|
}
|
232
236
|
|
233
237
|
invalid_instrumentors = [
|
@@ -305,6 +309,8 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
305
309
|
"qdrant": QdrantInstrumentor(),
|
306
310
|
"milvus": MilvusInstrumentor(),
|
307
311
|
"transformers": TransformersInstrumentor(),
|
312
|
+
"litellm": LiteLLMInstrumentor(),
|
313
|
+
"crewai": CrewAIInstrumentor(),
|
308
314
|
}
|
309
315
|
|
310
316
|
# Initialize and instrument only the enabled instrumentors
|
@@ -0,0 +1,50 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of CrewAI Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.crewai.crewai import (
|
10
|
+
crew_wrap
|
11
|
+
)
|
12
|
+
|
13
|
+
_instruments = ("crewai >= 0.80.0",)
|
14
|
+
|
15
|
+
class CrewAIInstrumentor(BaseInstrumentor):
|
16
|
+
"""
|
17
|
+
An instrumentor for CrewAI's client library.
|
18
|
+
"""
|
19
|
+
|
20
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
21
|
+
return _instruments
|
22
|
+
|
23
|
+
def _instrument(self, **kwargs):
|
24
|
+
application_name = kwargs.get("application_name", "default_application")
|
25
|
+
environment = kwargs.get("environment", "default_environment")
|
26
|
+
tracer = kwargs.get("tracer")
|
27
|
+
metrics = kwargs.get("metrics_dict")
|
28
|
+
pricing_info = kwargs.get("pricing_info", {})
|
29
|
+
trace_content = kwargs.get("trace_content", False)
|
30
|
+
disable_metrics = kwargs.get("disable_metrics")
|
31
|
+
version = importlib.metadata.version("crewai")
|
32
|
+
|
33
|
+
wrap_function_wrapper(
|
34
|
+
"crewai.agent",
|
35
|
+
"Agent.execute_task",
|
36
|
+
crew_wrap("crewai.agent_execute_task", version, environment, application_name,
|
37
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
38
|
+
)
|
39
|
+
|
40
|
+
wrap_function_wrapper(
|
41
|
+
"crewai.task",
|
42
|
+
"Task._execute_core",
|
43
|
+
crew_wrap("crewai.task_execute_core", version, environment, application_name,
|
44
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
45
|
+
)
|
46
|
+
|
47
|
+
|
48
|
+
def _uninstrument(self, **kwargs):
|
49
|
+
# Proper uninstrumentation logic to revert patched methods
|
50
|
+
pass
|
@@ -0,0 +1,149 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring LiteLLM calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
import json
|
8
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
9
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
10
|
+
from openlit.__helpers import (
|
11
|
+
handle_exception,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvetion
|
14
|
+
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
def _parse_tools(tools):
|
19
|
+
result = []
|
20
|
+
for tool in tools:
|
21
|
+
res = {}
|
22
|
+
if hasattr(tool, "name") and tool.name is not None:
|
23
|
+
res["name"] = tool.name
|
24
|
+
if hasattr(tool, "description") and tool.description is not None:
|
25
|
+
res["description"] = tool.description
|
26
|
+
if res:
|
27
|
+
result.append(res)
|
28
|
+
return json.dumps(result)
|
29
|
+
|
30
|
+
def crew_wrap(gen_ai_endpoint, version, environment, application_name,
|
31
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
32
|
+
"""
|
33
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
37
|
+
version: Version of the monitoring package.
|
38
|
+
environment: Deployment environment (e.g., production, staging).
|
39
|
+
application_name: Name of the application using the CrewAI Agent.
|
40
|
+
tracer: OpenTelemetry tracer for creating spans.
|
41
|
+
pricing_info: Information used for calculating the cost of CrewAI usage.
|
42
|
+
trace_content: Flag indicating whether to trace the actual content.
|
43
|
+
|
44
|
+
Returns:
|
45
|
+
A function that wraps the chat completions method to add telemetry.
|
46
|
+
"""
|
47
|
+
|
48
|
+
def wrapper(wrapped, instance, args, kwargs):
|
49
|
+
"""
|
50
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
51
|
+
|
52
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
53
|
+
gracefully, adding details to the trace for observability.
|
54
|
+
|
55
|
+
Args:
|
56
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
57
|
+
instance: The instance of the class where the original method is defined.
|
58
|
+
args: Positional arguments for the 'chat.completions' method.
|
59
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
60
|
+
|
61
|
+
Returns:
|
62
|
+
The response from the original 'chat.completions' method.
|
63
|
+
"""
|
64
|
+
|
65
|
+
# pylint: disable=line-too-long
|
66
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
67
|
+
response = wrapped(*args, **kwargs)
|
68
|
+
|
69
|
+
try:
|
70
|
+
# Set base span attribues
|
71
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
72
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
73
|
+
SemanticConvetion.GEN_AI_SYSTEM_CREWAI)
|
74
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
75
|
+
SemanticConvetion.GEN_AI_TYPE_AGENT)
|
76
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
77
|
+
gen_ai_endpoint)
|
78
|
+
|
79
|
+
instance_class = instance.__class__.__name__
|
80
|
+
|
81
|
+
if instance_class == "Task":
|
82
|
+
task = {}
|
83
|
+
for key, value in instance.__dict__.items():
|
84
|
+
if value is None:
|
85
|
+
continue
|
86
|
+
if key == "tools":
|
87
|
+
value = _parse_tools(value)
|
88
|
+
task[key] = value
|
89
|
+
elif key == "agent":
|
90
|
+
task[key] = value.role
|
91
|
+
else:
|
92
|
+
task[key] = str(value)
|
93
|
+
|
94
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_TASK_ID,
|
95
|
+
task.get('id', ''))
|
96
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_TASK,
|
97
|
+
task.get('description', ''))
|
98
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_EXPECTED_OUTPUT,
|
99
|
+
task.get('expected_output', ''))
|
100
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ACTUAL_OUTPUT,
|
101
|
+
task.get('output', ''))
|
102
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_HUMAN_INPUT,
|
103
|
+
task.get('human_input', ''))
|
104
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_TASK_ASSOCIATION,
|
105
|
+
str(task.get('processed_by_agents', '')))
|
106
|
+
|
107
|
+
elif instance_class == "Agent":
|
108
|
+
agent = {}
|
109
|
+
for key, value in instance.__dict__.items():
|
110
|
+
if key == "tools":
|
111
|
+
value = _parse_tools(value)
|
112
|
+
if value is None:
|
113
|
+
continue
|
114
|
+
agent[key] = str(value)
|
115
|
+
|
116
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ID,
|
117
|
+
agent.get('id', ''))
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ROLE,
|
119
|
+
agent.get('role', ''))
|
120
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_GOAL,
|
121
|
+
agent.get('goal', ''))
|
122
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_CONTEXT,
|
123
|
+
agent.get('backstory', ''))
|
124
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ENABLE_CACHE,
|
125
|
+
agent.get('cache', ''))
|
126
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ALLOW_DELEGATION,
|
127
|
+
agent.get('allow_delegation', ''))
|
128
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_ALLOW_CODE_EXECUTION,
|
129
|
+
agent.get('allow_code_execution', ''))
|
130
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_MAX_RETRY_LIMIT,
|
131
|
+
agent.get('max_retry_limit', ''))
|
132
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_TOOLS,
|
133
|
+
str(agent.get('tools', '')))
|
134
|
+
span.set_attribute(SemanticConvetion.GEN_AI_AGENT_TOOL_RESULTS,
|
135
|
+
str(agent.get('tools_results', '')))
|
136
|
+
|
137
|
+
span.set_status(Status(StatusCode.OK))
|
138
|
+
|
139
|
+
# Return original response
|
140
|
+
return response
|
141
|
+
|
142
|
+
except Exception as e:
|
143
|
+
handle_exception(span, e)
|
144
|
+
logger.error("Error in trace creation: %s", e)
|
145
|
+
|
146
|
+
# Return original response
|
147
|
+
return response
|
148
|
+
|
149
|
+
return wrapper
|
@@ -0,0 +1,54 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of LiteLLM Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.litellm.litellm import (
|
10
|
+
completion
|
11
|
+
)
|
12
|
+
from openlit.instrumentation.litellm.async_litellm import (
|
13
|
+
acompletion
|
14
|
+
)
|
15
|
+
|
16
|
+
_instruments = ("litellm >= 1.52.6",)
|
17
|
+
|
18
|
+
class LiteLLMInstrumentor(BaseInstrumentor):
|
19
|
+
"""
|
20
|
+
An instrumentor for LiteLLM's client library.
|
21
|
+
"""
|
22
|
+
|
23
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
24
|
+
return _instruments
|
25
|
+
|
26
|
+
def _instrument(self, **kwargs):
|
27
|
+
application_name = kwargs.get("application_name", "default_application")
|
28
|
+
environment = kwargs.get("environment", "default_environment")
|
29
|
+
tracer = kwargs.get("tracer")
|
30
|
+
metrics = kwargs.get("metrics_dict")
|
31
|
+
pricing_info = kwargs.get("pricing_info", {})
|
32
|
+
trace_content = kwargs.get("trace_content", False)
|
33
|
+
disable_metrics = kwargs.get("disable_metrics")
|
34
|
+
version = importlib.metadata.version("litellm")
|
35
|
+
|
36
|
+
# completion
|
37
|
+
wrap_function_wrapper(
|
38
|
+
"litellm",
|
39
|
+
"completion",
|
40
|
+
completion("litellm.completion", version, environment, application_name,
|
41
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
42
|
+
)
|
43
|
+
|
44
|
+
wrap_function_wrapper(
|
45
|
+
"litellm",
|
46
|
+
"acompletion",
|
47
|
+
acompletion("litellm.completion", version, environment, application_name,
|
48
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
49
|
+
)
|
50
|
+
|
51
|
+
|
52
|
+
def _uninstrument(self, **kwargs):
|
53
|
+
# Proper uninstrumentation logic to revert patched methods
|
54
|
+
pass
|
@@ -0,0 +1,406 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring LiteLLM calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
openai_tokens,
|
12
|
+
handle_exception,
|
13
|
+
response_as_dict,
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvetion
|
16
|
+
|
17
|
+
# Initialize logger for logging potential issues and operations
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
def acompletion(gen_ai_endpoint, version, environment, application_name,
|
21
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
22
|
+
"""
|
23
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
27
|
+
version: Version of the monitoring package.
|
28
|
+
environment: Deployment environment (e.g., production, staging).
|
29
|
+
application_name: Name of the application using the LiteLLM SDK.
|
30
|
+
tracer: OpenTelemetry tracer for creating spans.
|
31
|
+
pricing_info: Information used for calculating the cost of LiteLLM usage.
|
32
|
+
trace_content: Flag indicating whether to trace the actual content.
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
A function that wraps the chat completions method to add telemetry.
|
36
|
+
"""
|
37
|
+
|
38
|
+
class TracedAsyncStream:
|
39
|
+
"""
|
40
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
41
|
+
|
42
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
43
|
+
handle asynchronous streaming responses.
|
44
|
+
|
45
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
46
|
+
handle asynchronous context management protocol.
|
47
|
+
"""
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
wrapped,
|
51
|
+
span,
|
52
|
+
kwargs,
|
53
|
+
**args,
|
54
|
+
):
|
55
|
+
self.__wrapped__ = wrapped
|
56
|
+
self._span = span
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
self._llmresponse = ""
|
59
|
+
self._response_id = ""
|
60
|
+
|
61
|
+
self._args = args
|
62
|
+
self._kwargs = kwargs
|
63
|
+
|
64
|
+
async def __aenter__(self):
|
65
|
+
await self.__wrapped__.__aenter__()
|
66
|
+
return self
|
67
|
+
|
68
|
+
async def __aexit__(self, exc_type, exc_value, traceback):
|
69
|
+
await self.__wrapped__.__aexit__(exc_type, exc_value, traceback)
|
70
|
+
|
71
|
+
def __aiter__(self):
|
72
|
+
return self
|
73
|
+
|
74
|
+
async def __getattr__(self, name):
|
75
|
+
"""Delegate attribute access to the wrapped object."""
|
76
|
+
return getattr(await self.__wrapped__, name)
|
77
|
+
|
78
|
+
async def __anext__(self):
|
79
|
+
try:
|
80
|
+
chunk = await self.__wrapped__.__anext__()
|
81
|
+
chunked = response_as_dict(chunk)
|
82
|
+
# Collect message IDs and aggregated response from events
|
83
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
84
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
85
|
+
|
86
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
87
|
+
if content:
|
88
|
+
self._llmresponse += content
|
89
|
+
self._response_id = chunked.get('id')
|
90
|
+
return chunk
|
91
|
+
except StopAsyncIteration:
|
92
|
+
# Handling exception ensure observability without disrupting operation
|
93
|
+
try:
|
94
|
+
# Format 'messages' into a single string
|
95
|
+
message_prompt = self._kwargs.get("messages", "")
|
96
|
+
formatted_messages = []
|
97
|
+
for message in message_prompt:
|
98
|
+
role = message["role"]
|
99
|
+
content = message["content"]
|
100
|
+
|
101
|
+
if isinstance(content, list):
|
102
|
+
content_str = ", ".join(
|
103
|
+
# pylint: disable=line-too-long
|
104
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
105
|
+
if "type" in item else f'text: {item["text"]}'
|
106
|
+
for item in content
|
107
|
+
)
|
108
|
+
formatted_messages.append(f"{role}: {content_str}")
|
109
|
+
else:
|
110
|
+
formatted_messages.append(f"{role}: {content}")
|
111
|
+
prompt = "\n".join(formatted_messages)
|
112
|
+
|
113
|
+
# Calculate tokens using input prompt and aggregated response
|
114
|
+
prompt_tokens = openai_tokens(prompt,
|
115
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
116
|
+
completion_tokens = openai_tokens(self._llmresponse,
|
117
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
118
|
+
|
119
|
+
# Calculate cost of the operation
|
120
|
+
cost = get_chat_model_cost(self._kwargs.get("model", "gpt-3.5-turbo"),
|
121
|
+
pricing_info, prompt_tokens,
|
122
|
+
completion_tokens)
|
123
|
+
|
124
|
+
# Set Span attributes
|
125
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
126
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
127
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM)
|
128
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
129
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
130
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
131
|
+
gen_ai_endpoint)
|
132
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
133
|
+
self._response_id)
|
134
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
135
|
+
environment)
|
136
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
137
|
+
application_name)
|
138
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
139
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
140
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
141
|
+
self._kwargs.get("user", ""))
|
142
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
143
|
+
self._kwargs.get("top_p", 1.0))
|
144
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
145
|
+
self._kwargs.get("max_tokens", -1))
|
146
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
147
|
+
self._kwargs.get("temperature", 1.0))
|
148
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
149
|
+
self._kwargs.get("presence_penalty", 0.0))
|
150
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
151
|
+
self._kwargs.get("frequency_penalty", 0.0))
|
152
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
153
|
+
self._kwargs.get("seed", ""))
|
154
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
155
|
+
True)
|
156
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
157
|
+
prompt_tokens)
|
158
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
159
|
+
completion_tokens)
|
160
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
161
|
+
prompt_tokens + completion_tokens)
|
162
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
163
|
+
cost)
|
164
|
+
if trace_content:
|
165
|
+
self._span.add_event(
|
166
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
167
|
+
attributes={
|
168
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
169
|
+
},
|
170
|
+
)
|
171
|
+
self._span.add_event(
|
172
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
173
|
+
attributes={
|
174
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
175
|
+
},
|
176
|
+
)
|
177
|
+
|
178
|
+
self._span.set_status(Status(StatusCode.OK))
|
179
|
+
|
180
|
+
if disable_metrics is False:
|
181
|
+
attributes = {
|
182
|
+
TELEMETRY_SDK_NAME:
|
183
|
+
"openlit",
|
184
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
185
|
+
application_name,
|
186
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
187
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM,
|
188
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
189
|
+
environment,
|
190
|
+
SemanticConvetion.GEN_AI_TYPE:
|
191
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
192
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
193
|
+
self._kwargs.get("model", "gpt-3.5-turbo")
|
194
|
+
}
|
195
|
+
|
196
|
+
metrics["genai_requests"].add(1, attributes)
|
197
|
+
metrics["genai_total_tokens"].add(
|
198
|
+
prompt_tokens + completion_tokens, attributes
|
199
|
+
)
|
200
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
201
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
202
|
+
metrics["genai_cost"].record(cost, attributes)
|
203
|
+
|
204
|
+
except Exception as e:
|
205
|
+
handle_exception(self._span, e)
|
206
|
+
logger.error("Error in trace creation: %s", e)
|
207
|
+
finally:
|
208
|
+
self._span.end()
|
209
|
+
raise
|
210
|
+
|
211
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
212
|
+
"""
|
213
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
214
|
+
|
215
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
216
|
+
gracefully, adding details to the trace for observability.
|
217
|
+
|
218
|
+
Args:
|
219
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
220
|
+
instance: The instance of the class where the original method is defined.
|
221
|
+
args: Positional arguments for the 'chat.completions' method.
|
222
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
223
|
+
|
224
|
+
Returns:
|
225
|
+
The response from the original 'chat.completions' method.
|
226
|
+
"""
|
227
|
+
|
228
|
+
# Check if streaming is enabled for the API call
|
229
|
+
streaming = kwargs.get("stream", False)
|
230
|
+
|
231
|
+
# pylint: disable=no-else-return
|
232
|
+
if streaming:
|
233
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
234
|
+
awaited_wrapped = await wrapped(*args, **kwargs)
|
235
|
+
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
236
|
+
|
237
|
+
return TracedAsyncStream(awaited_wrapped, span, kwargs)
|
238
|
+
|
239
|
+
# Handling for non-streaming responses
|
240
|
+
else:
|
241
|
+
# pylint: disable=line-too-long
|
242
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
243
|
+
response = await wrapped(*args, **kwargs)
|
244
|
+
|
245
|
+
response_dict = response_as_dict(response)
|
246
|
+
|
247
|
+
try:
|
248
|
+
# Format 'messages' into a single string
|
249
|
+
message_prompt = kwargs.get("messages", "")
|
250
|
+
formatted_messages = []
|
251
|
+
for message in message_prompt:
|
252
|
+
role = message["role"]
|
253
|
+
content = message["content"]
|
254
|
+
|
255
|
+
if isinstance(content, list):
|
256
|
+
content_str = ", ".join(
|
257
|
+
# pylint: disable=line-too-long
|
258
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
259
|
+
if "type" in item else f'text: {item["text"]}'
|
260
|
+
for item in content
|
261
|
+
)
|
262
|
+
formatted_messages.append(f"{role}: {content_str}")
|
263
|
+
else:
|
264
|
+
formatted_messages.append(f"{role}: {content}")
|
265
|
+
prompt = "\n".join(formatted_messages)
|
266
|
+
|
267
|
+
# Set base span attribues
|
268
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
269
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
270
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM)
|
271
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
272
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
273
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
274
|
+
gen_ai_endpoint)
|
275
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
276
|
+
response_dict.get("id"))
|
277
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
278
|
+
environment)
|
279
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
280
|
+
application_name)
|
281
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
282
|
+
kwargs.get("model", "gpt-3.5-turbo"))
|
283
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
284
|
+
kwargs.get("top_p", 1.0))
|
285
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
286
|
+
kwargs.get("max_tokens", -1))
|
287
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
288
|
+
kwargs.get("user", ""))
|
289
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
290
|
+
kwargs.get("temperature", 1.0))
|
291
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
292
|
+
kwargs.get("presence_penalty", 0.0))
|
293
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
294
|
+
kwargs.get("frequency_penalty", 0.0))
|
295
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
296
|
+
kwargs.get("seed", ""))
|
297
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
298
|
+
False)
|
299
|
+
if trace_content:
|
300
|
+
span.add_event(
|
301
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
302
|
+
attributes={
|
303
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
304
|
+
},
|
305
|
+
)
|
306
|
+
|
307
|
+
# Set span attributes when tools is not passed to the function call
|
308
|
+
if "tools" not in kwargs:
|
309
|
+
# Calculate cost of the operation
|
310
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
311
|
+
pricing_info, response_dict.get('usage', {}).get('prompt_tokens', None),
|
312
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
313
|
+
|
314
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
315
|
+
response_dict.get('usage', {}).get('prompt_tokens', None))
|
316
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
317
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
318
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
319
|
+
response_dict.get('usage', {}).get('total_tokens', None))
|
320
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
321
|
+
[response_dict.get('choices', [])[0].get('finish_reason', None)])
|
322
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
323
|
+
cost)
|
324
|
+
|
325
|
+
# Set span attributes for when n = 1 (default)
|
326
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
327
|
+
if trace_content:
|
328
|
+
span.add_event(
|
329
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
330
|
+
attributes={
|
331
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("message").get("content"),
|
332
|
+
},
|
333
|
+
)
|
334
|
+
|
335
|
+
# Set span attributes for when n > 0
|
336
|
+
else:
|
337
|
+
i = 0
|
338
|
+
while i < kwargs["n"] and trace_content is True:
|
339
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
340
|
+
span.add_event(
|
341
|
+
name=attribute_name,
|
342
|
+
attributes={
|
343
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
344
|
+
},
|
345
|
+
)
|
346
|
+
i += 1
|
347
|
+
|
348
|
+
# Return original response
|
349
|
+
return response
|
350
|
+
|
351
|
+
# Set span attributes when tools is passed to the function call
|
352
|
+
elif "tools" in kwargs:
|
353
|
+
# Calculate cost of the operation
|
354
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
355
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
356
|
+
response_dict.get('usage').get('completion_tokens'))
|
357
|
+
span.add_event(
|
358
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
359
|
+
attributes={
|
360
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: "Function called with tools",
|
361
|
+
},
|
362
|
+
)
|
363
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
364
|
+
response_dict.get('usage').get('prompt_tokens'))
|
365
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
366
|
+
response_dict.get('usage').get('completion_tokens'))
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
368
|
+
response_dict.get('usage').get('total_tokens'))
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
370
|
+
cost)
|
371
|
+
|
372
|
+
span.set_status(Status(StatusCode.OK))
|
373
|
+
|
374
|
+
if disable_metrics is False:
|
375
|
+
attributes = {
|
376
|
+
TELEMETRY_SDK_NAME:
|
377
|
+
"openlit",
|
378
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
379
|
+
application_name,
|
380
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
381
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM,
|
382
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
383
|
+
environment,
|
384
|
+
SemanticConvetion.GEN_AI_TYPE:
|
385
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
386
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
387
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
388
|
+
}
|
389
|
+
|
390
|
+
metrics["genai_requests"].add(1, attributes)
|
391
|
+
metrics["genai_total_tokens"].add(response_dict.get('usage').get('total_tokens'), attributes)
|
392
|
+
metrics["genai_completion_tokens"].add(response_dict.get('usage').get('completion_tokens'), attributes)
|
393
|
+
metrics["genai_prompt_tokens"].add(response_dict.get('usage').get('prompt_tokens'), attributes)
|
394
|
+
metrics["genai_cost"].record(cost, attributes)
|
395
|
+
|
396
|
+
# Return original response
|
397
|
+
return response
|
398
|
+
|
399
|
+
except Exception as e:
|
400
|
+
handle_exception(span, e)
|
401
|
+
logger.error("Error in trace creation: %s", e)
|
402
|
+
|
403
|
+
# Return original response
|
404
|
+
return response
|
405
|
+
|
406
|
+
return wrapper
|
@@ -0,0 +1,406 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, too-many-branches
|
2
|
+
"""
|
3
|
+
Module for monitoring LiteLLM calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
get_chat_model_cost,
|
11
|
+
openai_tokens,
|
12
|
+
handle_exception,
|
13
|
+
response_as_dict,
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvetion
|
16
|
+
|
17
|
+
# Initialize logger for logging potential issues and operations
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
def completion(gen_ai_endpoint, version, environment, application_name,
|
21
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
22
|
+
"""
|
23
|
+
Generates a telemetry wrapper for chat completions to collect metrics.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
27
|
+
version: Version of the monitoring package.
|
28
|
+
environment: Deployment environment (e.g., production, staging).
|
29
|
+
application_name: Name of the application using the LiteLLM SDK.
|
30
|
+
tracer: OpenTelemetry tracer for creating spans.
|
31
|
+
pricing_info: Information used for calculating the cost of LiteLLM usage.
|
32
|
+
trace_content: Flag indicating whether to trace the actual content.
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
A function that wraps the chat completions method to add telemetry.
|
36
|
+
"""
|
37
|
+
|
38
|
+
class TracedSyncStream:
|
39
|
+
"""
|
40
|
+
Wrapper for streaming responses to collect metrics and trace data.
|
41
|
+
|
42
|
+
This class implements the '__aiter__' and '__anext__' methods that
|
43
|
+
handle asynchronous streaming responses.
|
44
|
+
|
45
|
+
This class also implements '__aenter__' and '__aexit__' methods that
|
46
|
+
handle asynchronous context management protocol.
|
47
|
+
"""
|
48
|
+
def __init__(
|
49
|
+
self,
|
50
|
+
wrapped,
|
51
|
+
span,
|
52
|
+
kwargs,
|
53
|
+
**args,
|
54
|
+
):
|
55
|
+
self.__wrapped__ = wrapped
|
56
|
+
self._span = span
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
self._llmresponse = ""
|
59
|
+
self._response_id = ""
|
60
|
+
|
61
|
+
self._args = args
|
62
|
+
self._kwargs = kwargs
|
63
|
+
|
64
|
+
def __enter__(self):
|
65
|
+
self.__wrapped__.__enter__()
|
66
|
+
return self
|
67
|
+
|
68
|
+
def __exit__(self, exc_type, exc_value, traceback):
|
69
|
+
self.__wrapped__.__exit__(exc_type, exc_value, traceback)
|
70
|
+
|
71
|
+
def __iter__(self):
|
72
|
+
return self
|
73
|
+
|
74
|
+
def __getattr__(self, name):
|
75
|
+
"""Delegate attribute access to the wrapped object."""
|
76
|
+
return getattr(self.__wrapped__, name)
|
77
|
+
|
78
|
+
def __next__(self):
|
79
|
+
try:
|
80
|
+
chunk = self.__wrapped__.__next__()
|
81
|
+
chunked = response_as_dict(chunk)
|
82
|
+
# Collect message IDs and aggregated response from events
|
83
|
+
if (len(chunked.get('choices')) > 0 and ('delta' in chunked.get('choices')[0] and
|
84
|
+
'content' in chunked.get('choices')[0].get('delta'))):
|
85
|
+
|
86
|
+
content = chunked.get('choices')[0].get('delta').get('content')
|
87
|
+
if content:
|
88
|
+
self._llmresponse += content
|
89
|
+
self._response_id = chunked.get('id')
|
90
|
+
return chunk
|
91
|
+
except StopIteration:
|
92
|
+
# Handling exception ensure observability without disrupting operation
|
93
|
+
try:
|
94
|
+
# Format 'messages' into a single string
|
95
|
+
message_prompt = self._kwargs.get("messages", "")
|
96
|
+
formatted_messages = []
|
97
|
+
for message in message_prompt:
|
98
|
+
role = message["role"]
|
99
|
+
content = message["content"]
|
100
|
+
|
101
|
+
if isinstance(content, list):
|
102
|
+
content_str = ", ".join(
|
103
|
+
# pylint: disable=line-too-long
|
104
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
105
|
+
if "type" in item else f'text: {item["text"]}'
|
106
|
+
for item in content
|
107
|
+
)
|
108
|
+
formatted_messages.append(f"{role}: {content_str}")
|
109
|
+
else:
|
110
|
+
formatted_messages.append(f"{role}: {content}")
|
111
|
+
prompt = "\n".join(formatted_messages)
|
112
|
+
|
113
|
+
# Calculate tokens using input prompt and aggregated response
|
114
|
+
prompt_tokens = openai_tokens(prompt,
|
115
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
116
|
+
completion_tokens = openai_tokens(self._llmresponse,
|
117
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
118
|
+
|
119
|
+
# Calculate cost of the operation
|
120
|
+
cost = get_chat_model_cost(self._kwargs.get("model", "gpt-3.5-turbo"),
|
121
|
+
pricing_info, prompt_tokens,
|
122
|
+
completion_tokens)
|
123
|
+
|
124
|
+
# Set Span attributes
|
125
|
+
self._span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
126
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
127
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM)
|
128
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
129
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
130
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
131
|
+
gen_ai_endpoint)
|
132
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
133
|
+
self._response_id)
|
134
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
135
|
+
environment)
|
136
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
137
|
+
application_name)
|
138
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
139
|
+
self._kwargs.get("model", "gpt-3.5-turbo"))
|
140
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
141
|
+
self._kwargs.get("user", ""))
|
142
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
143
|
+
self._kwargs.get("top_p", 1.0))
|
144
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
145
|
+
self._kwargs.get("max_tokens", -1))
|
146
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
147
|
+
self._kwargs.get("temperature", 1.0))
|
148
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
149
|
+
self._kwargs.get("presence_penalty", 0.0))
|
150
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
151
|
+
self._kwargs.get("frequency_penalty", 0.0))
|
152
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
153
|
+
self._kwargs.get("seed", ""))
|
154
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
155
|
+
True)
|
156
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
157
|
+
prompt_tokens)
|
158
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
159
|
+
completion_tokens)
|
160
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
161
|
+
prompt_tokens + completion_tokens)
|
162
|
+
self._span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
163
|
+
cost)
|
164
|
+
if trace_content:
|
165
|
+
self._span.add_event(
|
166
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
167
|
+
attributes={
|
168
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
169
|
+
},
|
170
|
+
)
|
171
|
+
self._span.add_event(
|
172
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
173
|
+
attributes={
|
174
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: self._llmresponse,
|
175
|
+
},
|
176
|
+
)
|
177
|
+
|
178
|
+
self._span.set_status(Status(StatusCode.OK))
|
179
|
+
|
180
|
+
if disable_metrics is False:
|
181
|
+
attributes = {
|
182
|
+
TELEMETRY_SDK_NAME:
|
183
|
+
"openlit",
|
184
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
185
|
+
application_name,
|
186
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
187
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM,
|
188
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
189
|
+
environment,
|
190
|
+
SemanticConvetion.GEN_AI_TYPE:
|
191
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
192
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
193
|
+
self._kwargs.get("model", "gpt-3.5-turbo")
|
194
|
+
}
|
195
|
+
|
196
|
+
metrics["genai_requests"].add(1, attributes)
|
197
|
+
metrics["genai_total_tokens"].add(
|
198
|
+
prompt_tokens + completion_tokens, attributes
|
199
|
+
)
|
200
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
201
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
202
|
+
metrics["genai_cost"].record(cost, attributes)
|
203
|
+
|
204
|
+
except Exception as e:
|
205
|
+
handle_exception(self._span, e)
|
206
|
+
logger.error("Error in trace creation: %s", e)
|
207
|
+
finally:
|
208
|
+
self._span.end()
|
209
|
+
raise
|
210
|
+
|
211
|
+
def wrapper(wrapped, instance, args, kwargs):
|
212
|
+
"""
|
213
|
+
Wraps the 'chat.completions' API call to add telemetry.
|
214
|
+
|
215
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
216
|
+
gracefully, adding details to the trace for observability.
|
217
|
+
|
218
|
+
Args:
|
219
|
+
wrapped: The original 'chat.completions' method to be wrapped.
|
220
|
+
instance: The instance of the class where the original method is defined.
|
221
|
+
args: Positional arguments for the 'chat.completions' method.
|
222
|
+
kwargs: Keyword arguments for the 'chat.completions' method.
|
223
|
+
|
224
|
+
Returns:
|
225
|
+
The response from the original 'chat.completions' method.
|
226
|
+
"""
|
227
|
+
|
228
|
+
# Check if streaming is enabled for the API call
|
229
|
+
streaming = kwargs.get("stream", False)
|
230
|
+
|
231
|
+
# pylint: disable=no-else-return
|
232
|
+
if streaming:
|
233
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
234
|
+
awaited_wrapped = wrapped(*args, **kwargs)
|
235
|
+
span = tracer.start_span(gen_ai_endpoint, kind=SpanKind.CLIENT)
|
236
|
+
|
237
|
+
return TracedSyncStream(awaited_wrapped, span, kwargs)
|
238
|
+
|
239
|
+
# Handling for non-streaming responses
|
240
|
+
else:
|
241
|
+
# pylint: disable=line-too-long
|
242
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
243
|
+
response = wrapped(*args, **kwargs)
|
244
|
+
|
245
|
+
response_dict = response_as_dict(response)
|
246
|
+
|
247
|
+
try:
|
248
|
+
# Format 'messages' into a single string
|
249
|
+
message_prompt = kwargs.get("messages", "")
|
250
|
+
formatted_messages = []
|
251
|
+
for message in message_prompt:
|
252
|
+
role = message["role"]
|
253
|
+
content = message["content"]
|
254
|
+
|
255
|
+
if isinstance(content, list):
|
256
|
+
content_str = ", ".join(
|
257
|
+
# pylint: disable=line-too-long
|
258
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
259
|
+
if "type" in item else f'text: {item["text"]}'
|
260
|
+
for item in content
|
261
|
+
)
|
262
|
+
formatted_messages.append(f"{role}: {content_str}")
|
263
|
+
else:
|
264
|
+
formatted_messages.append(f"{role}: {content}")
|
265
|
+
prompt = "\n".join(formatted_messages)
|
266
|
+
|
267
|
+
# Set base span attribues
|
268
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
269
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
270
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM)
|
271
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
272
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
273
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
274
|
+
gen_ai_endpoint)
|
275
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
276
|
+
response_dict.get("id"))
|
277
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
278
|
+
environment)
|
279
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
280
|
+
application_name)
|
281
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
282
|
+
kwargs.get("model", "gpt-3.5-turbo"))
|
283
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
284
|
+
kwargs.get("top_p", 1.0))
|
285
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
286
|
+
kwargs.get("max_tokens", -1))
|
287
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
288
|
+
kwargs.get("user", ""))
|
289
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
290
|
+
kwargs.get("temperature", 1.0))
|
291
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
292
|
+
kwargs.get("presence_penalty", 0.0))
|
293
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
294
|
+
kwargs.get("frequency_penalty", 0.0))
|
295
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
296
|
+
kwargs.get("seed", ""))
|
297
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
298
|
+
False)
|
299
|
+
if trace_content:
|
300
|
+
span.add_event(
|
301
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
302
|
+
attributes={
|
303
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
304
|
+
},
|
305
|
+
)
|
306
|
+
|
307
|
+
# Set span attributes when tools is not passed to the function call
|
308
|
+
if "tools" not in kwargs:
|
309
|
+
# Calculate cost of the operation
|
310
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
311
|
+
pricing_info, response_dict.get('usage', {}).get('prompt_tokens', None),
|
312
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
313
|
+
|
314
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
315
|
+
response_dict.get('usage', {}).get('prompt_tokens', None))
|
316
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
317
|
+
response_dict.get('usage', {}).get('completion_tokens', None))
|
318
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
319
|
+
response_dict.get('usage', {}).get('total_tokens', None))
|
320
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
321
|
+
[response_dict.get('choices', [])[0].get('finish_reason', None)])
|
322
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
323
|
+
cost)
|
324
|
+
|
325
|
+
# Set span attributes for when n = 1 (default)
|
326
|
+
if "n" not in kwargs or kwargs["n"] == 1:
|
327
|
+
if trace_content:
|
328
|
+
span.add_event(
|
329
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
330
|
+
attributes={
|
331
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices', [])[0].get("message").get("content"),
|
332
|
+
},
|
333
|
+
)
|
334
|
+
|
335
|
+
# Set span attributes for when n > 0
|
336
|
+
else:
|
337
|
+
i = 0
|
338
|
+
while i < kwargs["n"] and trace_content is True:
|
339
|
+
attribute_name = f"gen_ai.content.completion.{i}"
|
340
|
+
span.add_event(
|
341
|
+
name=attribute_name,
|
342
|
+
attributes={
|
343
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response_dict.get('choices')[i].get("message").get("content"),
|
344
|
+
},
|
345
|
+
)
|
346
|
+
i += 1
|
347
|
+
|
348
|
+
# Return original response
|
349
|
+
return response
|
350
|
+
|
351
|
+
# Set span attributes when tools is passed to the function call
|
352
|
+
elif "tools" in kwargs:
|
353
|
+
# Calculate cost of the operation
|
354
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
355
|
+
pricing_info, response_dict.get('usage').get('prompt_tokens'),
|
356
|
+
response_dict.get('usage').get('completion_tokens'))
|
357
|
+
span.add_event(
|
358
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
359
|
+
attributes={
|
360
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: "Function called with tools",
|
361
|
+
},
|
362
|
+
)
|
363
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
364
|
+
response_dict.get('usage').get('prompt_tokens'))
|
365
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
366
|
+
response_dict.get('usage').get('completion_tokens'))
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
368
|
+
response_dict.get('usage').get('total_tokens'))
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
370
|
+
cost)
|
371
|
+
|
372
|
+
span.set_status(Status(StatusCode.OK))
|
373
|
+
|
374
|
+
if disable_metrics is False:
|
375
|
+
attributes = {
|
376
|
+
TELEMETRY_SDK_NAME:
|
377
|
+
"openlit",
|
378
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
379
|
+
application_name,
|
380
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
381
|
+
SemanticConvetion.GEN_AI_SYSTEM_LITELLM,
|
382
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
383
|
+
environment,
|
384
|
+
SemanticConvetion.GEN_AI_TYPE:
|
385
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
386
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
387
|
+
kwargs.get("model", "gpt-3.5-turbo")
|
388
|
+
}
|
389
|
+
|
390
|
+
metrics["genai_requests"].add(1, attributes)
|
391
|
+
metrics["genai_total_tokens"].add(response_dict.get('usage').get('total_tokens'), attributes)
|
392
|
+
metrics["genai_completion_tokens"].add(response_dict.get('usage').get('completion_tokens'), attributes)
|
393
|
+
metrics["genai_prompt_tokens"].add(response_dict.get('usage').get('prompt_tokens'), attributes)
|
394
|
+
metrics["genai_cost"].record(cost, attributes)
|
395
|
+
|
396
|
+
# Return original response
|
397
|
+
return response
|
398
|
+
|
399
|
+
except Exception as e:
|
400
|
+
handle_exception(span, e)
|
401
|
+
logger.error("Error in trace creation: %s", e)
|
402
|
+
|
403
|
+
# Return original response
|
404
|
+
return response
|
405
|
+
|
406
|
+
return wrapper
|
@@ -468,8 +468,8 @@ def async_embedding(gen_ai_endpoint, version, environment, application_name,
|
|
468
468
|
kwargs.get("model", "text-embedding-ada-002"))
|
469
469
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
470
470
|
kwargs.get("encoding_format", "float"))
|
471
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
472
|
-
|
471
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
472
|
+
# kwargs.get("dimensions", "null"))
|
473
473
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
474
474
|
kwargs.get("user", ""))
|
475
475
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
@@ -468,8 +468,8 @@ def embedding(gen_ai_endpoint, version, environment, application_name,
|
|
468
468
|
kwargs.get("model", "text-embedding-ada-002"))
|
469
469
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
470
470
|
kwargs.get("encoding_format", "float"))
|
471
|
-
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
472
|
-
|
471
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
472
|
+
# kwargs.get("dimensions", "null"))
|
473
473
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
474
474
|
kwargs.get("user", ""))
|
475
475
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
openlit/semcov/__init__.py
CHANGED
@@ -88,6 +88,7 @@ class SemanticConvetion:
|
|
88
88
|
GEN_AI_TYPE_FINETUNING = "fine_tuning"
|
89
89
|
GEN_AI_TYPE_VECTORDB = "vectordb"
|
90
90
|
GEN_AI_TYPE_FRAMEWORK = "framework"
|
91
|
+
GEN_AI_TYPE_AGENT = "agent"
|
91
92
|
|
92
93
|
GEN_AI_SYSTEM_HUGGING_FACE = "huggingface"
|
93
94
|
GEN_AI_SYSTEM_OPENAI = "openai"
|
@@ -108,6 +109,8 @@ class SemanticConvetion:
|
|
108
109
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
109
110
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
110
111
|
GEN_AI_SYSTEM_EMBEDCHAIN = "embedchain"
|
112
|
+
GEN_AI_SYSTEM_LITELLM = "litellm"
|
113
|
+
GEN_AI_SYSTEM_CREWAI = "crewai"
|
111
114
|
|
112
115
|
# Vector DB
|
113
116
|
DB_REQUESTS = "db.total.requests"
|
@@ -154,6 +157,24 @@ class SemanticConvetion:
|
|
154
157
|
DB_SYSTEM_QDRANT = "qdrant"
|
155
158
|
DB_SYSTEM_MILVUS = "milvus"
|
156
159
|
|
160
|
+
# Agents
|
161
|
+
GEN_AI_AGENT_ID = "gen_ai.agent.id"
|
162
|
+
GEN_AI_AGENT_TASK_ID = "gen_ai.agent.task.id"
|
163
|
+
GEN_AI_AGENT_ROLE = "gen_ai.agent.role"
|
164
|
+
GEN_AI_AGENT_GOAL = "gen_ai.agent.goal"
|
165
|
+
GEN_AI_AGENT_CONTEXT = "gen_ai.agent.context"
|
166
|
+
GEN_AI_AGENT_ENABLE_CACHE = "gen_ai.agent.enable_cache"
|
167
|
+
GEN_AI_AGENT_ALLOW_DELEGATION = "gen_ai.agent.allow_delegation"
|
168
|
+
GEN_AI_AGENT_ALLOW_CODE_EXECUTION = "gen_ai.agent.allow_code_execution"
|
169
|
+
GEN_AI_AGENT_MAX_RETRY_LIMIT = "gen_ai.agent.max_retry_limit"
|
170
|
+
GEN_AI_AGENT_TOOLS = "gen_ai.agent.tools"
|
171
|
+
GEN_AI_AGENT_TOOL_RESULTS = "gen_ai.agent.tool_results"
|
172
|
+
GEN_AI_AGENT_TASK = "gen_ai.agent.task"
|
173
|
+
GEN_AI_AGENT_EXPECTED_OUTPUT = "gen_ai.agent.expected_output"
|
174
|
+
GEN_AI_AGENT_ACTUAL_OUTPUT = "gen_ai.agent.actual_output"
|
175
|
+
GEN_AI_AGENT_HUMAN_INPUT = "gen_ai.agent.human_input"
|
176
|
+
GEN_AI_AGENT_TASK_ASSOCIATION = "gen_ai.agent.task_associations"
|
177
|
+
|
157
178
|
# GPU
|
158
179
|
GPU_INDEX = "gpu.index"
|
159
180
|
GPU_UUID = "gpu.uuid"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.30.1
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -63,16 +63,16 @@ This project proudly follows and maintains the [Semantic Conventions](https://gi
|
|
63
63
|
|
64
64
|
## Auto Instrumentation Capabilities
|
65
65
|
|
66
|
-
| LLMs | Vector DBs | Frameworks
|
67
|
-
|
68
|
-
| [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain)
|
69
|
-
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm)
|
70
|
-
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index)
|
71
|
-
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack)
|
72
|
-
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain)
|
73
|
-
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails)
|
74
|
-
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | |
|
75
|
-
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | |
|
66
|
+
| LLMs | Vector DBs | Frameworks | GPUs |
|
67
|
+
|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|---------------|
|
68
|
+
| [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain) | [✅ NVIDIA](https://docs.openlit.io/latest/integrations/nvidia-gpu) |
|
69
|
+
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | [✅ AMD](#) |
|
70
|
+
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
|
71
|
+
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
|
72
|
+
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
73
|
+
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
74
|
+
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | [✅ CrewAI](https://docs.openlit.io/latest/integrations/crewai) | |
|
75
|
+
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | |
|
76
76
|
| [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | | |
|
77
77
|
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
78
78
|
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
|
@@ -1,5 +1,5 @@
|
|
1
1
|
openlit/__helpers.py,sha256=2OkGKOdsd9Hc011WxR70OqDlO6c4mZcu6McGuW1uAdA,6316
|
2
|
-
openlit/__init__.py,sha256=
|
2
|
+
openlit/__init__.py,sha256=cUWwxNAwJvklVpE1LV929JWipsng0KLukcY0BUGFhJM,19654
|
3
3
|
openlit/evals/__init__.py,sha256=nJe99nuLo1b5rf7pt9U9BCdSDedzbVi2Fj96cgl7msM,380
|
4
4
|
openlit/evals/all.py,sha256=oWrue3PotE-rB5WePG3MRYSA-ro6WivkclSHjYlAqGs,7154
|
5
5
|
openlit/evals/bias_detection.py,sha256=mCdsfK7x1vX7S3psC3g641IMlZ-7df3h-V6eiICj5N8,8154
|
@@ -24,6 +24,8 @@ openlit/instrumentation/chroma/__init__.py,sha256=61lFpHlUEQUobsUJZHXdvOViKwsOH8
|
|
24
24
|
openlit/instrumentation/chroma/chroma.py,sha256=E80j_41UeZi8RzTsHbpvi1izOA_n-0-3_VdrA68AJPA,10531
|
25
25
|
openlit/instrumentation/cohere/__init__.py,sha256=PC5T1qIg9pwLNocBP_WjG5B_6p_z019s8quk_fNLAMs,1920
|
26
26
|
openlit/instrumentation/cohere/cohere.py,sha256=62-P2K39v6pIJme6vTVViLJ9PP8q_UWkTv2l3Wa2gHA,21217
|
27
|
+
openlit/instrumentation/crewai/__init__.py,sha256=cETkkwnKYEMAKlMrHbZ9-RvcRUPYaSNqNIhy2-vCDK8,1794
|
28
|
+
openlit/instrumentation/crewai/crewai.py,sha256=V0ZAlNf6vPL6nZs_XvQYG2DqpgfbX_37yMnScAu3dsk,6917
|
27
29
|
openlit/instrumentation/elevenlabs/__init__.py,sha256=BZjAe-kzFJpKxT0tKksXVfZgirvgEp8qM3SfegWU5co,2631
|
28
30
|
openlit/instrumentation/elevenlabs/async_elevenlabs.py,sha256=yMYACh95SFr5EYklKnXw2DrPFa3iIgM4qQMWjO1itMU,5690
|
29
31
|
openlit/instrumentation/elevenlabs/elevenlabs.py,sha256=mFnD7sgT47OxaXJz0Vc1nrNjXEpcGQDj5run3gA48Lw,6089
|
@@ -42,6 +44,9 @@ openlit/instrumentation/haystack/__init__.py,sha256=QK6XxxZUHX8vMv2Crk7rNBOc64iO
|
|
42
44
|
openlit/instrumentation/haystack/haystack.py,sha256=oQIZiDhdp3gnJnhYQ1OouJMc9YT0pQ-_31cmNuopa68,3891
|
43
45
|
openlit/instrumentation/langchain/__init__.py,sha256=0AI2Dnqw81IcJw3jM--gGkv_HRh2GtosOGJjvOpw7Zk,3431
|
44
46
|
openlit/instrumentation/langchain/langchain.py,sha256=g3HDKPq498KitHuQxxfQzvRq9MKAZaR0jStQYTLx_-M,35592
|
47
|
+
openlit/instrumentation/litellm/__init__.py,sha256=XV3PxqhlZYoJ3FbVr9MiWPogrE3_HOAv-BvOObylU4M,1866
|
48
|
+
openlit/instrumentation/litellm/async_litellm.py,sha256=fmOpzjhfnYubFdlJYA7R0n2rxxrO78FBb6q1iCf2_HQ,21829
|
49
|
+
openlit/instrumentation/litellm/litellm.py,sha256=zO-L8-Yai0uqDl4J7i7Y8ETL87EpozevfgQdGMLsu4Y,21742
|
45
50
|
openlit/instrumentation/llamaindex/__init__.py,sha256=vPtK65G6b-TwJERowVRUVl7f_nBSlFdwPBtpg8dOGos,1977
|
46
51
|
openlit/instrumentation/llamaindex/llamaindex.py,sha256=uiIigbwhonSbJWA7LpgOVI1R4kxxPODS1K5wyHIQ4hM,4048
|
47
52
|
openlit/instrumentation/milvus/__init__.py,sha256=qi1yfmMrvkDtnrN_6toW8qC9BRL78bq7ayWpObJ8Bq4,2961
|
@@ -54,9 +59,9 @@ openlit/instrumentation/ollama/async_ollama.py,sha256=7lbikD-I9k8VL63idqj3VMEfiE
|
|
54
59
|
openlit/instrumentation/ollama/ollama.py,sha256=lBt1d3rFnF1tFbfdOccwjEafHnmTAUGsiOKSHku6Fkw,31277
|
55
60
|
openlit/instrumentation/openai/__init__.py,sha256=AZ2cPr3TMKkgGdMl_yXMeSi7bWhtmMqOW1iHdzHHGHA,16265
|
56
61
|
openlit/instrumentation/openai/async_azure_openai.py,sha256=XbST1UE_zXzNL6RX2XwCsK_a6IhG9PHVTMKBjGrUcB0,48961
|
57
|
-
openlit/instrumentation/openai/async_openai.py,sha256=
|
62
|
+
openlit/instrumentation/openai/async_openai.py,sha256=IYJAHXxG7O7jxDL3OYNpT4ybmjUoMXTKXjjg1ns-HMg,49985
|
58
63
|
openlit/instrumentation/openai/azure_openai.py,sha256=dZUc5MtCwg_sZJWiruG6exYGhPAm-339sqs3sKZNRPU,48761
|
59
|
-
openlit/instrumentation/openai/openai.py,sha256=
|
64
|
+
openlit/instrumentation/openai/openai.py,sha256=iJA8xaqlydfltHogoTsClIVZDJxO-yGRMSRppNYJ8iM,49814
|
60
65
|
openlit/instrumentation/pinecone/__init__.py,sha256=Mv9bElqNs07_JQkYyNnO0wOM3hdbprmw7sttdMeKC7g,2526
|
61
66
|
openlit/instrumentation/pinecone/pinecone.py,sha256=0EhLmtOuvwWVvAKh3e56wyd8wzQq1oaLOmF15SVHxVE,8765
|
62
67
|
openlit/instrumentation/qdrant/__init__.py,sha256=GMlZgRBKoQMgrL4cFbAKwytfdTHLzJEIuTQMxp0uZO0,8940
|
@@ -71,8 +76,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
|
|
71
76
|
openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
|
72
77
|
openlit/otel/metrics.py,sha256=FYAk4eBAmNtFKUIp4hbRbpdq4LME6MapyCQOIeuhmEg,4337
|
73
78
|
openlit/otel/tracing.py,sha256=2kSj7n7uXSkRegcGFDC8IbnDOxqWTA8dGODs__Yn_yA,3719
|
74
|
-
openlit/semcov/__init__.py,sha256=
|
75
|
-
openlit-1.
|
76
|
-
openlit-1.
|
77
|
-
openlit-1.
|
78
|
-
openlit-1.
|
79
|
+
openlit/semcov/__init__.py,sha256=_IjU498Sc0Rjz55y9S3dUelgRalmrzzBgFglPzOlIfk,9137
|
80
|
+
openlit-1.30.1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
81
|
+
openlit-1.30.1.dist-info/METADATA,sha256=Q83fnSGICFk7AgR8xiVKGFN8bHcq3V9vmCG8UrJW0Hk,20841
|
82
|
+
openlit-1.30.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
83
|
+
openlit-1.30.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|