openlit 1.20.0__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +3 -0
- openlit/instrumentation/azure_ai_inference/__init__.py +71 -0
- openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py +432 -0
- openlit/instrumentation/azure_ai_inference/azure_ai_inference.py +432 -0
- openlit/instrumentation/google_ai_studio/__init__.py +1 -1
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +11 -7
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +11 -7
- openlit/semcov/__init__.py +1 -0
- {openlit-1.20.0.dist-info → openlit-1.22.0.dist-info}/METADATA +20 -18
- {openlit-1.20.0.dist-info → openlit-1.22.0.dist-info}/RECORD +12 -9
- {openlit-1.20.0.dist-info → openlit-1.22.0.dist-info}/LICENSE +0 -0
- {openlit-1.20.0.dist-info → openlit-1.22.0.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -34,6 +34,7 @@ from openlit.instrumentation.gpt4all import GPT4AllInstrumentor
|
|
34
34
|
from openlit.instrumentation.elevenlabs import ElevenLabsInstrumentor
|
35
35
|
from openlit.instrumentation.vllm import VLLMInstrumentor
|
36
36
|
from openlit.instrumentation.google_ai_studio import GoogleAIStudioInstrumentor
|
37
|
+
from openlit.instrumentation.azure_ai_inference import AzureAIInferenceInstrumentor
|
37
38
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
38
39
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
39
40
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
@@ -198,6 +199,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
198
199
|
"elevenlabs": "elevenlabs",
|
199
200
|
"vllm": "vllm",
|
200
201
|
"google-ai-studio": "google.generativeai",
|
202
|
+
"azure-ai-inference": "azure.ai.inference",
|
201
203
|
"langchain": "langchain",
|
202
204
|
"llama_index": "llama_index",
|
203
205
|
"haystack": "haystack",
|
@@ -276,6 +278,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
276
278
|
"elevenlabs": ElevenLabsInstrumentor(),
|
277
279
|
"vllm": VLLMInstrumentor(),
|
278
280
|
"google-ai-studio": GoogleAIStudioInstrumentor(),
|
281
|
+
"azure-ai-inference": AzureAIInferenceInstrumentor(),
|
279
282
|
"langchain": LangChainInstrumentor(),
|
280
283
|
"llama_index": LlamaIndexInstrumentor(),
|
281
284
|
"haystack": HaystackInstrumentor(),
|
@@ -0,0 +1,71 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Azure AI Inference Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.azure_ai_inference.azure_ai_inference import (
|
10
|
+
complete, embedding
|
11
|
+
)
|
12
|
+
|
13
|
+
from openlit.instrumentation.azure_ai_inference.async_azure_ai_inference import (
|
14
|
+
async_complete, async_embedding
|
15
|
+
)
|
16
|
+
|
17
|
+
_instruments = ("azure-ai-inference >= 1.0.0b4",)
|
18
|
+
|
19
|
+
class AzureAIInferenceInstrumentor(BaseInstrumentor):
|
20
|
+
"""
|
21
|
+
An instrumentor for azure-ai-inference's client library.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
25
|
+
return _instruments
|
26
|
+
|
27
|
+
def _instrument(self, **kwargs):
|
28
|
+
application_name = kwargs.get("application_name", "default_application")
|
29
|
+
environment = kwargs.get("environment", "default_environment")
|
30
|
+
tracer = kwargs.get("tracer")
|
31
|
+
metrics = kwargs.get("metrics_dict")
|
32
|
+
pricing_info = kwargs.get("pricing_info", {})
|
33
|
+
trace_content = kwargs.get("trace_content", False)
|
34
|
+
disable_metrics = kwargs.get("disable_metrics")
|
35
|
+
version = importlib.metadata.version("azure-ai-inference")
|
36
|
+
|
37
|
+
# sync generate
|
38
|
+
wrap_function_wrapper(
|
39
|
+
"azure.ai.inference",
|
40
|
+
"ChatCompletionsClient.complete",
|
41
|
+
complete("azure_ai.complete", version, environment, application_name,
|
42
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
43
|
+
)
|
44
|
+
|
45
|
+
# sync embedding
|
46
|
+
wrap_function_wrapper(
|
47
|
+
"azure.ai.inference",
|
48
|
+
"EmbeddingsClient.embed",
|
49
|
+
embedding("azure_ai.embed", version, environment, application_name,
|
50
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
51
|
+
)
|
52
|
+
|
53
|
+
# async generate
|
54
|
+
wrap_function_wrapper(
|
55
|
+
"azure.ai.inference.aio",
|
56
|
+
"ChatCompletionsClient.complete",
|
57
|
+
async_complete("azure_ai.complete", version, environment, application_name,
|
58
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
59
|
+
)
|
60
|
+
|
61
|
+
# async embedding
|
62
|
+
wrap_function_wrapper(
|
63
|
+
"azure.ai.inference.aio",
|
64
|
+
"EmbeddingsClient.embed",
|
65
|
+
async_embedding("azure_ai.embed", version, environment, application_name,
|
66
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
67
|
+
)
|
68
|
+
|
69
|
+
def _uninstrument(self, **kwargs):
|
70
|
+
# Proper uninstrumentation logic to revert patched methods
|
71
|
+
pass
|
@@ -0,0 +1,432 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Azure AI Inference API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
get_embed_model_cost,
|
13
|
+
general_tokens
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvetion
|
16
|
+
|
17
|
+
# Initialize logger for logging potential issues and operations
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
def async_complete(gen_ai_endpoint, version, environment, application_name,
|
21
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
22
|
+
"""
|
23
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
27
|
+
version: Version of the monitoring package.
|
28
|
+
environment: Deployment environment (e.g., production, staging).
|
29
|
+
application_name: Name of the application using the Azure AI Inference API.
|
30
|
+
tracer: OpenTelemetry tracer for creating spans.
|
31
|
+
pricing_info: Information used for calculating the cost of Azure AI Inference usage.
|
32
|
+
trace_content: Flag indicating whether to trace the actual content.
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
A function that wraps the chat method to add telemetry.
|
36
|
+
"""
|
37
|
+
|
38
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
39
|
+
"""
|
40
|
+
Wraps the 'chat' API call to add telemetry.
|
41
|
+
|
42
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
43
|
+
gracefully, adding details to the trace for observability.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
wrapped: The original 'chat' method to be wrapped.
|
47
|
+
instance: The instance of the class where the original method is defined.
|
48
|
+
args: Positional arguments for the 'chat' method.
|
49
|
+
kwargs: Keyword arguments for the 'chat' method.
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
The response from the original 'chat' method.
|
53
|
+
"""
|
54
|
+
# pylint: disable=no-else-return
|
55
|
+
if kwargs.get("stream", False) is True:
|
56
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
57
|
+
async def stream_generator():
|
58
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
59
|
+
# Placeholder for aggregating streaming response
|
60
|
+
llmresponse = ""
|
61
|
+
|
62
|
+
# Loop through streaming events capturing relevant details
|
63
|
+
async for chunk in await wrapped(*args, **kwargs):
|
64
|
+
if chunk.choices:
|
65
|
+
# Collect message IDs and aggregated response from events
|
66
|
+
content = chunk.choices[0].delta.content
|
67
|
+
if content:
|
68
|
+
llmresponse += content
|
69
|
+
|
70
|
+
yield chunk
|
71
|
+
response_id = chunk.id
|
72
|
+
|
73
|
+
# Handling exception ensure observability without disrupting operation
|
74
|
+
try:
|
75
|
+
# Format 'messages' into a single string
|
76
|
+
message_prompt = kwargs.get("messages", "")
|
77
|
+
formatted_messages = []
|
78
|
+
for message in message_prompt:
|
79
|
+
role = message["role"]
|
80
|
+
content = message["content"]
|
81
|
+
|
82
|
+
if isinstance(content, list):
|
83
|
+
content_str = ", ".join(
|
84
|
+
# pylint: disable=line-too-long
|
85
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
86
|
+
if "type" in item else f'text: {item["text"]}'
|
87
|
+
for item in content
|
88
|
+
)
|
89
|
+
formatted_messages.append(f"{role}: {content_str}")
|
90
|
+
else:
|
91
|
+
formatted_messages.append(f"{role}: {content}")
|
92
|
+
prompt = "\n".join(formatted_messages)
|
93
|
+
|
94
|
+
model = kwargs.get("model", "phi3-mini-4k")
|
95
|
+
|
96
|
+
# Calculate tokens using input prompt and aggregated response
|
97
|
+
input_tokens = general_tokens(prompt)
|
98
|
+
output_tokens = general_tokens(llmresponse)
|
99
|
+
|
100
|
+
total_tokens = input_tokens + output_tokens
|
101
|
+
# Calculate cost of the operation
|
102
|
+
cost = get_chat_model_cost(model,
|
103
|
+
pricing_info, input_tokens,
|
104
|
+
output_tokens)
|
105
|
+
|
106
|
+
# Set base span attribues
|
107
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
108
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
109
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
110
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
111
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
112
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
113
|
+
gen_ai_endpoint)
|
114
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
115
|
+
environment)
|
116
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
117
|
+
application_name)
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
119
|
+
model)
|
120
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
121
|
+
True)
|
122
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
123
|
+
kwargs.get("user", ""))
|
124
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
125
|
+
kwargs.get("top_p", 1.0))
|
126
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
127
|
+
kwargs.get("max_tokens", -1))
|
128
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
129
|
+
kwargs.get("temperature", 1.0))
|
130
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
131
|
+
kwargs.get("presence_penalty", 0.0))
|
132
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
133
|
+
kwargs.get("frequency_penalty", 0.0))
|
134
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
135
|
+
kwargs.get("seed", ""))
|
136
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
137
|
+
response_id)
|
138
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
139
|
+
input_tokens)
|
140
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
141
|
+
output_tokens)
|
142
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
143
|
+
total_tokens)
|
144
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
145
|
+
cost)
|
146
|
+
|
147
|
+
|
148
|
+
if trace_content:
|
149
|
+
span.add_event(
|
150
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
151
|
+
attributes={
|
152
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
153
|
+
},
|
154
|
+
)
|
155
|
+
span.add_event(
|
156
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
157
|
+
attributes={
|
158
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
159
|
+
},
|
160
|
+
)
|
161
|
+
|
162
|
+
span.set_status(Status(StatusCode.OK))
|
163
|
+
|
164
|
+
if disable_metrics is False:
|
165
|
+
attributes = {
|
166
|
+
TELEMETRY_SDK_NAME:
|
167
|
+
"openlit",
|
168
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
169
|
+
application_name,
|
170
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
171
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
172
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
173
|
+
environment,
|
174
|
+
SemanticConvetion.GEN_AI_TYPE:
|
175
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
176
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
177
|
+
model
|
178
|
+
}
|
179
|
+
|
180
|
+
metrics["genai_requests"].add(1, attributes)
|
181
|
+
metrics["genai_total_tokens"].add(
|
182
|
+
total_tokens, attributes
|
183
|
+
)
|
184
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
185
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
186
|
+
metrics["genai_cost"].record(cost, attributes)
|
187
|
+
|
188
|
+
except Exception as e:
|
189
|
+
handle_exception(span, e)
|
190
|
+
logger.error("Error in trace creation: %s", e)
|
191
|
+
|
192
|
+
return stream_generator()
|
193
|
+
else:
|
194
|
+
# pylint: disable=line-too-long
|
195
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
196
|
+
response = await wrapped(*args, **kwargs)
|
197
|
+
|
198
|
+
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
199
|
+
try:
|
200
|
+
# Format 'messages' into a single string
|
201
|
+
message_prompt = kwargs.get("messages", "")
|
202
|
+
formatted_messages = []
|
203
|
+
for message in message_prompt:
|
204
|
+
role = message["role"]
|
205
|
+
content = message["content"]
|
206
|
+
|
207
|
+
if isinstance(content, list):
|
208
|
+
content_str = ", ".join(
|
209
|
+
# pylint: disable=line-too-long
|
210
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
211
|
+
if "type" in item else f'text: {item["text"]}'
|
212
|
+
for item in content
|
213
|
+
)
|
214
|
+
formatted_messages.append(f"{role}: {content_str}")
|
215
|
+
else:
|
216
|
+
formatted_messages.append(f"{role}: {content}")
|
217
|
+
prompt = "\n".join(formatted_messages)
|
218
|
+
|
219
|
+
model = kwargs.get("model", "phi3-mini-4k")
|
220
|
+
|
221
|
+
# Set base span attribues
|
222
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
223
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
224
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
225
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
226
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
227
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
228
|
+
gen_ai_endpoint)
|
229
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
230
|
+
environment)
|
231
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
232
|
+
application_name)
|
233
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
234
|
+
model)
|
235
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
236
|
+
False)
|
237
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
238
|
+
kwargs.get("user", ""))
|
239
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
240
|
+
kwargs.get("top_p", 1.0))
|
241
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
242
|
+
kwargs.get("max_tokens", -1))
|
243
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
244
|
+
kwargs.get("temperature", 1.0))
|
245
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
246
|
+
kwargs.get("presence_penalty", 0.0))
|
247
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
248
|
+
kwargs.get("frequency_penalty", 0.0))
|
249
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
250
|
+
kwargs.get("seed", ""))
|
251
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
252
|
+
response.id)
|
253
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
254
|
+
[response.choices[0]["finish_reason"]])
|
255
|
+
|
256
|
+
if trace_content:
|
257
|
+
span.add_event(
|
258
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
259
|
+
attributes={
|
260
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
261
|
+
},
|
262
|
+
)
|
263
|
+
span.add_event(
|
264
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
265
|
+
attributes={
|
266
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.choices[0].message.content,
|
267
|
+
},
|
268
|
+
)
|
269
|
+
|
270
|
+
input_tokens = response.usage.prompt_tokens
|
271
|
+
output_tokens = response.usage.completion_tokens
|
272
|
+
total_tokens = response.usage.total_tokens
|
273
|
+
# Calculate cost of the operation
|
274
|
+
cost = get_chat_model_cost(model,
|
275
|
+
pricing_info, input_tokens, output_tokens)
|
276
|
+
|
277
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
278
|
+
input_tokens)
|
279
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
280
|
+
output_tokens)
|
281
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
282
|
+
total_tokens)
|
283
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
284
|
+
cost)
|
285
|
+
|
286
|
+
span.set_status(Status(StatusCode.OK))
|
287
|
+
|
288
|
+
if disable_metrics is False:
|
289
|
+
attributes = {
|
290
|
+
TELEMETRY_SDK_NAME:
|
291
|
+
"openlit",
|
292
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
293
|
+
application_name,
|
294
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
295
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
296
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
297
|
+
environment,
|
298
|
+
SemanticConvetion.GEN_AI_TYPE:
|
299
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
300
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
301
|
+
model
|
302
|
+
}
|
303
|
+
|
304
|
+
metrics["genai_requests"].add(1, attributes)
|
305
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
306
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
307
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
308
|
+
metrics["genai_cost"].record(cost, attributes)
|
309
|
+
|
310
|
+
# Return original response
|
311
|
+
return response
|
312
|
+
|
313
|
+
except Exception as e:
|
314
|
+
handle_exception(span, e)
|
315
|
+
logger.error("Error in trace creation: %s", e)
|
316
|
+
|
317
|
+
# Return original response
|
318
|
+
return response
|
319
|
+
|
320
|
+
return wrapper
|
321
|
+
|
322
|
+
def async_embedding(gen_ai_endpoint, version, environment, application_name,
|
323
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
324
|
+
"""
|
325
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
326
|
+
|
327
|
+
Args:
|
328
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
329
|
+
version: Version of the monitoring package.
|
330
|
+
environment: Deployment environment (e.g., production, staging).
|
331
|
+
application_name: Name of the application using the Azure AI Inference API.
|
332
|
+
tracer: OpenTelemetry tracer for creating spans.
|
333
|
+
pricing_info: Information used for calculating the cost of Azure AI Inference usage.
|
334
|
+
trace_content: Flag indicating whether to trace the actual content.
|
335
|
+
|
336
|
+
Returns:
|
337
|
+
A function that wraps the embeddings method to add telemetry.
|
338
|
+
"""
|
339
|
+
|
340
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
341
|
+
"""
|
342
|
+
Wraps the 'embeddings' API call to add telemetry.
|
343
|
+
|
344
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
345
|
+
gracefully, adding details to the trace for observability.
|
346
|
+
|
347
|
+
Args:
|
348
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
349
|
+
instance: The instance of the class where the original method is defined.
|
350
|
+
args: Positional arguments for the 'embeddings' method.
|
351
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
352
|
+
|
353
|
+
Returns:
|
354
|
+
The response from the original 'embeddings' method.
|
355
|
+
"""
|
356
|
+
|
357
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
358
|
+
response = await wrapped(*args, **kwargs)
|
359
|
+
|
360
|
+
try:
|
361
|
+
# Calculate cost of the operation
|
362
|
+
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
363
|
+
pricing_info, response.usage.prompt_tokens)
|
364
|
+
|
365
|
+
# Set Span attributes
|
366
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
368
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
370
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
371
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
372
|
+
gen_ai_endpoint)
|
373
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
374
|
+
environment)
|
375
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
376
|
+
application_name)
|
377
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
378
|
+
kwargs.get("model", "text-embedding-ada-002"))
|
379
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
380
|
+
kwargs.get("encoding_format", "float"))
|
381
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
382
|
+
kwargs.get("dimensions", ""))
|
383
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
384
|
+
kwargs.get("user", ""))
|
385
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
386
|
+
response.usage.prompt_tokens)
|
387
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
388
|
+
response.usage.total_tokens)
|
389
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
390
|
+
cost)
|
391
|
+
if trace_content:
|
392
|
+
span.add_event(
|
393
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
394
|
+
attributes={
|
395
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: kwargs.get("input", ""),
|
396
|
+
},
|
397
|
+
)
|
398
|
+
|
399
|
+
span.set_status(Status(StatusCode.OK))
|
400
|
+
|
401
|
+
if disable_metrics is False:
|
402
|
+
attributes = {
|
403
|
+
TELEMETRY_SDK_NAME:
|
404
|
+
"openlit",
|
405
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
406
|
+
application_name,
|
407
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
408
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
409
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
410
|
+
environment,
|
411
|
+
SemanticConvetion.GEN_AI_TYPE:
|
412
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
413
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
414
|
+
kwargs.get("model", "text-embedding-ada-002")
|
415
|
+
}
|
416
|
+
|
417
|
+
metrics["genai_requests"].add(1, attributes)
|
418
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
419
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
420
|
+
metrics["genai_cost"].record(cost, attributes)
|
421
|
+
|
422
|
+
# Return original response
|
423
|
+
return response
|
424
|
+
|
425
|
+
except Exception as e:
|
426
|
+
handle_exception(span, e)
|
427
|
+
logger.error("Error in trace creation: %s", e)
|
428
|
+
|
429
|
+
# Return original response
|
430
|
+
return response
|
431
|
+
|
432
|
+
return wrapper
|
@@ -0,0 +1,432 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Azure AI Inference API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
get_embed_model_cost,
|
13
|
+
general_tokens
|
14
|
+
)
|
15
|
+
from openlit.semcov import SemanticConvetion
|
16
|
+
|
17
|
+
# Initialize logger for logging potential issues and operations
|
18
|
+
logger = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
def complete(gen_ai_endpoint, version, environment, application_name,
|
21
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
22
|
+
"""
|
23
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
24
|
+
|
25
|
+
Args:
|
26
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
27
|
+
version: Version of the monitoring package.
|
28
|
+
environment: Deployment environment (e.g., production, staging).
|
29
|
+
application_name: Name of the application using the Azure AI Inference API.
|
30
|
+
tracer: OpenTelemetry tracer for creating spans.
|
31
|
+
pricing_info: Information used for calculating the cost of Azure AI Inference usage.
|
32
|
+
trace_content: Flag indicating whether to trace the actual content.
|
33
|
+
|
34
|
+
Returns:
|
35
|
+
A function that wraps the chat method to add telemetry.
|
36
|
+
"""
|
37
|
+
|
38
|
+
def wrapper(wrapped, instance, args, kwargs):
|
39
|
+
"""
|
40
|
+
Wraps the 'chat' API call to add telemetry.
|
41
|
+
|
42
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
43
|
+
gracefully, adding details to the trace for observability.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
wrapped: The original 'chat' method to be wrapped.
|
47
|
+
instance: The instance of the class where the original method is defined.
|
48
|
+
args: Positional arguments for the 'chat' method.
|
49
|
+
kwargs: Keyword arguments for the 'chat' method.
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
The response from the original 'chat' method.
|
53
|
+
"""
|
54
|
+
# pylint: disable=no-else-return
|
55
|
+
if kwargs.get("stream", False) is True:
|
56
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
57
|
+
def stream_generator():
|
58
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
59
|
+
# Placeholder for aggregating streaming response
|
60
|
+
llmresponse = ""
|
61
|
+
|
62
|
+
# Loop through streaming events capturing relevant details
|
63
|
+
for chunk in wrapped(*args, **kwargs):
|
64
|
+
if chunk.choices:
|
65
|
+
# Collect message IDs and aggregated response from events
|
66
|
+
content = chunk.choices[0].delta.content
|
67
|
+
if content:
|
68
|
+
llmresponse += content
|
69
|
+
|
70
|
+
yield chunk
|
71
|
+
response_id = chunk.id
|
72
|
+
|
73
|
+
# Handling exception ensure observability without disrupting operation
|
74
|
+
try:
|
75
|
+
# Format 'messages' into a single string
|
76
|
+
message_prompt = kwargs.get("messages", "")
|
77
|
+
formatted_messages = []
|
78
|
+
for message in message_prompt:
|
79
|
+
role = message["role"]
|
80
|
+
content = message["content"]
|
81
|
+
|
82
|
+
if isinstance(content, list):
|
83
|
+
content_str = ", ".join(
|
84
|
+
# pylint: disable=line-too-long
|
85
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
86
|
+
if "type" in item else f'text: {item["text"]}'
|
87
|
+
for item in content
|
88
|
+
)
|
89
|
+
formatted_messages.append(f"{role}: {content_str}")
|
90
|
+
else:
|
91
|
+
formatted_messages.append(f"{role}: {content}")
|
92
|
+
prompt = "\n".join(formatted_messages)
|
93
|
+
|
94
|
+
model = kwargs.get("model", "phi3-mini-4k")
|
95
|
+
|
96
|
+
# Calculate tokens using input prompt and aggregated response
|
97
|
+
input_tokens = general_tokens(prompt)
|
98
|
+
output_tokens = general_tokens(llmresponse)
|
99
|
+
|
100
|
+
total_tokens = input_tokens + output_tokens
|
101
|
+
# Calculate cost of the operation
|
102
|
+
cost = get_chat_model_cost(model,
|
103
|
+
pricing_info, input_tokens,
|
104
|
+
output_tokens)
|
105
|
+
|
106
|
+
# Set base span attribues
|
107
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
108
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
109
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
110
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
111
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
112
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
113
|
+
gen_ai_endpoint)
|
114
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
115
|
+
environment)
|
116
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
117
|
+
application_name)
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
119
|
+
model)
|
120
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
121
|
+
True)
|
122
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
123
|
+
kwargs.get("user", ""))
|
124
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
125
|
+
kwargs.get("top_p", 1.0))
|
126
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
127
|
+
kwargs.get("max_tokens", -1))
|
128
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
129
|
+
kwargs.get("temperature", 1.0))
|
130
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
131
|
+
kwargs.get("presence_penalty", 0.0))
|
132
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
133
|
+
kwargs.get("frequency_penalty", 0.0))
|
134
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
135
|
+
kwargs.get("seed", ""))
|
136
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
137
|
+
response_id)
|
138
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
139
|
+
input_tokens)
|
140
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
141
|
+
output_tokens)
|
142
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
143
|
+
total_tokens)
|
144
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
145
|
+
cost)
|
146
|
+
|
147
|
+
|
148
|
+
if trace_content:
|
149
|
+
span.add_event(
|
150
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
151
|
+
attributes={
|
152
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
153
|
+
},
|
154
|
+
)
|
155
|
+
span.add_event(
|
156
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
157
|
+
attributes={
|
158
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
159
|
+
},
|
160
|
+
)
|
161
|
+
|
162
|
+
span.set_status(Status(StatusCode.OK))
|
163
|
+
|
164
|
+
if disable_metrics is False:
|
165
|
+
attributes = {
|
166
|
+
TELEMETRY_SDK_NAME:
|
167
|
+
"openlit",
|
168
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
169
|
+
application_name,
|
170
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
171
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
172
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
173
|
+
environment,
|
174
|
+
SemanticConvetion.GEN_AI_TYPE:
|
175
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
176
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
177
|
+
model
|
178
|
+
}
|
179
|
+
|
180
|
+
metrics["genai_requests"].add(1, attributes)
|
181
|
+
metrics["genai_total_tokens"].add(
|
182
|
+
total_tokens, attributes
|
183
|
+
)
|
184
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
185
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
186
|
+
metrics["genai_cost"].record(cost, attributes)
|
187
|
+
|
188
|
+
except Exception as e:
|
189
|
+
handle_exception(span, e)
|
190
|
+
logger.error("Error in trace creation: %s", e)
|
191
|
+
|
192
|
+
return stream_generator()
|
193
|
+
else:
|
194
|
+
# pylint: disable=line-too-long
|
195
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
196
|
+
response = wrapped(*args, **kwargs)
|
197
|
+
|
198
|
+
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
199
|
+
try:
|
200
|
+
# Format 'messages' into a single string
|
201
|
+
message_prompt = kwargs.get("messages", "")
|
202
|
+
formatted_messages = []
|
203
|
+
for message in message_prompt:
|
204
|
+
role = message["role"]
|
205
|
+
content = message["content"]
|
206
|
+
|
207
|
+
if isinstance(content, list):
|
208
|
+
content_str = ", ".join(
|
209
|
+
# pylint: disable=line-too-long
|
210
|
+
f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
|
211
|
+
if "type" in item else f'text: {item["text"]}'
|
212
|
+
for item in content
|
213
|
+
)
|
214
|
+
formatted_messages.append(f"{role}: {content_str}")
|
215
|
+
else:
|
216
|
+
formatted_messages.append(f"{role}: {content}")
|
217
|
+
prompt = "\n".join(formatted_messages)
|
218
|
+
|
219
|
+
model = kwargs.get("model", "phi3-mini-4k")
|
220
|
+
|
221
|
+
# Set base span attribues
|
222
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
223
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
224
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
225
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
226
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
227
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
228
|
+
gen_ai_endpoint)
|
229
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
230
|
+
environment)
|
231
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
232
|
+
application_name)
|
233
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
234
|
+
model)
|
235
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
236
|
+
False)
|
237
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
238
|
+
kwargs.get("user", ""))
|
239
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
240
|
+
kwargs.get("top_p", 1.0))
|
241
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
242
|
+
kwargs.get("max_tokens", -1))
|
243
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
244
|
+
kwargs.get("temperature", 1.0))
|
245
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
246
|
+
kwargs.get("presence_penalty", 0.0))
|
247
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
248
|
+
kwargs.get("frequency_penalty", 0.0))
|
249
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
250
|
+
kwargs.get("seed", ""))
|
251
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
252
|
+
response.id)
|
253
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
254
|
+
[response.choices[0]["finish_reason"]])
|
255
|
+
|
256
|
+
if trace_content:
|
257
|
+
span.add_event(
|
258
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
259
|
+
attributes={
|
260
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
261
|
+
},
|
262
|
+
)
|
263
|
+
span.add_event(
|
264
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
265
|
+
attributes={
|
266
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.choices[0].message.content,
|
267
|
+
},
|
268
|
+
)
|
269
|
+
|
270
|
+
input_tokens = response.usage.prompt_tokens
|
271
|
+
output_tokens = response.usage.completion_tokens
|
272
|
+
total_tokens = response.usage.total_tokens
|
273
|
+
# Calculate cost of the operation
|
274
|
+
cost = get_chat_model_cost(model,
|
275
|
+
pricing_info, input_tokens, output_tokens)
|
276
|
+
|
277
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
278
|
+
input_tokens)
|
279
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
280
|
+
output_tokens)
|
281
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
282
|
+
total_tokens)
|
283
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
284
|
+
cost)
|
285
|
+
|
286
|
+
span.set_status(Status(StatusCode.OK))
|
287
|
+
|
288
|
+
if disable_metrics is False:
|
289
|
+
attributes = {
|
290
|
+
TELEMETRY_SDK_NAME:
|
291
|
+
"openlit",
|
292
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
293
|
+
application_name,
|
294
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
295
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
296
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
297
|
+
environment,
|
298
|
+
SemanticConvetion.GEN_AI_TYPE:
|
299
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
300
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
301
|
+
model
|
302
|
+
}
|
303
|
+
|
304
|
+
metrics["genai_requests"].add(1, attributes)
|
305
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
306
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
307
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
308
|
+
metrics["genai_cost"].record(cost, attributes)
|
309
|
+
|
310
|
+
# Return original response
|
311
|
+
return response
|
312
|
+
|
313
|
+
except Exception as e:
|
314
|
+
handle_exception(span, e)
|
315
|
+
logger.error("Error in trace creation: %s", e)
|
316
|
+
|
317
|
+
# Return original response
|
318
|
+
return response
|
319
|
+
|
320
|
+
return wrapper
|
321
|
+
|
322
|
+
def embedding(gen_ai_endpoint, version, environment, application_name,
|
323
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
324
|
+
"""
|
325
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
326
|
+
|
327
|
+
Args:
|
328
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
329
|
+
version: Version of the monitoring package.
|
330
|
+
environment: Deployment environment (e.g., production, staging).
|
331
|
+
application_name: Name of the application using the Azure AI Inference API.
|
332
|
+
tracer: OpenTelemetry tracer for creating spans.
|
333
|
+
pricing_info: Information used for calculating the cost of Azure AI Inference usage.
|
334
|
+
trace_content: Flag indicating whether to trace the actual content.
|
335
|
+
|
336
|
+
Returns:
|
337
|
+
A function that wraps the embeddings method to add telemetry.
|
338
|
+
"""
|
339
|
+
|
340
|
+
def wrapper(wrapped, instance, args, kwargs):
|
341
|
+
"""
|
342
|
+
Wraps the 'embeddings' API call to add telemetry.
|
343
|
+
|
344
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
345
|
+
gracefully, adding details to the trace for observability.
|
346
|
+
|
347
|
+
Args:
|
348
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
349
|
+
instance: The instance of the class where the original method is defined.
|
350
|
+
args: Positional arguments for the 'embeddings' method.
|
351
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
352
|
+
|
353
|
+
Returns:
|
354
|
+
The response from the original 'embeddings' method.
|
355
|
+
"""
|
356
|
+
|
357
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
358
|
+
response = wrapped(*args, **kwargs)
|
359
|
+
|
360
|
+
try:
|
361
|
+
# Calculate cost of the operation
|
362
|
+
cost = get_embed_model_cost(kwargs.get("model", "text-embedding-ada-002"),
|
363
|
+
pricing_info, response.usage.prompt_tokens)
|
364
|
+
|
365
|
+
# Set Span attributes
|
366
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
368
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE)
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
370
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
371
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
372
|
+
gen_ai_endpoint)
|
373
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
374
|
+
environment)
|
375
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
376
|
+
application_name)
|
377
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
378
|
+
kwargs.get("model", "text-embedding-ada-002"))
|
379
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
380
|
+
kwargs.get("encoding_format", "float"))
|
381
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_DIMENSION,
|
382
|
+
kwargs.get("dimensions", ""))
|
383
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
|
384
|
+
kwargs.get("user", ""))
|
385
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
386
|
+
response.usage.prompt_tokens)
|
387
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
388
|
+
response.usage.total_tokens)
|
389
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
390
|
+
cost)
|
391
|
+
if trace_content:
|
392
|
+
span.add_event(
|
393
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
394
|
+
attributes={
|
395
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: kwargs.get("input", ""),
|
396
|
+
},
|
397
|
+
)
|
398
|
+
|
399
|
+
span.set_status(Status(StatusCode.OK))
|
400
|
+
|
401
|
+
if disable_metrics is False:
|
402
|
+
attributes = {
|
403
|
+
TELEMETRY_SDK_NAME:
|
404
|
+
"openlit",
|
405
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
406
|
+
application_name,
|
407
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
408
|
+
SemanticConvetion.GEN_AI_SYSTEM_AZURE_AI_INFERENCE,
|
409
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
410
|
+
environment,
|
411
|
+
SemanticConvetion.GEN_AI_TYPE:
|
412
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
413
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
414
|
+
kwargs.get("model", "text-embedding-ada-002")
|
415
|
+
}
|
416
|
+
|
417
|
+
metrics["genai_requests"].add(1, attributes)
|
418
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
419
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
420
|
+
metrics["genai_cost"].record(cost, attributes)
|
421
|
+
|
422
|
+
# Return original response
|
423
|
+
return response
|
424
|
+
|
425
|
+
except Exception as e:
|
426
|
+
handle_exception(span, e)
|
427
|
+
logger.error("Error in trace creation: %s", e)
|
428
|
+
|
429
|
+
# Return original response
|
430
|
+
return response
|
431
|
+
|
432
|
+
return wrapper
|
@@ -32,7 +32,7 @@ class GoogleAIStudioInstrumentor(BaseInstrumentor):
|
|
32
32
|
pricing_info = kwargs.get("pricing_info", {})
|
33
33
|
trace_content = kwargs.get("trace_content", False)
|
34
34
|
disable_metrics = kwargs.get("disable_metrics")
|
35
|
-
version = importlib.metadata.version("
|
35
|
+
version = importlib.metadata.version("google-generativeai")
|
36
36
|
|
37
37
|
# sync generate
|
38
38
|
wrap_function_wrapper(
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
2
|
"""
|
3
|
-
Module for monitoring
|
3
|
+
Module for monitoring Google AI Studio API calls.
|
4
4
|
"""
|
5
5
|
|
6
6
|
import logging
|
@@ -24,9 +24,9 @@ def async_generate(gen_ai_endpoint, version, environment, application_name,
|
|
24
24
|
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
25
|
version: Version of the monitoring package.
|
26
26
|
environment: Deployment environment (e.g., production, staging).
|
27
|
-
application_name: Name of the application using the
|
27
|
+
application_name: Name of the application using the Google AI Studio API.
|
28
28
|
tracer: OpenTelemetry tracer for creating spans.
|
29
|
-
pricing_info: Information used for calculating the cost of
|
29
|
+
pricing_info: Information used for calculating the cost of Google AI Studio usage.
|
30
30
|
trace_content: Flag indicating whether to trace the actual content.
|
31
31
|
|
32
32
|
Returns:
|
@@ -81,10 +81,12 @@ def async_generate(gen_ai_endpoint, version, environment, application_name,
|
|
81
81
|
model = instance._model_id
|
82
82
|
if hasattr(instance, "_model_name"):
|
83
83
|
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
if model.startswith("models/"):
|
85
|
+
model = model[len("models/"):]
|
84
86
|
|
85
87
|
total_tokens = input_tokens + output_tokens
|
86
88
|
# Calculate cost of the operation
|
87
|
-
cost = get_chat_model_cost(
|
89
|
+
cost = get_chat_model_cost(model,
|
88
90
|
pricing_info, input_tokens,
|
89
91
|
output_tokens)
|
90
92
|
|
@@ -174,6 +176,8 @@ def async_generate(gen_ai_endpoint, version, environment, application_name,
|
|
174
176
|
model = instance._model_id
|
175
177
|
if hasattr(instance, "_model_name"):
|
176
178
|
model = instance._model_name.replace("publishers/google/models/", "")
|
179
|
+
if model.startswith("models/"):
|
180
|
+
model = model[len("models/"):]
|
177
181
|
|
178
182
|
# Set base span attribues
|
179
183
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
@@ -210,7 +214,7 @@ def async_generate(gen_ai_endpoint, version, environment, application_name,
|
|
210
214
|
completion_tokens = response.usage_metadata.candidates_token_count
|
211
215
|
total_tokens = response.usage_metadata.total_token_count
|
212
216
|
# Calculate cost of the operation
|
213
|
-
cost = get_chat_model_cost(
|
217
|
+
cost = get_chat_model_cost(model,
|
214
218
|
pricing_info, prompt_tokens, completion_tokens)
|
215
219
|
|
216
220
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
@@ -231,13 +235,13 @@ def async_generate(gen_ai_endpoint, version, environment, application_name,
|
|
231
235
|
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
232
236
|
application_name,
|
233
237
|
SemanticConvetion.GEN_AI_SYSTEM:
|
234
|
-
SemanticConvetion.
|
238
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
235
239
|
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
236
240
|
environment,
|
237
241
|
SemanticConvetion.GEN_AI_TYPE:
|
238
242
|
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
239
243
|
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
240
|
-
|
244
|
+
model
|
241
245
|
}
|
242
246
|
|
243
247
|
metrics["genai_requests"].add(1, attributes)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
2
|
"""
|
3
|
-
Module for monitoring
|
3
|
+
Module for monitoring Google AI Studio API calls.
|
4
4
|
"""
|
5
5
|
|
6
6
|
import logging
|
@@ -24,9 +24,9 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
24
24
|
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
25
|
version: Version of the monitoring package.
|
26
26
|
environment: Deployment environment (e.g., production, staging).
|
27
|
-
application_name: Name of the application using the
|
27
|
+
application_name: Name of the application using the Google AI Studio API.
|
28
28
|
tracer: OpenTelemetry tracer for creating spans.
|
29
|
-
pricing_info: Information used for calculating the cost of
|
29
|
+
pricing_info: Information used for calculating the cost of Google AI Studio usage.
|
30
30
|
trace_content: Flag indicating whether to trace the actual content.
|
31
31
|
|
32
32
|
Returns:
|
@@ -81,10 +81,12 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
81
81
|
model = instance._model_id
|
82
82
|
if hasattr(instance, "_model_name"):
|
83
83
|
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
if model.startswith("models/"):
|
85
|
+
model = model[len("models/"):]
|
84
86
|
|
85
87
|
total_tokens = input_tokens + output_tokens
|
86
88
|
# Calculate cost of the operation
|
87
|
-
cost = get_chat_model_cost(
|
89
|
+
cost = get_chat_model_cost(model,
|
88
90
|
pricing_info, input_tokens,
|
89
91
|
output_tokens)
|
90
92
|
|
@@ -176,6 +178,8 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
176
178
|
model = instance._model_id
|
177
179
|
if hasattr(instance, "_model_name"):
|
178
180
|
model = instance._model_name.replace("publishers/google/models/", "")
|
181
|
+
if model.startswith("models/"):
|
182
|
+
model = model[len("models/"):]
|
179
183
|
|
180
184
|
# Set base span attribues
|
181
185
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
@@ -212,7 +216,7 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
212
216
|
completion_tokens = response.usage_metadata.candidates_token_count
|
213
217
|
total_tokens = response.usage_metadata.total_token_count
|
214
218
|
# Calculate cost of the operation
|
215
|
-
cost = get_chat_model_cost(
|
219
|
+
cost = get_chat_model_cost(model,
|
216
220
|
pricing_info, prompt_tokens, completion_tokens)
|
217
221
|
|
218
222
|
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
@@ -233,13 +237,13 @@ def generate(gen_ai_endpoint, version, environment, application_name,
|
|
233
237
|
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
234
238
|
application_name,
|
235
239
|
SemanticConvetion.GEN_AI_SYSTEM:
|
236
|
-
SemanticConvetion.
|
240
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
237
241
|
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
238
242
|
environment,
|
239
243
|
SemanticConvetion.GEN_AI_TYPE:
|
240
244
|
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
241
245
|
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
242
|
-
|
246
|
+
model
|
243
247
|
}
|
244
248
|
|
245
249
|
metrics["genai_requests"].add(1, attributes)
|
openlit/semcov/__init__.py
CHANGED
@@ -103,6 +103,7 @@ class SemanticConvetion:
|
|
103
103
|
GEN_AI_SYSTEM_ELEVENLABS = "elevenlabs"
|
104
104
|
GEN_AI_SYSTEM_VLLM = "vLLM"
|
105
105
|
GEN_AI_SYSTEM_GOOGLE_AI_STUDIO = "google-ai-studio"
|
106
|
+
GEN_AI_SYSTEM_AZURE_AI_INFERENCE = "azure-ai-inference"
|
106
107
|
GEN_AI_SYSTEM_LANGCHAIN = "langchain"
|
107
108
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
108
109
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.22.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -54,23 +54,25 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
54
54
|
|
55
55
|
## Auto Instrumentation Capabilities
|
56
56
|
|
57
|
-
| LLMs
|
58
|
-
|
59
|
-
| [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai)
|
60
|
-
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama)
|
61
|
-
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic)
|
62
|
-
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all)
|
63
|
-
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere)
|
64
|
-
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral)
|
65
|
-
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai)
|
66
|
-
| [✅
|
67
|
-
| [✅
|
68
|
-
| [✅
|
69
|
-
| [✅
|
70
|
-
| [✅
|
71
|
-
| [✅
|
72
|
-
| [✅
|
73
|
-
| [✅
|
57
|
+
| LLMs | Vector DBs | Frameworks | GPUs |
|
58
|
+
|--------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------|
|
59
|
+
| [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain) | [✅ NVIDIA GPUs](https://docs.openlit.io/latest/integrations/nvidia-gpu) |
|
60
|
+
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | |
|
61
|
+
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
|
62
|
+
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
|
63
|
+
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
64
|
+
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
65
|
+
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | | |
|
66
|
+
| [✅ Azure AI Inference](https://docs.openlit.io/latest/integrations/azure-ai-inference) | | | |
|
67
|
+
| [✅ GitHub AI Models](https://docs.openlit.io/latest/integrations/github-models) | | | |
|
68
|
+
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
69
|
+
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
|
70
|
+
| [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | | | |
|
71
|
+
| [✅ Groq](https://docs.openlit.io/latest/integrations/groq) | | | |
|
72
|
+
| [✅ ElevenLabs](https://docs.openlit.io/latest/integrations/elevenlabs) | | | |
|
73
|
+
| [✅ vLLM](https://docs.openlit.io/latest/integrations/vllm) | | | |
|
74
|
+
| [✅ OLA Krutrim](https://docs.openlit.io/latest/integrations/krutrim) | | | |
|
75
|
+
| [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
|
74
76
|
|
75
77
|
## Supported Destinations
|
76
78
|
- [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
|
@@ -1,8 +1,11 @@
|
|
1
1
|
openlit/__helpers.py,sha256=lrn4PBs9owDudiCY2NBoVbAi7AU_HtUpyOj0oqPBsPY,5545
|
2
|
-
openlit/__init__.py,sha256=
|
2
|
+
openlit/__init__.py,sha256=w3xpFptltMR5TgYWz3ADfvWGpIH32CdBBbcIFFGc8vc,15498
|
3
3
|
openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
|
4
4
|
openlit/instrumentation/anthropic/anthropic.py,sha256=y7CEGhKOGHWt8G_5Phr4qPJTfPGRJIAr9Yk6nM3CcvM,16775
|
5
5
|
openlit/instrumentation/anthropic/async_anthropic.py,sha256=Zz1KRKIG9wGn0quOoLvjORC-49IvHQpJ6GBdB-4PfCQ,16816
|
6
|
+
openlit/instrumentation/azure_ai_inference/__init__.py,sha256=Xl_4hjQeXcA-NgkqwTbs1ejPKRRnQXsDErXfFIz0z7U,2699
|
7
|
+
openlit/instrumentation/azure_ai_inference/async_azure_ai_inference.py,sha256=uZLOW1iD5pKZeQ4Mg-Mvmt9aWc2WrLiWlZn2dKbX0X4,22832
|
8
|
+
openlit/instrumentation/azure_ai_inference/azure_ai_inference.py,sha256=Hz-WCzlzM27hT4Rw4uNiMDBit2YB9vAyq6m0gkNwo4A,22778
|
6
9
|
openlit/instrumentation/bedrock/__init__.py,sha256=DLLYio4S4gUzRElqNRT8WMKzM79HZwOBVjXfJI4BfaA,1545
|
7
10
|
openlit/instrumentation/bedrock/bedrock.py,sha256=HqRZeiAFeNdlhlnt4DSLda8qkMP3nPKq_zhdxDssXmY,9498
|
8
11
|
openlit/instrumentation/chroma/__init__.py,sha256=61lFpHlUEQUobsUJZHXdvOViKwsOH8AOvSfc4VgCmiM,3253
|
@@ -14,9 +17,9 @@ openlit/instrumentation/elevenlabs/async_elevenlabs.py,sha256=yMYACh95SFr5EYklKn
|
|
14
17
|
openlit/instrumentation/elevenlabs/elevenlabs.py,sha256=mFnD7sgT47OxaXJz0Vc1nrNjXEpcGQDj5run3gA48Lw,6089
|
15
18
|
openlit/instrumentation/embedchain/__init__.py,sha256=8TYk1OEbz46yF19dr-gB_x80VZMagU3kJ8-QihPXTeA,1929
|
16
19
|
openlit/instrumentation/embedchain/embedchain.py,sha256=SLlr7qieT3kp4M6OYSRy8FaVCXQ2t3oPyIiE99ioNE4,7892
|
17
|
-
openlit/instrumentation/google_ai_studio/__init__.py,sha256=
|
18
|
-
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=
|
19
|
-
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=
|
20
|
+
openlit/instrumentation/google_ai_studio/__init__.py,sha256=rhHbEJbDQ-nH8y3AXzzyqNxcunR0ZEqR2RIstM55-Ms,2159
|
21
|
+
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=20MHsp-tAONxOtmCFg5WDvktTdRce5CyH3_9w0b_AqI,13587
|
22
|
+
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=vIJjzl5Fkgsf3vfaqmxhtSFvOpXK-wGC-JFhEXGP50M,13636
|
20
23
|
openlit/instrumentation/gpt4all/__init__.py,sha256=-59CP2B3-HGZJ_vC-fI9Dt-0BuQXRhSCWCjnaGeU15Q,1802
|
21
24
|
openlit/instrumentation/gpt4all/gpt4all.py,sha256=dbxqZeuTrv_y6wyDOIEmC8-Dc4iCGgLpj3l5JiodLMI,18787
|
22
25
|
openlit/instrumentation/gpu/__init__.py,sha256=Dj2MLar0DB20-t6W3pfR-3jfR_mwg4SYwhzIrH_n9sU,5596
|
@@ -55,8 +58,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
|
|
55
58
|
openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
|
56
59
|
openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
|
57
60
|
openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
|
58
|
-
openlit/semcov/__init__.py,sha256=
|
59
|
-
openlit-1.
|
60
|
-
openlit-1.
|
61
|
-
openlit-1.
|
62
|
-
openlit-1.
|
61
|
+
openlit/semcov/__init__.py,sha256=wpAarrnkndbgvP8VSudi8IRInYtD02hkewqjyiC0dMk,7614
|
62
|
+
openlit-1.22.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
63
|
+
openlit-1.22.0.dist-info/METADATA,sha256=rSCNSQss7NahZ5Vnq028vzvKxmhsXuOxGvQt5n5Ock0,15489
|
64
|
+
openlit-1.22.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
65
|
+
openlit-1.22.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|