openlit 1.2.0__py3-none-any.whl → 1.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,564 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
+ """
3
+ Module for monitoring Ollama API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception, general_tokens
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def chat(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for chat to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the Ollama API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of Ollama usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the chat method to add telemetry.
31
+ """
32
+
33
+ def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'chat' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'chat' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'chat' method.
44
+ kwargs: Keyword arguments for the 'chat' method.
45
+
46
+ Returns:
47
+ The response from the original 'chat' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("stream", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ for chunk in wrapped(*args, **kwargs):
63
+ # Collect aggregated response from events
64
+ content = chunk['message']['content']
65
+ llmresponse += content
66
+
67
+ if chunk['done'] is True:
68
+ completion_tokens = chunk["eval_count"]
69
+
70
+ yield chunk
71
+
72
+ # Handling exception ensure observability without disrupting operation
73
+ try:
74
+ # Format 'messages' into a single string
75
+ message_prompt = kwargs.get("messages", "")
76
+ formatted_messages = []
77
+ for message in message_prompt:
78
+ role = message["role"]
79
+ content = message["content"]
80
+
81
+ if isinstance(content, list):
82
+ content_str = ", ".join(
83
+ # pylint: disable=line-too-long
84
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
85
+ if "type" in item else f'text: {item["text"]}'
86
+ for item in content
87
+ )
88
+ formatted_messages.append(f"{role}: {content_str}")
89
+ else:
90
+ formatted_messages.append(f"{role}: {content}")
91
+ prompt = "\n".join(formatted_messages)
92
+
93
+ # Calculate cost of the operation
94
+ cost = 0
95
+ prompt_tokens = general_tokens(prompt)
96
+ total_tokens = prompt_tokens + completion_tokens
97
+
98
+ # Set Span attributes
99
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
100
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
101
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
102
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
103
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
104
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
105
+ gen_ai_endpoint)
106
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
107
+ environment)
108
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
109
+ application_name)
110
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
111
+ kwargs.get("model", "llama3"))
112
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
113
+ True)
114
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
115
+ prompt_tokens)
116
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
117
+ completion_tokens)
118
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
119
+ total_tokens)
120
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
121
+ cost)
122
+ if trace_content:
123
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
124
+ prompt)
125
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
126
+ llmresponse)
127
+
128
+ span.set_status(Status(StatusCode.OK))
129
+
130
+ if disable_metrics is False:
131
+ attributes = {
132
+ TELEMETRY_SDK_NAME:
133
+ "openlit",
134
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
135
+ application_name,
136
+ SemanticConvetion.GEN_AI_SYSTEM:
137
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
138
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
139
+ environment,
140
+ SemanticConvetion.GEN_AI_TYPE:
141
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
142
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
143
+ kwargs.get("model", "llama3")
144
+ }
145
+
146
+ metrics["genai_requests"].add(1, attributes)
147
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
148
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
149
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
150
+ metrics["genai_cost"].record(cost, attributes)
151
+
152
+ except Exception as e:
153
+ handle_exception(span, e)
154
+ logger.error("Error in trace creation: %s", e)
155
+
156
+ return stream_generator()
157
+
158
+ # Handling for non-streaming responses
159
+ else:
160
+ # pylint: disable=line-too-long
161
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
162
+ response = wrapped(*args, **kwargs)
163
+
164
+ try:
165
+ # Format 'messages' into a single string
166
+ message_prompt = kwargs.get("messages", "")
167
+ formatted_messages = []
168
+ for message in message_prompt:
169
+ role = message["role"]
170
+ content = message["content"]
171
+
172
+ if isinstance(content, list):
173
+ content_str = ", ".join(
174
+ # pylint: disable=line-too-long
175
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
176
+ if "type" in item else f'text: {item["text"]}'
177
+ for item in content
178
+ )
179
+ formatted_messages.append(f"{role}: {content_str}")
180
+ else:
181
+ formatted_messages.append(f"{role}: {content}")
182
+ prompt = "\n".join(formatted_messages)
183
+
184
+ # Set base span attribues
185
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
186
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
187
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
188
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
189
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
190
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
191
+ gen_ai_endpoint)
192
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
193
+ environment)
194
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
195
+ application_name)
196
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
197
+ kwargs.get("model", "llama3"))
198
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
199
+ False)
200
+ if trace_content:
201
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
202
+ prompt)
203
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
204
+ response['message']['content'])
205
+
206
+ # Calculate cost of the operation
207
+ cost = 0
208
+ prompt_tokens = general_tokens(prompt)
209
+ completion_tokens = response["eval_count"]
210
+ total_tokens = prompt_tokens + completion_tokens
211
+
212
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
213
+ prompt_tokens)
214
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
215
+ completion_tokens)
216
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
217
+ total_tokens)
218
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
219
+ response["done_reason"])
220
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
221
+ cost)
222
+
223
+ span.set_status(Status(StatusCode.OK))
224
+
225
+ if disable_metrics is False:
226
+ attributes = {
227
+ TELEMETRY_SDK_NAME:
228
+ "openlit",
229
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
230
+ application_name,
231
+ SemanticConvetion.GEN_AI_SYSTEM:
232
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
233
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
234
+ environment,
235
+ SemanticConvetion.GEN_AI_TYPE:
236
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
237
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
238
+ kwargs.get("model", "llama3")
239
+ }
240
+
241
+ metrics["genai_requests"].add(1, attributes)
242
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
243
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
244
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
245
+ metrics["genai_cost"].record(cost, attributes)
246
+
247
+ # Return original response
248
+ return response
249
+
250
+ except Exception as e:
251
+ handle_exception(span, e)
252
+ logger.error("Error in trace creation: %s", e)
253
+
254
+ # Return original response
255
+ return response
256
+
257
+ return wrapper
258
+
259
+ def generate(gen_ai_endpoint, version, environment, application_name,
260
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
261
+ """
262
+ Generates a telemetry wrapper for generate to collect metrics.
263
+
264
+ Args:
265
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
266
+ version: Version of the monitoring package.
267
+ environment: Deployment environment (e.g., production, staging).
268
+ application_name: Name of the application using the Ollama API.
269
+ tracer: OpenTelemetry tracer for creating spans.
270
+ pricing_info: Information used for calculating the cost of Ollama usage.
271
+ trace_content: Flag indicating whether to trace the actual content.
272
+
273
+ Returns:
274
+ A function that wraps the generate method to add telemetry.
275
+ """
276
+
277
+ def wrapper(wrapped, instance, args, kwargs):
278
+ """
279
+ Wraps the 'generate' API call to add telemetry.
280
+
281
+ This collects metrics such as execution time, cost, and token usage, and handles errors
282
+ gracefully, adding details to the trace for observability.
283
+
284
+ Args:
285
+ wrapped: The original 'generate' method to be wrapped.
286
+ instance: The instance of the class where the original method is defined.
287
+ args: Positional arguments for the 'generate' method.
288
+ kwargs: Keyword arguments for the 'generate' method.
289
+
290
+ Returns:
291
+ The response from the original 'generate' method.
292
+ """
293
+
294
+ # Check if streaming is enabled for the API call
295
+ streaming = kwargs.get("stream", False)
296
+
297
+ # pylint: disable=no-else-return
298
+ if streaming:
299
+ # Special handling for streaming response to accommodate the nature of data flow
300
+ def stream_generator():
301
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
302
+ # Placeholder for aggregating streaming response
303
+ llmresponse = ""
304
+
305
+ # Loop through streaming events capturing relevant details
306
+ for chunk in wrapped(*args, **kwargs):
307
+ # Collect aggregated response from events
308
+ content = chunk['response']
309
+ llmresponse += content
310
+
311
+ if chunk['done'] is True:
312
+ completion_tokens = chunk["eval_count"]
313
+
314
+ yield chunk
315
+
316
+ # Handling exception ensure observability without disrupting operation
317
+ try:
318
+ # Calculate cost of the operation
319
+ cost = 0
320
+ prompt_tokens = general_tokens(kwargs.get("prompt", ""))
321
+ total_tokens = prompt_tokens + completion_tokens
322
+
323
+ # Set Span attributes
324
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
325
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
326
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
327
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
328
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
329
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
330
+ gen_ai_endpoint)
331
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
332
+ environment)
333
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
334
+ application_name)
335
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
336
+ kwargs.get("model", "llama3"))
337
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
338
+ True)
339
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
340
+ prompt_tokens)
341
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
342
+ completion_tokens)
343
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
344
+ total_tokens)
345
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
346
+ cost)
347
+ if trace_content:
348
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
349
+ kwargs.get("prompt", ""))
350
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
351
+ llmresponse)
352
+
353
+ span.set_status(Status(StatusCode.OK))
354
+
355
+ if disable_metrics is False:
356
+ attributes = {
357
+ TELEMETRY_SDK_NAME:
358
+ "openlit",
359
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
360
+ application_name,
361
+ SemanticConvetion.GEN_AI_SYSTEM:
362
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
363
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
364
+ environment,
365
+ SemanticConvetion.GEN_AI_TYPE:
366
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
367
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
368
+ kwargs.get("model", "llama3")
369
+ }
370
+
371
+ metrics["genai_requests"].add(1, attributes)
372
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
373
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
374
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
375
+ metrics["genai_cost"].record(cost, attributes)
376
+
377
+ except Exception as e:
378
+ handle_exception(span, e)
379
+ logger.error("Error in trace creation: %s", e)
380
+
381
+ return stream_generator()
382
+
383
+ # Handling for non-streaming responses
384
+ else:
385
+ # pylint: disable=line-too-long
386
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
387
+ response = wrapped(*args, **kwargs)
388
+
389
+ try:
390
+ # Set base span attribues
391
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
392
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
393
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
394
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
395
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
396
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
397
+ gen_ai_endpoint)
398
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
399
+ environment)
400
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
401
+ application_name)
402
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
403
+ kwargs.get("model", "llama3"))
404
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
405
+ False)
406
+ if trace_content:
407
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
408
+ kwargs.get("prompt", ""))
409
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
410
+ response['response'])
411
+
412
+ # Calculate cost of the operation
413
+ cost = 0
414
+ prompt_tokens = response["prompt_eval_count"]
415
+ completion_tokens = response["eval_count"]
416
+ total_tokens = prompt_tokens + completion_tokens
417
+
418
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
419
+ prompt_tokens)
420
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
421
+ completion_tokens)
422
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
423
+ total_tokens)
424
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
425
+ response["done_reason"])
426
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
427
+ cost)
428
+
429
+ span.set_status(Status(StatusCode.OK))
430
+
431
+ if disable_metrics is False:
432
+ attributes = {
433
+ TELEMETRY_SDK_NAME:
434
+ "openlit",
435
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
436
+ application_name,
437
+ SemanticConvetion.GEN_AI_SYSTEM:
438
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
439
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
440
+ environment,
441
+ SemanticConvetion.GEN_AI_TYPE:
442
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
443
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
444
+ kwargs.get("model", "llama3")
445
+ }
446
+
447
+ metrics["genai_requests"].add(1, attributes)
448
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
449
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
450
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
451
+ metrics["genai_cost"].record(cost, attributes)
452
+
453
+ # Return original response
454
+ return response
455
+
456
+ except Exception as e:
457
+ handle_exception(span, e)
458
+ logger.error("Error in trace creation: %s", e)
459
+
460
+ # Return original response
461
+ return response
462
+
463
+ return wrapper
464
+
465
+ def embeddings(gen_ai_endpoint, version, environment, application_name,
466
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
467
+ """
468
+ Generates a telemetry wrapper for embeddings to collect metrics.
469
+
470
+ Args:
471
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
472
+ version: Version of the monitoring package.
473
+ environment: Deployment environment (e.g., production, staging).
474
+ application_name: Name of the application using the Ollama API.
475
+ tracer: OpenTelemetry tracer for creating spans.
476
+ pricing_info: Information used for calculating the cost of Ollama usage.
477
+ trace_content: Flag indicating whether to trace the actual content.
478
+
479
+ Returns:
480
+ A function that wraps the embeddings method to add telemetry.
481
+ """
482
+
483
+ def wrapper(wrapped, instance, args, kwargs):
484
+ """
485
+ Wraps the 'embeddings' API call to add telemetry.
486
+
487
+ This collects metrics such as execution time, cost, and token usage, and handles errors
488
+ gracefully, adding details to the trace for observability.
489
+
490
+ Args:
491
+ wrapped: The original 'embeddings' method to be wrapped.
492
+ instance: The instance of the class where the original method is defined.
493
+ args: Positional arguments for the 'embeddings' method.
494
+ kwargs: Keyword arguments for the 'embeddings' method.
495
+
496
+ Returns:
497
+ The response from the original 'embeddings' method.
498
+ """
499
+
500
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
501
+ response = wrapped(*args, **kwargs)
502
+
503
+ try:
504
+ # Calculate cost of the operation
505
+ cost = 0
506
+ prompt_tokens = general_tokens(kwargs.get('prompt', ""))
507
+ # Set Span attributes
508
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
509
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
510
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA)
511
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
512
+ SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
513
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
514
+ gen_ai_endpoint)
515
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
516
+ environment)
517
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
518
+ application_name)
519
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
520
+ kwargs.get('model', "llama3"))
521
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
522
+ prompt_tokens)
523
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
524
+ prompt_tokens)
525
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
526
+ cost)
527
+ if trace_content:
528
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
529
+ kwargs.get('prompt', ""))
530
+
531
+ span.set_status(Status(StatusCode.OK))
532
+
533
+ if disable_metrics is False:
534
+ attributes = {
535
+ TELEMETRY_SDK_NAME:
536
+ "openlit",
537
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
538
+ application_name,
539
+ SemanticConvetion.GEN_AI_SYSTEM:
540
+ SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
541
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
542
+ environment,
543
+ SemanticConvetion.GEN_AI_TYPE:
544
+ SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
545
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
546
+ kwargs.get('model', "llama3")
547
+ }
548
+
549
+ metrics["genai_requests"].add(1, attributes)
550
+ metrics["genai_total_tokens"].add(prompt_tokens, attributes)
551
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
552
+ metrics["genai_cost"].record(cost, attributes)
553
+
554
+ # Return original response
555
+ return response
556
+
557
+ except Exception as e:
558
+ handle_exception(span, e)
559
+ logger.error("Error in trace creation: %s", e)
560
+
561
+ # Return original response
562
+ return response
563
+
564
+ return wrapper
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Pinecone.
4
4
  """