openlit 1.2.0__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openlit/__init__.py CHANGED
@@ -19,7 +19,10 @@ from openlit.instrumentation.cohere import CohereInstrumentor
19
19
  from openlit.instrumentation.mistral import MistralInstrumentor
20
20
  from openlit.instrumentation.bedrock import BedrockInstrumentor
21
21
  from openlit.instrumentation.vertexai import VertexAIInstrumentor
22
+ from openlit.instrumentation.groq import GroqInstrumentor
22
23
  from openlit.instrumentation.langchain import LangChainInstrumentor
24
+ from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
25
+ from openlit.instrumentation.haystack import HaystackInstrumentor
23
26
  from openlit.instrumentation.chroma import ChromaInstrumentor
24
27
  from openlit.instrumentation.pinecone import PineconeInstrumentor
25
28
  from openlit.instrumentation.transformers import TransformersInstrumentor
@@ -149,7 +152,10 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
149
152
  "mistral": "mistralai",
150
153
  "bedrock": "boto3",
151
154
  "vertexai": "vertexai",
155
+ "groq": "groq",
152
156
  "langchain": "langchain",
157
+ "llama_index": "llama_index",
158
+ "haystack": "haystack",
153
159
  "chroma": "chromadb",
154
160
  "pinecone": "pinecone",
155
161
  "transformers": "transformers"
@@ -197,7 +203,10 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
197
203
  "mistral": MistralInstrumentor(),
198
204
  "bedrock": BedrockInstrumentor(),
199
205
  "vertexai": VertexAIInstrumentor(),
206
+ "groq": GroqInstrumentor(),
200
207
  "langchain": LangChainInstrumentor(),
208
+ "llama_index": LlamaIndexInstrumentor(),
209
+ "haystack": HaystackInstrumentor(),
201
210
  "chroma": ChromaInstrumentor(),
202
211
  "pinecone": PineconeInstrumentor(),
203
212
  "transformers": TransformersInstrumentor()
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Anthropic API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Anthropic API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring ChromaDB.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Cohere API calls.
4
4
  """
@@ -0,0 +1,50 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of Groq Functions"""
3
+
4
+ from typing import Collection
5
+ import importlib.metadata
6
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
7
+ from wrapt import wrap_function_wrapper
8
+
9
+ from openlit.instrumentation.groq.groq import chat
10
+ from openlit.instrumentation.groq.async_groq import async_chat
11
+
12
+ _instruments = ("groq >= 0.5.0",)
13
+
14
+ class GroqInstrumentor(BaseInstrumentor):
15
+ """
16
+ An instrumentor for Groq's client library.
17
+ """
18
+
19
+ def instrumentation_dependencies(self) -> Collection[str]:
20
+ return _instruments
21
+
22
+ def _instrument(self, **kwargs):
23
+ application_name = kwargs.get("application_name", "default_application")
24
+ environment = kwargs.get("environment", "default_environment")
25
+ tracer = kwargs.get("tracer")
26
+ metrics = kwargs.get("metrics_dict")
27
+ pricing_info = kwargs.get("pricing_info", {})
28
+ trace_content = kwargs.get("trace_content", False)
29
+ disable_metrics = kwargs.get("disable_metrics")
30
+ version = importlib.metadata.version("groq")
31
+
32
+ #sync
33
+ wrap_function_wrapper(
34
+ "groq.resources.chat.completions",
35
+ "Completions.create",
36
+ chat("groq.chat.completions", version, environment, application_name,
37
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
38
+ )
39
+
40
+ #async
41
+ wrap_function_wrapper(
42
+ "groq.resources.chat.completions",
43
+ "AsyncCompletions.create",
44
+ async_chat("groq.chat.completions", version, environment, application_name,
45
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
46
+ )
47
+
48
+ def _uninstrument(self, **kwargs):
49
+ # Proper uninstrumentation logic to revert patched methods
50
+ pass
@@ -0,0 +1,331 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
2
+ """
3
+ Module for monitoring Groq API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import get_chat_model_cost, handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def async_chat(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for chat completions to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the Groq API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of Groq usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the chat completions method to add telemetry.
31
+ """
32
+
33
+ async def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'chat.completions' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'chat.completions' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'chat.completions' method.
44
+ kwargs: Keyword arguments for the 'chat.completions' method.
45
+
46
+ Returns:
47
+ The response from the original 'chat.completions' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("stream", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ async def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ async for chunk in await wrapped(*args, **kwargs):
63
+ # Collect message IDs and aggregated response from events
64
+ if len(chunk.choices) > 0:
65
+ # pylint: disable=line-too-long
66
+ if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
67
+ content = chunk.choices[0].delta.content
68
+ if content:
69
+ llmresponse += content
70
+ if chunk.x_groq is not None and chunk.x_groq.usage is not None:
71
+ prompt_tokens = chunk.x_groq.usage.prompt_tokens
72
+ completion_tokens = chunk.x_groq.usage.completion_tokens
73
+ total_tokens = chunk.x_groq.usage.total_tokens
74
+ response_id = chunk.x_groq.id
75
+ yield chunk
76
+
77
+ # Handling exception ensure observability without disrupting operation
78
+ try:
79
+ # Format 'messages' into a single string
80
+ message_prompt = kwargs.get("messages", "")
81
+ formatted_messages = []
82
+ for message in message_prompt:
83
+ role = message["role"]
84
+ content = message["content"]
85
+
86
+ if isinstance(content, list):
87
+ content_str = ", ".join(
88
+ # pylint: disable=line-too-long
89
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
90
+ if "type" in item else f'text: {item["text"]}'
91
+ for item in content
92
+ )
93
+ formatted_messages.append(f"{role}: {content_str}")
94
+ else:
95
+ formatted_messages.append(f"{role}: {content}")
96
+ prompt = "\n".join(formatted_messages)
97
+
98
+ # Calculate cost of the operation
99
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
100
+ pricing_info, prompt_tokens,
101
+ completion_tokens)
102
+
103
+ # Set Span attributes
104
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
105
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
106
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
107
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
108
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
109
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
110
+ gen_ai_endpoint)
111
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
112
+ response_id)
113
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
114
+ environment)
115
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
116
+ application_name)
117
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
118
+ kwargs.get("model", "gpt-3.5-turbo"))
119
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
120
+ kwargs.get("user", ""))
121
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
122
+ kwargs.get("top_p", 1))
123
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
124
+ kwargs.get("max_tokens", ""))
125
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
126
+ kwargs.get("temperature", 1))
127
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
128
+ kwargs.get("presence_penalty", 0))
129
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
130
+ kwargs.get("frequency_penalty", 0))
131
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
132
+ kwargs.get("seed", ""))
133
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
134
+ True)
135
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
136
+ prompt_tokens)
137
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
138
+ completion_tokens)
139
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
140
+ prompt_tokens + completion_tokens)
141
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
142
+ cost)
143
+ if trace_content:
144
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
145
+ prompt)
146
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
147
+ llmresponse)
148
+
149
+ span.set_status(Status(StatusCode.OK))
150
+
151
+ if disable_metrics is False:
152
+ attributes = {
153
+ TELEMETRY_SDK_NAME:
154
+ "openlit",
155
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
156
+ application_name,
157
+ SemanticConvetion.GEN_AI_SYSTEM:
158
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
159
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
160
+ environment,
161
+ SemanticConvetion.GEN_AI_TYPE:
162
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
163
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
164
+ kwargs.get("model", "gpt-3.5-turbo")
165
+ }
166
+
167
+ metrics["genai_requests"].add(1, attributes)
168
+ metrics["genai_total_tokens"].add(
169
+ total_tokens, attributes
170
+ )
171
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
172
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
173
+ metrics["genai_cost"].record(cost, attributes)
174
+
175
+ except Exception as e:
176
+ handle_exception(span, e)
177
+ logger.error("Error in trace creation: %s", e)
178
+
179
+ return stream_generator()
180
+
181
+ # Handling for non-streaming responses
182
+ else:
183
+ # pylint: disable=line-too-long
184
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
185
+ response = await wrapped(*args, **kwargs)
186
+
187
+ try:
188
+ # Format 'messages' into a single string
189
+ message_prompt = kwargs.get("messages", "")
190
+ formatted_messages = []
191
+ for message in message_prompt:
192
+ role = message["role"]
193
+ content = message["content"]
194
+
195
+ if isinstance(content, list):
196
+ content_str = ", ".join(
197
+ # pylint: disable=line-too-long
198
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
199
+ if "type" in item else f'text: {item["text"]}'
200
+ for item in content
201
+ )
202
+ formatted_messages.append(f"{role}: {content_str}")
203
+ else:
204
+ formatted_messages.append(f"{role}: {content}")
205
+ prompt = "\n".join(formatted_messages)
206
+
207
+ # Set base span attribues
208
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
209
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
210
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
211
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
212
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
213
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
214
+ gen_ai_endpoint)
215
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
216
+ response.x_groq["id"])
217
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
218
+ environment)
219
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
220
+ application_name)
221
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
222
+ kwargs.get("model", "llama3-8b-8192"))
223
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
224
+ kwargs.get("top_p", 1))
225
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
226
+ kwargs.get("max_tokens", ""))
227
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
228
+ kwargs.get("name", ""))
229
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
230
+ kwargs.get("temperature", 1))
231
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
232
+ kwargs.get("presence_penalty", 0))
233
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
234
+ kwargs.get("frequency_penalty", 0))
235
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
236
+ kwargs.get("seed", ""))
237
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
238
+ False)
239
+ if trace_content:
240
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
241
+ prompt)
242
+
243
+ # Set span attributes when tools is not passed to the function call
244
+ if "tools" not in kwargs:
245
+ # Calculate cost of the operation
246
+ cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
247
+ pricing_info, response.usage.prompt_tokens,
248
+ response.usage.completion_tokens)
249
+
250
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
251
+ response.usage.prompt_tokens)
252
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
253
+ response.usage.completion_tokens)
254
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
255
+ response.usage.total_tokens)
256
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
257
+ response.choices[0].finish_reason)
258
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
259
+ cost)
260
+
261
+ # Set span attributes for when n = 1 (default)
262
+ if "n" not in kwargs or kwargs["n"] == 1:
263
+ if trace_content:
264
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
265
+ response.choices[0].message.content)
266
+
267
+ # Set span attributes for when n > 0
268
+ else:
269
+ i = 0
270
+ while i < kwargs["n"] and trace_content is True:
271
+ attribute_name = f"gen_ai.content.completion.{i}"
272
+ span.set_attribute(attribute_name,
273
+ response.choices[i].message.content)
274
+ i += 1
275
+
276
+ # Return original response
277
+ return response
278
+
279
+ # Set span attributes when tools is passed to the function call
280
+ elif "tools" in kwargs:
281
+ # Calculate cost of the operation
282
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
283
+ pricing_info, response.usage.prompt_tokens,
284
+ response.usage.completion_tokens)
285
+
286
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
287
+ "Function called with tools")
288
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
289
+ response.usage.prompt_tokens)
290
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
291
+ response.usage.completion_tokens)
292
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
293
+ response.usage.total_tokens)
294
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
295
+ cost)
296
+
297
+ span.set_status(Status(StatusCode.OK))
298
+
299
+ if disable_metrics is False:
300
+ attributes = {
301
+ TELEMETRY_SDK_NAME:
302
+ "openlit",
303
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
304
+ application_name,
305
+ SemanticConvetion.GEN_AI_SYSTEM:
306
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
307
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
308
+ environment,
309
+ SemanticConvetion.GEN_AI_TYPE:
310
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
311
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
312
+ kwargs.get("model", "gpt-3.5-turbo")
313
+ }
314
+
315
+ metrics["genai_requests"].add(1, attributes)
316
+ metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
317
+ metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
318
+ metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
319
+ metrics["genai_cost"].record(cost, attributes)
320
+
321
+ # Return original response
322
+ return response
323
+
324
+ except Exception as e:
325
+ handle_exception(span, e)
326
+ logger.error("Error in trace creation: %s", e)
327
+
328
+ # Return original response
329
+ return response
330
+
331
+ return wrapper
@@ -0,0 +1,331 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
2
+ """
3
+ Module for monitoring Groq API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import get_chat_model_cost, handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def chat(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for chat completions to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the Groq API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of Groq usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the chat completions method to add telemetry.
31
+ """
32
+
33
+ def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'chat.completions' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'chat.completions' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'chat.completions' method.
44
+ kwargs: Keyword arguments for the 'chat.completions' method.
45
+
46
+ Returns:
47
+ The response from the original 'chat.completions' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("stream", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ for chunk in wrapped(*args, **kwargs):
63
+ # Collect message IDs and aggregated response from events
64
+ if len(chunk.choices) > 0:
65
+ # pylint: disable=line-too-long
66
+ if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
67
+ content = chunk.choices[0].delta.content
68
+ if content:
69
+ llmresponse += content
70
+ if chunk.x_groq is not None and chunk.x_groq.usage is not None:
71
+ prompt_tokens = chunk.x_groq.usage.prompt_tokens
72
+ completion_tokens = chunk.x_groq.usage.completion_tokens
73
+ total_tokens = chunk.x_groq.usage.total_tokens
74
+ response_id = chunk.x_groq.id
75
+ yield chunk
76
+
77
+ # Handling exception ensure observability without disrupting operation
78
+ try:
79
+ # Format 'messages' into a single string
80
+ message_prompt = kwargs.get("messages", "")
81
+ formatted_messages = []
82
+ for message in message_prompt:
83
+ role = message["role"]
84
+ content = message["content"]
85
+
86
+ if isinstance(content, list):
87
+ content_str = ", ".join(
88
+ # pylint: disable=line-too-long
89
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
90
+ if "type" in item else f'text: {item["text"]}'
91
+ for item in content
92
+ )
93
+ formatted_messages.append(f"{role}: {content_str}")
94
+ else:
95
+ formatted_messages.append(f"{role}: {content}")
96
+ prompt = "\n".join(formatted_messages)
97
+
98
+ # Calculate cost of the operation
99
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
100
+ pricing_info, prompt_tokens,
101
+ completion_tokens)
102
+
103
+ # Set Span attributes
104
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
105
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
106
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
107
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
108
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
109
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
110
+ gen_ai_endpoint)
111
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
112
+ response_id)
113
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
114
+ environment)
115
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
116
+ application_name)
117
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
118
+ kwargs.get("model", "gpt-3.5-turbo"))
119
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
120
+ kwargs.get("user", ""))
121
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
122
+ kwargs.get("top_p", 1))
123
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
124
+ kwargs.get("max_tokens", ""))
125
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
126
+ kwargs.get("temperature", 1))
127
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
128
+ kwargs.get("presence_penalty", 0))
129
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
130
+ kwargs.get("frequency_penalty", 0))
131
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
132
+ kwargs.get("seed", ""))
133
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
134
+ True)
135
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
136
+ prompt_tokens)
137
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
138
+ completion_tokens)
139
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
140
+ prompt_tokens + completion_tokens)
141
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
142
+ cost)
143
+ if trace_content:
144
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
145
+ prompt)
146
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
147
+ llmresponse)
148
+
149
+ span.set_status(Status(StatusCode.OK))
150
+
151
+ if disable_metrics is False:
152
+ attributes = {
153
+ TELEMETRY_SDK_NAME:
154
+ "openlit",
155
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
156
+ application_name,
157
+ SemanticConvetion.GEN_AI_SYSTEM:
158
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
159
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
160
+ environment,
161
+ SemanticConvetion.GEN_AI_TYPE:
162
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
163
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
164
+ kwargs.get("model", "gpt-3.5-turbo")
165
+ }
166
+
167
+ metrics["genai_requests"].add(1, attributes)
168
+ metrics["genai_total_tokens"].add(
169
+ total_tokens, attributes
170
+ )
171
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
172
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
173
+ metrics["genai_cost"].record(cost, attributes)
174
+
175
+ except Exception as e:
176
+ handle_exception(span, e)
177
+ logger.error("Error in trace creation: %s", e)
178
+
179
+ return stream_generator()
180
+
181
+ # Handling for non-streaming responses
182
+ else:
183
+ # pylint: disable=line-too-long
184
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
185
+ response = wrapped(*args, **kwargs)
186
+
187
+ try:
188
+ # Format 'messages' into a single string
189
+ message_prompt = kwargs.get("messages", "")
190
+ formatted_messages = []
191
+ for message in message_prompt:
192
+ role = message["role"]
193
+ content = message["content"]
194
+
195
+ if isinstance(content, list):
196
+ content_str = ", ".join(
197
+ # pylint: disable=line-too-long
198
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
199
+ if "type" in item else f'text: {item["text"]}'
200
+ for item in content
201
+ )
202
+ formatted_messages.append(f"{role}: {content_str}")
203
+ else:
204
+ formatted_messages.append(f"{role}: {content}")
205
+ prompt = "\n".join(formatted_messages)
206
+
207
+ # Set base span attribues
208
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
209
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
210
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
211
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
212
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
213
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
214
+ gen_ai_endpoint)
215
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
216
+ response.x_groq["id"])
217
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
218
+ environment)
219
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
220
+ application_name)
221
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
222
+ kwargs.get("model", "llama3-8b-8192"))
223
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
224
+ kwargs.get("top_p", 1))
225
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
226
+ kwargs.get("max_tokens", ""))
227
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
228
+ kwargs.get("name", ""))
229
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
230
+ kwargs.get("temperature", 1))
231
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
232
+ kwargs.get("presence_penalty", 0))
233
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
234
+ kwargs.get("frequency_penalty", 0))
235
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
236
+ kwargs.get("seed", ""))
237
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
238
+ False)
239
+ if trace_content:
240
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
241
+ prompt)
242
+
243
+ # Set span attributes when tools is not passed to the function call
244
+ if "tools" not in kwargs:
245
+ # Calculate cost of the operation
246
+ cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
247
+ pricing_info, response.usage.prompt_tokens,
248
+ response.usage.completion_tokens)
249
+
250
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
251
+ response.usage.prompt_tokens)
252
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
253
+ response.usage.completion_tokens)
254
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
255
+ response.usage.total_tokens)
256
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
257
+ response.choices[0].finish_reason)
258
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
259
+ cost)
260
+
261
+ # Set span attributes for when n = 1 (default)
262
+ if "n" not in kwargs or kwargs["n"] == 1:
263
+ if trace_content:
264
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
265
+ response.choices[0].message.content)
266
+
267
+ # Set span attributes for when n > 0
268
+ else:
269
+ i = 0
270
+ while i < kwargs["n"] and trace_content is True:
271
+ attribute_name = f"gen_ai.content.completion.{i}"
272
+ span.set_attribute(attribute_name,
273
+ response.choices[i].message.content)
274
+ i += 1
275
+
276
+ # Return original response
277
+ return response
278
+
279
+ # Set span attributes when tools is passed to the function call
280
+ elif "tools" in kwargs:
281
+ # Calculate cost of the operation
282
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
283
+ pricing_info, response.usage.prompt_tokens,
284
+ response.usage.completion_tokens)
285
+
286
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
287
+ "Function called with tools")
288
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
289
+ response.usage.prompt_tokens)
290
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
291
+ response.usage.completion_tokens)
292
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
293
+ response.usage.total_tokens)
294
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
295
+ cost)
296
+
297
+ span.set_status(Status(StatusCode.OK))
298
+
299
+ if disable_metrics is False:
300
+ attributes = {
301
+ TELEMETRY_SDK_NAME:
302
+ "openlit",
303
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
304
+ application_name,
305
+ SemanticConvetion.GEN_AI_SYSTEM:
306
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
307
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
308
+ environment,
309
+ SemanticConvetion.GEN_AI_TYPE:
310
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
311
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
312
+ kwargs.get("model", "gpt-3.5-turbo")
313
+ }
314
+
315
+ metrics["genai_requests"].add(1, attributes)
316
+ metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
317
+ metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
318
+ metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
319
+ metrics["genai_cost"].record(cost, attributes)
320
+
321
+ # Return original response
322
+ return response
323
+
324
+ except Exception as e:
325
+ handle_exception(span, e)
326
+ logger.error("Error in trace creation: %s", e)
327
+
328
+ # Return original response
329
+ return response
330
+
331
+ return wrapper
@@ -0,0 +1,49 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of Haystack Functions"""
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.haystack.haystack import join_data
9
+
10
+ _instruments = ("haystack-ai >= 2.0.0",)
11
+
12
+ WRAPPED_METHODS = [
13
+ {
14
+ "package": "haystack.components.joiners.document_joiner",
15
+ "object": "DocumentJoiner",
16
+ "endpoint": "haystack.join_data",
17
+ "wrapper": join_data,
18
+ }
19
+ ]
20
+
21
+ class HaystackInstrumentor(BaseInstrumentor):
22
+ """An instrumentor for Cohere's client library."""
23
+
24
+ def instrumentation_dependencies(self) -> Collection[str]:
25
+ return _instruments
26
+
27
+ def _instrument(self, **kwargs):
28
+ application_name = kwargs.get("application_name")
29
+ environment = kwargs.get("environment")
30
+ tracer = kwargs.get("tracer")
31
+ pricing_info = kwargs.get("pricing_info")
32
+ trace_content = kwargs.get("trace_content")
33
+ version = importlib.metadata.version("haystack-ai")
34
+
35
+ for wrapped_method in WRAPPED_METHODS:
36
+ wrap_package = wrapped_method.get("package")
37
+ wrap_object = wrapped_method.get("object")
38
+ gen_ai_endpoint = wrapped_method.get("endpoint")
39
+ wrapper = wrapped_method.get("wrapper")
40
+ wrap_function_wrapper(
41
+ wrap_package,
42
+ wrap_object,
43
+ wrapper(gen_ai_endpoint, version, environment, application_name,
44
+ tracer, pricing_info, trace_content),
45
+ )
46
+
47
+ @staticmethod
48
+ def _uninstrument(self, **kwargs):
49
+ pass
@@ -0,0 +1,84 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
2
+ """
3
+ Module for monitoring Haystack applications.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def join_data(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content):
17
+ """
18
+ Creates a wrapper around a function call to trace and log its execution metrics.
19
+
20
+ This function wraps any given function to measure its execution time,
21
+ log its operation, and trace its execution using OpenTelemetry.
22
+
23
+ Parameters:
24
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
25
+ - version (str): The version of the Haystack application.
26
+ - environment (str): The deployment environment (e.g., 'production', 'development').
27
+ - application_name (str): Name of the Haystack application.
28
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
29
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
30
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
31
+
32
+ Returns:
33
+ - function: A higher-order function that takes a function 'wrapped' and returns
34
+ a new function that wraps 'wrapped' with additional tracing and logging.
35
+ """
36
+
37
+ def wrapper(wrapped, instance, args, kwargs):
38
+ """
39
+ An inner wrapper function that executes the wrapped function, measures execution
40
+ time, and records trace data using OpenTelemetry.
41
+
42
+ Parameters:
43
+ - wrapped (Callable): The original function that this wrapper will execute.
44
+ - instance (object): The instance to which the wrapped function belongs. This
45
+ is used for instance methods. For static and classmethods,
46
+ this may be None.
47
+ - args (tuple): Positional arguments passed to the wrapped function.
48
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
49
+
50
+ Returns:
51
+ - The result of the wrapped function call.
52
+
53
+ The wrapper initiates a span with the provided tracer, sets various attributes
54
+ on the span based on the function's execution and response, and ensures
55
+ errors are handled and logged appropriately.
56
+ """
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ response = wrapped(*args, **kwargs)
59
+
60
+ try:
61
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
+ SemanticConvetion.GEN_AI_SYSTEM_HAYSTACK)
64
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
+ gen_ai_endpoint)
66
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
67
+ environment)
68
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
69
+ SemanticConvetion.GEN_AI_TYPE_FRAMEWORK)
70
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
71
+ application_name)
72
+ span.set_status(Status(StatusCode.OK))
73
+
74
+ # Return original response
75
+ return response
76
+
77
+ except Exception as e:
78
+ handle_exception(span, e)
79
+ logger.error("Error in trace creation: %s", e)
80
+
81
+ # Return original response
82
+ return response
83
+
84
+ return wrapper
@@ -60,7 +60,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
60
60
  try:
61
61
  span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
62
  span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
- "langchain")
63
+ SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
64
64
  span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
65
  gen_ai_endpoint)
66
66
  span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
@@ -0,0 +1,55 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of LlamaIndex Functions"""
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.llamaindex.llamaindex import load_data
9
+
10
+ _instruments = ("llama-index >= 0.10.0",)
11
+
12
+ WRAPPED_METHODS = [
13
+ {
14
+ "package": "llama_index.core.readers",
15
+ "object": "SimpleDirectoryReader.load_data",
16
+ "endpoint": "llamaindex.load_data",
17
+ "wrapper": load_data,
18
+ },
19
+ {
20
+ "package": "llama_index.core.node_parser",
21
+ "object": "SentenceSplitter.get_nodes_from_documents",
22
+ "endpoint": "llamaindex.data_splitter",
23
+ "wrapper": load_data,
24
+ },
25
+ ]
26
+
27
+ class LlamaIndexInstrumentor(BaseInstrumentor):
28
+ """An instrumentor for Cohere's client library."""
29
+
30
+ def instrumentation_dependencies(self) -> Collection[str]:
31
+ return _instruments
32
+
33
+ def _instrument(self, **kwargs):
34
+ application_name = kwargs.get("application_name")
35
+ environment = kwargs.get("environment")
36
+ tracer = kwargs.get("tracer")
37
+ pricing_info = kwargs.get("pricing_info")
38
+ trace_content = kwargs.get("trace_content")
39
+ version = importlib.metadata.version("llama-index")
40
+
41
+ for wrapped_method in WRAPPED_METHODS:
42
+ wrap_package = wrapped_method.get("package")
43
+ wrap_object = wrapped_method.get("object")
44
+ gen_ai_endpoint = wrapped_method.get("endpoint")
45
+ wrapper = wrapped_method.get("wrapper")
46
+ wrap_function_wrapper(
47
+ wrap_package,
48
+ wrap_object,
49
+ wrapper(gen_ai_endpoint, version, environment, application_name,
50
+ tracer, pricing_info, trace_content),
51
+ )
52
+
53
+ @staticmethod
54
+ def _uninstrument(self, **kwargs):
55
+ pass
@@ -0,0 +1,86 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
2
+ """
3
+ Module for monitoring LlamaIndex applications.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def load_data(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content):
17
+ """
18
+ Creates a wrapper around a function call to trace and log its execution metrics.
19
+
20
+ This function wraps any given function to measure its execution time,
21
+ log its operation, and trace its execution using OpenTelemetry.
22
+
23
+ Parameters:
24
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
25
+ - version (str): The version of the LlamaIndex application.
26
+ - environment (str): The deployment environment (e.g., 'production', 'development').
27
+ - application_name (str): Name of the LlamaIndex application.
28
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
29
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
30
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
31
+
32
+ Returns:
33
+ - function: A higher-order function that takes a function 'wrapped' and returns
34
+ a new function that wraps 'wrapped' with additional tracing and logging.
35
+ """
36
+
37
+ def wrapper(wrapped, instance, args, kwargs):
38
+ """
39
+ An inner wrapper function that executes the wrapped function, measures execution
40
+ time, and records trace data using OpenTelemetry.
41
+
42
+ Parameters:
43
+ - wrapped (Callable): The original function that this wrapper will execute.
44
+ - instance (object): The instance to which the wrapped function belongs. This
45
+ is used for instance methods. For static and classmethods,
46
+ this may be None.
47
+ - args (tuple): Positional arguments passed to the wrapped function.
48
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
49
+
50
+ Returns:
51
+ - The result of the wrapped function call.
52
+
53
+ The wrapper initiates a span with the provided tracer, sets various attributes
54
+ on the span based on the function's execution and response, and ensures
55
+ errors are handled and logged appropriately.
56
+ """
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ response = wrapped(*args, **kwargs)
59
+
60
+ try:
61
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
+ SemanticConvetion.GEN_AI_SYSTEM_LLAMAINDEX)
64
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
+ gen_ai_endpoint)
66
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
67
+ environment)
68
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
69
+ SemanticConvetion.GEN_AI_TYPE_FRAMEWORK)
70
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
71
+ application_name)
72
+ span.set_attribute(SemanticConvetion.GEN_AI_RETRIEVAL_SOURCE,
73
+ response[0].metadata["file_path"])
74
+ span.set_status(Status(StatusCode.OK))
75
+
76
+ # Return original response
77
+ return response
78
+
79
+ except Exception as e:
80
+ handle_exception(span, e)
81
+ logger.error("Error in trace creation: %s", e)
82
+
83
+ # Return original response
84
+ return response
85
+
86
+ return wrapper
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Mistral API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Mistral API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Pinecone.
4
4
  """
openlit/otel/tracing.py CHANGED
@@ -40,6 +40,9 @@ def setup_tracing(application_name, environment, tracer, otlp_endpoint, otlp_hea
40
40
  global TRACER_SET
41
41
 
42
42
  try:
43
+ #Disable Haystack Auto Tracing
44
+ os.environ["HAYSTACK_AUTO_TRACE_ENABLED"] = "false"
45
+
43
46
  if not TRACER_SET:
44
47
  # Create a resource with the service name attribute.
45
48
  resource = Resource(attributes={
@@ -87,7 +87,10 @@ class SemanticConvetion:
87
87
  GEN_AI_SYSTEM_MISTRAL = "mistral"
88
88
  GEN_AI_SYSTEM_BEDROCK = "bedrock"
89
89
  GEN_AI_SYSTEM_VERTEXAI = "vertexai"
90
+ GEN_AI_SYSTEM_GROQ = "groq"
90
91
  GEN_AI_SYSTEM_LANGCHAIN = "langchain"
92
+ GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
93
+ GEN_AI_SYSTEM_HAYSTACK = "haystack"
91
94
 
92
95
  # Vector DB
93
96
  DB_REQUESTS = "db.total.requests"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openlit
3
- Version: 1.2.0
3
+ Version: 1.4.0
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects
5
5
  Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT
@@ -49,30 +49,37 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
49
49
  ## What can be Auto Instrumented?
50
50
 
51
51
  ### LLMs
52
- - ✅ OpenAI
53
- - ✅ Anthropic
54
- - ✅ Cohere
55
- - ✅ Mistral
56
- - ✅ Azure OpenAI
57
- - ✅ HuggingFace Transformers
52
+ - [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai)
53
+ - [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic)
54
+ - [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere)
55
+ - [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral)
56
+ - [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai)
57
+ - [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface)
58
+ - [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock)
59
+ - [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai)
60
+ - [✅ Groq](https://docs.openlit.io/latest/integrations/groq)
58
61
 
59
62
  ### Vector DBs
60
- - ✅ ChromaDB
61
- - ✅ Pinecone
63
+ - [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb)
64
+ - [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone)
62
65
 
63
66
  ### Frameworks
64
- - ✅ Langchain
65
- - ✅ LiteLLM
67
+ - [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain)
68
+ - [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm)
69
+ - [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index)
70
+ - [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack)
66
71
 
67
72
  ## Supported Destinations
68
- - ✅ OpenTelemetry Collector
69
- - ✅ Grafana Cloud
70
- - ✅ Grafana Tempo
71
- - ✅ DataDog
72
- - ✅ New Relic
73
- - ✅ SigNoz
74
- - ✅ Dynatrace
75
- - ✅ OpenObserve
73
+ - [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
74
+ - [Prometheus + Tempo](https://docs.openlit.io/latest/connections/prometheus-tempo)
75
+ - [Prometheus + Jaeger](https://docs.openlit.io/latest/connections/prometheus-jaeger)
76
+ - [Grafana Cloud](https://docs.openlit.io/latest/connections/grafanacloud)
77
+ - [DataDog](https://docs.openlit.io/latest/connections/datadog)
78
+ - [New Relic](https://docs.openlit.io/latest/connections/new-relic)
79
+ - [SigNoz](https://docs.openlit.io/latest/connections/signoz)
80
+ - [Dynatrace](https://docs.openlit.io/latest/connections/dynatrace)
81
+ - [✅ OpenObserve](https://docs.openlit.io/latest/connections/openobserve)
82
+ - [✅ Highlight.io](https://docs.openlit.io/latest/connections/highlight)
76
83
 
77
84
  ## 💿 Installation
78
85
 
@@ -1,35 +1,42 @@
1
1
  openlit/__helpers.py,sha256=EEbLEUKuCiBp0WiieAvUnGcaU5D7grFgNVDCBgMKjQE,4651
2
- openlit/__init__.py,sha256=4ETsor9HjA00uexxR3UO2FXKEeiJd871IsPUSBdwAoQ,9077
2
+ openlit/__init__.py,sha256=Ue43Sq_9gi-XvsfqzMDQw_ZSK5UGfAaD6azCBTIp8EQ,9506
3
3
  openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
4
- openlit/instrumentation/anthropic/anthropic.py,sha256=gLN7LrgbTTOxgO8TEn-mX7WCYVGExrIGB-_ueCLPMEY,15993
5
- openlit/instrumentation/anthropic/async_anthropic.py,sha256=wb5U9aF3FtgPZ_1EZudsuKaB6wmOrEVwDIlfcEWnQqU,16035
4
+ openlit/instrumentation/anthropic/anthropic.py,sha256=CYBui5eEfWdSfFF0xtCQjh1xO-gCVJc_V9Hli0szVZE,16026
5
+ openlit/instrumentation/anthropic/async_anthropic.py,sha256=NW84kTQ3BkUx1zZuMRps_J7zTYkmq5BxOrqSjqWInBs,16068
6
6
  openlit/instrumentation/bedrock/__init__.py,sha256=QPvDMQde6Meodu5JvosHdZsnyExS19lcoP5Li4YrOkw,1540
7
7
  openlit/instrumentation/bedrock/bedrock.py,sha256=Q5t5283LGEvhyrUCr9ofEQF22JTkc1UvT2_6u7e7gmA,22278
8
8
  openlit/instrumentation/chroma/__init__.py,sha256=61lFpHlUEQUobsUJZHXdvOViKwsOH8AOvSfc4VgCmiM,3253
9
- openlit/instrumentation/chroma/chroma.py,sha256=wcY5sN-Lfdr4P56FDy8O_ft20gfxTDP12c2vIUF7Qno,10374
9
+ openlit/instrumentation/chroma/chroma.py,sha256=j_xaiSLaScmRHU7SRM-vi8LgRBjsTr1daRLc4RXNyIA,10407
10
10
  openlit/instrumentation/cohere/__init__.py,sha256=PC5T1qIg9pwLNocBP_WjG5B_6p_z019s8quk_fNLAMs,1920
11
- openlit/instrumentation/cohere/cohere.py,sha256=LdRMStLs-UTxDsGsTObEv-unC8g1tRFaU2EFCUBFGHI,20348
11
+ openlit/instrumentation/cohere/cohere.py,sha256=_TXAB64-sujs51-JQVu30HqwBaNengNWHEL0hgAAgJA,20381
12
+ openlit/instrumentation/groq/__init__.py,sha256=uW_0G6HSanQyK2dIXYhzR604pDiyPQfybzc37DsfSew,1911
13
+ openlit/instrumentation/groq/async_groq.py,sha256=WQwHpC-NJoyEf-jAJlxEcdnpd5jmlfAsDtEBRJ47CxA,19084
14
+ openlit/instrumentation/groq/groq.py,sha256=4uiEFUjxJ0q-c3GlgPAMc4NijG1YLgQp7o3wcwFrxeg,19048
15
+ openlit/instrumentation/haystack/__init__.py,sha256=QK6XxxZUHX8vMv2Crk7rNBOc64iOOBLhJGL_lPlAZ8s,1758
16
+ openlit/instrumentation/haystack/haystack.py,sha256=oQIZiDhdp3gnJnhYQ1OouJMc9YT0pQ-_31cmNuopa68,3891
12
17
  openlit/instrumentation/langchain/__init__.py,sha256=TW1ZR7I1i9Oig-wDWp3j1gmtQFO76jNBXQRBGGKzoOo,2531
13
- openlit/instrumentation/langchain/langchain.py,sha256=D-PiYlmUW5SuE4rvKRMOsMGtW5wI6aA3ldig1JhXUok,7609
18
+ openlit/instrumentation/langchain/langchain.py,sha256=G66UytYwWW0DdvChomzkc5_MJ-sjupuDwlxe4KqlGhY,7639
19
+ openlit/instrumentation/llamaindex/__init__.py,sha256=FwE0iozGbZcd2dWo9uk4EO6qKPAe55byhZBuzuFyxXA,1973
20
+ openlit/instrumentation/llamaindex/llamaindex.py,sha256=uiIigbwhonSbJWA7LpgOVI1R4kxxPODS1K5wyHIQ4hM,4048
14
21
  openlit/instrumentation/mistral/__init__.py,sha256=zJCIpFWRbsYrvooOJYuqwyuKeSOQLWbyXWCObL-Snks,3156
15
- openlit/instrumentation/mistral/async_mistral.py,sha256=nD1ns326mclIUjd4PEfrSa8mufpoZqjYF1meK9oohkA,21328
16
- openlit/instrumentation/mistral/mistral.py,sha256=fcwm6UfhqTZ9KEJACO90jz_CpabUg8KKsaqXTAkTwgo,21179
22
+ openlit/instrumentation/mistral/async_mistral.py,sha256=PXpiLwkonTtAPVOUh9pXMSYeabwH0GFG_HRDWrEKhMM,21361
23
+ openlit/instrumentation/mistral/mistral.py,sha256=nbAyMlPiuA9hihePkM_nnxAjahZSndT-B-qXRO5VIhk,21212
17
24
  openlit/instrumentation/openai/__init__.py,sha256=AZ2cPr3TMKkgGdMl_yXMeSi7bWhtmMqOW1iHdzHHGHA,16265
18
25
  openlit/instrumentation/openai/async_azure_openai.py,sha256=QE_5KHaCHAndkf7Y2Iq66mZUc0I1qtqIJ6iYPnwiuXA,46297
19
26
  openlit/instrumentation/openai/async_openai.py,sha256=qfJG_gIkSz3Gjau0zQ_G3tvkqkOd-md5LBK6wIjvH0U,45841
20
27
  openlit/instrumentation/openai/azure_openai.py,sha256=8nm1hsGdWLhJt97fkV254_biYdGeVJiZP2_Yb3pKSEU,46091
21
28
  openlit/instrumentation/openai/openai.py,sha256=VVl0fuQfxitH-V4hVeP5VxB31-yWMI74Xz4katlsG78,46522
22
29
  openlit/instrumentation/pinecone/__init__.py,sha256=Mv9bElqNs07_JQkYyNnO0wOM3hdbprmw7sttdMeKC7g,2526
23
- openlit/instrumentation/pinecone/pinecone.py,sha256=0C-Dd4YOlBCKQ7vmWvFsvokjFCKCn-snquHp7n12yPM,8732
30
+ openlit/instrumentation/pinecone/pinecone.py,sha256=0EhLmtOuvwWVvAKh3e56wyd8wzQq1oaLOmF15SVHxVE,8765
24
31
  openlit/instrumentation/transformers/__init__.py,sha256=9-KLjq-aPTh13gTBYsWltV6hokGwt3mP4759SwsaaCk,1478
25
32
  openlit/instrumentation/transformers/transformers.py,sha256=peT0BGskYt7AZ0b93TZ7qECXfZRgDQMasUeamexYdZI,7592
26
33
  openlit/instrumentation/vertexai/__init__.py,sha256=N3E9HtzefD-zC0fvmfGYiDmSqssoavp_i59wfuYLyMw,6079
27
34
  openlit/instrumentation/vertexai/async_vertexai.py,sha256=PMHYyLf1J4gZpC_-KZ_ZVx1xIHhZDJSNa7mrjNXZ5M0,52372
28
35
  openlit/instrumentation/vertexai/vertexai.py,sha256=UvpNKBHPoV9idVMfGigZnmWuEQiyqSwZn0zK9-U7Lzw,52125
29
36
  openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
30
- openlit/otel/tracing.py,sha256=peismkno0YPoRezHPbF5Ycz15_oOBErn_coW1CPspHg,3612
31
- openlit/semcov/__init__.py,sha256=VN0hX8LmU9GDxPayhGpongeQ1MZH1IUtI8Twwtd6D7M,5764
32
- openlit-1.2.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
33
- openlit-1.2.0.dist-info/METADATA,sha256=gTRf37Q2Kx-Lvxp9CZHkTdDnQhKS2_qNGJHiD8aoRcI,10535
34
- openlit-1.2.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
35
- openlit-1.2.0.dist-info/RECORD,,
37
+ openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
38
+ openlit/semcov/__init__.py,sha256=6TnH8BtcEHzMZeGZH3wucjvhHOadnGrgUDBBipLFcFs,5881
39
+ openlit-1.4.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
40
+ openlit-1.4.0.dist-info/METADATA,sha256=s3Ox1SphAFtfZEuUBVRn5vrfjFXgBcdEKZ2QB9X8-Zw,12079
41
+ openlit-1.4.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
42
+ openlit-1.4.0.dist-info/RECORD,,