openlit 1.19.0__py3-none-any.whl → 1.20.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +3 -0
- openlit/instrumentation/google_ai_studio/__init__.py +56 -0
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +259 -0
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +261 -0
- openlit/semcov/__init__.py +1 -0
- {openlit-1.19.0.dist-info → openlit-1.20.0.dist-info}/METADATA +3 -2
- {openlit-1.19.0.dist-info → openlit-1.20.0.dist-info}/RECORD +9 -6
- {openlit-1.19.0.dist-info → openlit-1.20.0.dist-info}/LICENSE +0 -0
- {openlit-1.19.0.dist-info → openlit-1.20.0.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -33,6 +33,7 @@ from openlit.instrumentation.ollama import OllamaInstrumentor
|
|
33
33
|
from openlit.instrumentation.gpt4all import GPT4AllInstrumentor
|
34
34
|
from openlit.instrumentation.elevenlabs import ElevenLabsInstrumentor
|
35
35
|
from openlit.instrumentation.vllm import VLLMInstrumentor
|
36
|
+
from openlit.instrumentation.google_ai_studio import GoogleAIStudioInstrumentor
|
36
37
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
37
38
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
38
39
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
@@ -196,6 +197,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
196
197
|
"gpt4all": "gpt4all",
|
197
198
|
"elevenlabs": "elevenlabs",
|
198
199
|
"vllm": "vllm",
|
200
|
+
"google-ai-studio": "google.generativeai",
|
199
201
|
"langchain": "langchain",
|
200
202
|
"llama_index": "llama_index",
|
201
203
|
"haystack": "haystack",
|
@@ -273,6 +275,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
273
275
|
"gpt4all": GPT4AllInstrumentor(),
|
274
276
|
"elevenlabs": ElevenLabsInstrumentor(),
|
275
277
|
"vllm": VLLMInstrumentor(),
|
278
|
+
"google-ai-studio": GoogleAIStudioInstrumentor(),
|
276
279
|
"langchain": LangChainInstrumentor(),
|
277
280
|
"llama_index": LlamaIndexInstrumentor(),
|
278
281
|
"haystack": HaystackInstrumentor(),
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Google AI Studio Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.google_ai_studio.google_ai_studio import (
|
10
|
+
generate
|
11
|
+
)
|
12
|
+
|
13
|
+
from openlit.instrumentation.google_ai_studio.async_google_ai_studio import (
|
14
|
+
async_generate
|
15
|
+
)
|
16
|
+
|
17
|
+
_instruments = ("google-generativeai >= 0.2.0",)
|
18
|
+
|
19
|
+
class GoogleAIStudioInstrumentor(BaseInstrumentor):
|
20
|
+
"""
|
21
|
+
An instrumentor for google-generativeai's client library.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
25
|
+
return _instruments
|
26
|
+
|
27
|
+
def _instrument(self, **kwargs):
|
28
|
+
application_name = kwargs.get("application_name", "default_application")
|
29
|
+
environment = kwargs.get("environment", "default_environment")
|
30
|
+
tracer = kwargs.get("tracer")
|
31
|
+
metrics = kwargs.get("metrics_dict")
|
32
|
+
pricing_info = kwargs.get("pricing_info", {})
|
33
|
+
trace_content = kwargs.get("trace_content", False)
|
34
|
+
disable_metrics = kwargs.get("disable_metrics")
|
35
|
+
version = importlib.metadata.version("ollama")
|
36
|
+
|
37
|
+
# sync generate
|
38
|
+
wrap_function_wrapper(
|
39
|
+
"google.generativeai.generative_models",
|
40
|
+
"GenerativeModel.generate_content",
|
41
|
+
generate("google_ai_studio.generate_content", version, environment, application_name,
|
42
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
43
|
+
)
|
44
|
+
|
45
|
+
# async generate
|
46
|
+
wrap_function_wrapper(
|
47
|
+
"google.generativeai.generative_models",
|
48
|
+
"GenerativeModel.generate_content_async",
|
49
|
+
async_generate("google_ai_studio.generate_content", version, environment,
|
50
|
+
application_name, tracer, pricing_info, trace_content, metrics,
|
51
|
+
disable_metrics),
|
52
|
+
)
|
53
|
+
|
54
|
+
def _uninstrument(self, **kwargs):
|
55
|
+
# Proper uninstrumentation logic to revert patched methods
|
56
|
+
pass
|
@@ -0,0 +1,259 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvetion
|
14
|
+
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
def async_generate(gen_ai_endpoint, version, environment, application_name,
|
19
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
20
|
+
"""
|
21
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
22
|
+
|
23
|
+
Args:
|
24
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
|
+
version: Version of the monitoring package.
|
26
|
+
environment: Deployment environment (e.g., production, staging).
|
27
|
+
application_name: Name of the application using the Ollama API.
|
28
|
+
tracer: OpenTelemetry tracer for creating spans.
|
29
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
30
|
+
trace_content: Flag indicating whether to trace the actual content.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
A function that wraps the chat method to add telemetry.
|
34
|
+
"""
|
35
|
+
|
36
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
37
|
+
"""
|
38
|
+
Wraps the 'chat' API call to add telemetry.
|
39
|
+
|
40
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
41
|
+
gracefully, adding details to the trace for observability.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
wrapped: The original 'chat' method to be wrapped.
|
45
|
+
instance: The instance of the class where the original method is defined.
|
46
|
+
args: Positional arguments for the 'chat' method.
|
47
|
+
kwargs: Keyword arguments for the 'chat' method.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The response from the original 'chat' method.
|
51
|
+
"""
|
52
|
+
# pylint: disable=no-else-return
|
53
|
+
if kwargs.get('stream', False) is True:
|
54
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
55
|
+
async def stream_generator():
|
56
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
llmresponse = ""
|
59
|
+
|
60
|
+
# Loop through streaming events capturing relevant details
|
61
|
+
async for chunk in await wrapped(*args, **kwargs):
|
62
|
+
# Collect message IDs and aggregated response from events
|
63
|
+
content = chunk.text
|
64
|
+
if content:
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
input_tokens = chunk.usage_metadata.prompt_token_count
|
68
|
+
output_tokens = chunk.usage_metadata.candidates_token_count
|
69
|
+
yield chunk
|
70
|
+
|
71
|
+
# Handling exception ensure observability without disrupting operation
|
72
|
+
try:
|
73
|
+
prompt = ""
|
74
|
+
for arg in args:
|
75
|
+
if isinstance(arg, str):
|
76
|
+
prompt = f"{prompt}{arg}\n"
|
77
|
+
elif isinstance(arg, list):
|
78
|
+
for subarg in arg:
|
79
|
+
prompt = f"{prompt}{subarg}\n"
|
80
|
+
if hasattr(instance, "_model_id"):
|
81
|
+
model = instance._model_id
|
82
|
+
if hasattr(instance, "_model_name"):
|
83
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
|
85
|
+
total_tokens = input_tokens + output_tokens
|
86
|
+
# Calculate cost of the operation
|
87
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
88
|
+
pricing_info, input_tokens,
|
89
|
+
output_tokens)
|
90
|
+
|
91
|
+
# Set Span attributes
|
92
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
93
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
94
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
95
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
96
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
97
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
98
|
+
gen_ai_endpoint)
|
99
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
100
|
+
environment)
|
101
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
102
|
+
application_name)
|
103
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
104
|
+
model)
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
106
|
+
True)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
108
|
+
input_tokens)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
110
|
+
output_tokens)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
112
|
+
total_tokens)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
114
|
+
cost)
|
115
|
+
if trace_content:
|
116
|
+
span.add_event(
|
117
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
118
|
+
attributes={
|
119
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
120
|
+
},
|
121
|
+
)
|
122
|
+
span.add_event(
|
123
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
124
|
+
attributes={
|
125
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
126
|
+
},
|
127
|
+
)
|
128
|
+
|
129
|
+
span.set_status(Status(StatusCode.OK))
|
130
|
+
|
131
|
+
if disable_metrics is False:
|
132
|
+
attributes = {
|
133
|
+
TELEMETRY_SDK_NAME:
|
134
|
+
"openlit",
|
135
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
136
|
+
application_name,
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
138
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
139
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
140
|
+
environment,
|
141
|
+
SemanticConvetion.GEN_AI_TYPE:
|
142
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
143
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
144
|
+
model
|
145
|
+
}
|
146
|
+
|
147
|
+
metrics["genai_requests"].add(1, attributes)
|
148
|
+
metrics["genai_total_tokens"].add(
|
149
|
+
total_tokens, attributes
|
150
|
+
)
|
151
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
152
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
153
|
+
metrics["genai_cost"].record(cost, attributes)
|
154
|
+
|
155
|
+
except Exception as e:
|
156
|
+
handle_exception(span, e)
|
157
|
+
logger.error("Error in trace creation: %s", e)
|
158
|
+
|
159
|
+
return stream_generator()
|
160
|
+
else:
|
161
|
+
# pylint: disable=line-too-long
|
162
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
163
|
+
response = await wrapped(*args, **kwargs)
|
164
|
+
|
165
|
+
try:
|
166
|
+
prompt = ""
|
167
|
+
for arg in args:
|
168
|
+
if isinstance(arg, str):
|
169
|
+
prompt = f"{prompt}{arg}\n"
|
170
|
+
elif isinstance(arg, list):
|
171
|
+
for subarg in arg:
|
172
|
+
prompt = f"{prompt}{subarg}\n"
|
173
|
+
if hasattr(instance, "_model_id"):
|
174
|
+
model = instance._model_id
|
175
|
+
if hasattr(instance, "_model_name"):
|
176
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
177
|
+
|
178
|
+
# Set base span attribues
|
179
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
180
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
181
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
182
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
183
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
184
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
185
|
+
gen_ai_endpoint)
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
187
|
+
environment)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
189
|
+
application_name)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
191
|
+
model)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
193
|
+
False)
|
194
|
+
|
195
|
+
if trace_content:
|
196
|
+
span.add_event(
|
197
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
198
|
+
attributes={
|
199
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
200
|
+
},
|
201
|
+
)
|
202
|
+
span.add_event(
|
203
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
204
|
+
attributes={
|
205
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.text,
|
206
|
+
},
|
207
|
+
)
|
208
|
+
|
209
|
+
prompt_tokens = response.usage_metadata.prompt_token_count
|
210
|
+
completion_tokens = response.usage_metadata.candidates_token_count
|
211
|
+
total_tokens = response.usage_metadata.total_token_count
|
212
|
+
# Calculate cost of the operation
|
213
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3"),
|
214
|
+
pricing_info, prompt_tokens, completion_tokens)
|
215
|
+
|
216
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
217
|
+
prompt_tokens)
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
219
|
+
completion_tokens)
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
221
|
+
total_tokens)
|
222
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
223
|
+
cost)
|
224
|
+
|
225
|
+
span.set_status(Status(StatusCode.OK))
|
226
|
+
|
227
|
+
if disable_metrics is False:
|
228
|
+
attributes = {
|
229
|
+
TELEMETRY_SDK_NAME:
|
230
|
+
"openlit",
|
231
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
232
|
+
application_name,
|
233
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
234
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
235
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
236
|
+
environment,
|
237
|
+
SemanticConvetion.GEN_AI_TYPE:
|
238
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
239
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
240
|
+
kwargs.get("model", "llama3")
|
241
|
+
}
|
242
|
+
|
243
|
+
metrics["genai_requests"].add(1, attributes)
|
244
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
245
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
246
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
247
|
+
metrics["genai_cost"].record(cost, attributes)
|
248
|
+
|
249
|
+
# Return original response
|
250
|
+
return response
|
251
|
+
|
252
|
+
except Exception as e:
|
253
|
+
handle_exception(span, e)
|
254
|
+
logger.error("Error in trace creation: %s", e)
|
255
|
+
|
256
|
+
# Return original response
|
257
|
+
return response
|
258
|
+
|
259
|
+
return wrapper
|
@@ -0,0 +1,261 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvetion
|
14
|
+
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
def generate(gen_ai_endpoint, version, environment, application_name,
|
19
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
20
|
+
"""
|
21
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
22
|
+
|
23
|
+
Args:
|
24
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
|
+
version: Version of the monitoring package.
|
26
|
+
environment: Deployment environment (e.g., production, staging).
|
27
|
+
application_name: Name of the application using the Ollama API.
|
28
|
+
tracer: OpenTelemetry tracer for creating spans.
|
29
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
30
|
+
trace_content: Flag indicating whether to trace the actual content.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
A function that wraps the chat method to add telemetry.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def wrapper(wrapped, instance, args, kwargs):
|
37
|
+
"""
|
38
|
+
Wraps the 'chat' API call to add telemetry.
|
39
|
+
|
40
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
41
|
+
gracefully, adding details to the trace for observability.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
wrapped: The original 'chat' method to be wrapped.
|
45
|
+
instance: The instance of the class where the original method is defined.
|
46
|
+
args: Positional arguments for the 'chat' method.
|
47
|
+
kwargs: Keyword arguments for the 'chat' method.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The response from the original 'chat' method.
|
51
|
+
"""
|
52
|
+
# pylint: disable=no-else-return
|
53
|
+
if kwargs.get("stream", False) is True:
|
54
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
55
|
+
def stream_generator():
|
56
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
llmresponse = ""
|
59
|
+
|
60
|
+
# Loop through streaming events capturing relevant details
|
61
|
+
for chunk in wrapped(*args, **kwargs):
|
62
|
+
# Collect message IDs and aggregated response from events
|
63
|
+
content = chunk.text
|
64
|
+
if content:
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
input_tokens = chunk.usage_metadata.prompt_token_count
|
68
|
+
output_tokens = chunk.usage_metadata.candidates_token_count
|
69
|
+
yield chunk
|
70
|
+
|
71
|
+
# Handling exception ensure observability without disrupting operation
|
72
|
+
try:
|
73
|
+
prompt = ""
|
74
|
+
for arg in args:
|
75
|
+
if isinstance(arg, str):
|
76
|
+
prompt = f"{prompt}{arg}\n"
|
77
|
+
elif isinstance(arg, list):
|
78
|
+
for subarg in arg:
|
79
|
+
prompt = f"{prompt}{subarg}\n"
|
80
|
+
if hasattr(instance, "_model_id"):
|
81
|
+
model = instance._model_id
|
82
|
+
if hasattr(instance, "_model_name"):
|
83
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
|
85
|
+
total_tokens = input_tokens + output_tokens
|
86
|
+
# Calculate cost of the operation
|
87
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
88
|
+
pricing_info, input_tokens,
|
89
|
+
output_tokens)
|
90
|
+
|
91
|
+
# Set Span attributes
|
92
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
93
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
94
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
95
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
96
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
97
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
98
|
+
gen_ai_endpoint)
|
99
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
100
|
+
environment)
|
101
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
102
|
+
application_name)
|
103
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
104
|
+
model)
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
106
|
+
True)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
108
|
+
input_tokens)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
110
|
+
output_tokens)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
112
|
+
total_tokens)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
114
|
+
cost)
|
115
|
+
if trace_content:
|
116
|
+
span.add_event(
|
117
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
118
|
+
attributes={
|
119
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
120
|
+
},
|
121
|
+
)
|
122
|
+
span.add_event(
|
123
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
124
|
+
attributes={
|
125
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
126
|
+
},
|
127
|
+
)
|
128
|
+
|
129
|
+
span.set_status(Status(StatusCode.OK))
|
130
|
+
|
131
|
+
if disable_metrics is False:
|
132
|
+
attributes = {
|
133
|
+
TELEMETRY_SDK_NAME:
|
134
|
+
"openlit",
|
135
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
136
|
+
application_name,
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
138
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
139
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
140
|
+
environment,
|
141
|
+
SemanticConvetion.GEN_AI_TYPE:
|
142
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
143
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
144
|
+
model
|
145
|
+
}
|
146
|
+
|
147
|
+
metrics["genai_requests"].add(1, attributes)
|
148
|
+
metrics["genai_total_tokens"].add(
|
149
|
+
total_tokens, attributes
|
150
|
+
)
|
151
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
152
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
153
|
+
metrics["genai_cost"].record(cost, attributes)
|
154
|
+
|
155
|
+
except Exception as e:
|
156
|
+
handle_exception(span, e)
|
157
|
+
logger.error("Error in trace creation: %s", e)
|
158
|
+
|
159
|
+
return stream_generator()
|
160
|
+
else:
|
161
|
+
# pylint: disable=line-too-long
|
162
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
163
|
+
response = wrapped(*args, **kwargs)
|
164
|
+
|
165
|
+
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
166
|
+
try:
|
167
|
+
prompt = ""
|
168
|
+
for arg in args:
|
169
|
+
if isinstance(arg, str):
|
170
|
+
prompt = f"{prompt}{arg}\n"
|
171
|
+
elif isinstance(arg, list):
|
172
|
+
for subarg in arg:
|
173
|
+
prompt = f"{prompt}{subarg}\n"
|
174
|
+
|
175
|
+
if hasattr(instance, "_model_id"):
|
176
|
+
model = instance._model_id
|
177
|
+
if hasattr(instance, "_model_name"):
|
178
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
179
|
+
|
180
|
+
# Set base span attribues
|
181
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
182
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
183
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
184
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
185
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
187
|
+
gen_ai_endpoint)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
189
|
+
environment)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
191
|
+
application_name)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
193
|
+
model)
|
194
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
195
|
+
False)
|
196
|
+
|
197
|
+
if trace_content:
|
198
|
+
span.add_event(
|
199
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
200
|
+
attributes={
|
201
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
202
|
+
},
|
203
|
+
)
|
204
|
+
span.add_event(
|
205
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
206
|
+
attributes={
|
207
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.text,
|
208
|
+
},
|
209
|
+
)
|
210
|
+
|
211
|
+
prompt_tokens = response.usage_metadata.prompt_token_count
|
212
|
+
completion_tokens = response.usage_metadata.candidates_token_count
|
213
|
+
total_tokens = response.usage_metadata.total_token_count
|
214
|
+
# Calculate cost of the operation
|
215
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3"),
|
216
|
+
pricing_info, prompt_tokens, completion_tokens)
|
217
|
+
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
219
|
+
prompt_tokens)
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
221
|
+
completion_tokens)
|
222
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
223
|
+
total_tokens)
|
224
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
225
|
+
cost)
|
226
|
+
|
227
|
+
span.set_status(Status(StatusCode.OK))
|
228
|
+
|
229
|
+
if disable_metrics is False:
|
230
|
+
attributes = {
|
231
|
+
TELEMETRY_SDK_NAME:
|
232
|
+
"openlit",
|
233
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
234
|
+
application_name,
|
235
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
236
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
237
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
238
|
+
environment,
|
239
|
+
SemanticConvetion.GEN_AI_TYPE:
|
240
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
241
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
242
|
+
kwargs.get("model", "llama3")
|
243
|
+
}
|
244
|
+
|
245
|
+
metrics["genai_requests"].add(1, attributes)
|
246
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
247
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
248
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
249
|
+
metrics["genai_cost"].record(cost, attributes)
|
250
|
+
|
251
|
+
# Return original response
|
252
|
+
return response
|
253
|
+
|
254
|
+
except Exception as e:
|
255
|
+
handle_exception(span, e)
|
256
|
+
logger.error("Error in trace creation: %s", e)
|
257
|
+
|
258
|
+
# Return original response
|
259
|
+
return response
|
260
|
+
|
261
|
+
return wrapper
|
openlit/semcov/__init__.py
CHANGED
@@ -102,6 +102,7 @@ class SemanticConvetion:
|
|
102
102
|
GEN_AI_SYSTEM_GPT4ALL = "gpt4all"
|
103
103
|
GEN_AI_SYSTEM_ELEVENLABS = "elevenlabs"
|
104
104
|
GEN_AI_SYSTEM_VLLM = "vLLM"
|
105
|
+
GEN_AI_SYSTEM_GOOGLE_AI_STUDIO = "google-ai-studio"
|
105
106
|
GEN_AI_SYSTEM_LANGCHAIN = "langchain"
|
106
107
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
107
108
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.20.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -60,7 +60,7 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
60
60
|
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | |
|
61
61
|
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
|
62
62
|
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
|
63
|
-
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) |
|
63
|
+
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
64
64
|
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
65
65
|
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | | |
|
66
66
|
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
@@ -70,6 +70,7 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
70
70
|
| [✅ ElevenLabs](https://docs.openlit.io/latest/integrations/elevenlabs) | | | |
|
71
71
|
| [✅ vLLM](https://docs.openlit.io/latest/integrations/vllm) | | | |
|
72
72
|
| [✅ OLA Krutrim](https://docs.openlit.io/latest/integrations/krutrim) | | | |
|
73
|
+
| [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
|
73
74
|
|
74
75
|
## Supported Destinations
|
75
76
|
- [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
openlit/__helpers.py,sha256=lrn4PBs9owDudiCY2NBoVbAi7AU_HtUpyOj0oqPBsPY,5545
|
2
|
-
openlit/__init__.py,sha256=
|
2
|
+
openlit/__init__.py,sha256=fqeMFg76VYEX4VdxTn76Fh-0kbrN5_Sk8ahlm7Xlp9k,15296
|
3
3
|
openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
|
4
4
|
openlit/instrumentation/anthropic/anthropic.py,sha256=y7CEGhKOGHWt8G_5Phr4qPJTfPGRJIAr9Yk6nM3CcvM,16775
|
5
5
|
openlit/instrumentation/anthropic/async_anthropic.py,sha256=Zz1KRKIG9wGn0quOoLvjORC-49IvHQpJ6GBdB-4PfCQ,16816
|
@@ -14,6 +14,9 @@ openlit/instrumentation/elevenlabs/async_elevenlabs.py,sha256=yMYACh95SFr5EYklKn
|
|
14
14
|
openlit/instrumentation/elevenlabs/elevenlabs.py,sha256=mFnD7sgT47OxaXJz0Vc1nrNjXEpcGQDj5run3gA48Lw,6089
|
15
15
|
openlit/instrumentation/embedchain/__init__.py,sha256=8TYk1OEbz46yF19dr-gB_x80VZMagU3kJ8-QihPXTeA,1929
|
16
16
|
openlit/instrumentation/embedchain/embedchain.py,sha256=SLlr7qieT3kp4M6OYSRy8FaVCXQ2t3oPyIiE99ioNE4,7892
|
17
|
+
openlit/instrumentation/google_ai_studio/__init__.py,sha256=vG4WzaavOiiwI3r5stDMotM5TSBxdcxQhC3W4XjJIG8,2146
|
18
|
+
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=cEy5FNu92gvdmsKKVDrUcY5LpY4hHzWwJl9yezxN-Zo,13404
|
19
|
+
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=mLABvD756GEgVfAjiYsfLYWATT1AxPuWDuElwpX4voo,13453
|
17
20
|
openlit/instrumentation/gpt4all/__init__.py,sha256=-59CP2B3-HGZJ_vC-fI9Dt-0BuQXRhSCWCjnaGeU15Q,1802
|
18
21
|
openlit/instrumentation/gpt4all/gpt4all.py,sha256=dbxqZeuTrv_y6wyDOIEmC8-Dc4iCGgLpj3l5JiodLMI,18787
|
19
22
|
openlit/instrumentation/gpu/__init__.py,sha256=Dj2MLar0DB20-t6W3pfR-3jfR_mwg4SYwhzIrH_n9sU,5596
|
@@ -52,8 +55,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
|
|
52
55
|
openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
|
53
56
|
openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
|
54
57
|
openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
|
55
|
-
openlit/semcov/__init__.py,sha256=
|
56
|
-
openlit-1.
|
57
|
-
openlit-1.
|
58
|
-
openlit-1.
|
59
|
-
openlit-1.
|
58
|
+
openlit/semcov/__init__.py,sha256=56daxsJtWFqp87TTT3R5OxSeMH7eOZqb4k-7AELirTI,7554
|
59
|
+
openlit-1.20.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
60
|
+
openlit-1.20.0.dist-info/METADATA,sha256=DvK9Dt8ZvBBvdPc_Fdbi7HxkCu9Kp-Z4IkzCOuynkg4,14934
|
61
|
+
openlit-1.20.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
62
|
+
openlit-1.20.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|