openlit 1.18.2__py3-none-any.whl → 1.20.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__init__.py +3 -0
- openlit/instrumentation/google_ai_studio/__init__.py +56 -0
- openlit/instrumentation/google_ai_studio/async_google_ai_studio.py +259 -0
- openlit/instrumentation/google_ai_studio/google_ai_studio.py +261 -0
- openlit/instrumentation/langchain/__init__.py +23 -2
- openlit/instrumentation/langchain/langchain.py +396 -14
- openlit/semcov/__init__.py +1 -0
- {openlit-1.18.2.dist-info → openlit-1.20.0.dist-info}/METADATA +10 -6
- {openlit-1.18.2.dist-info → openlit-1.20.0.dist-info}/RECORD +11 -8
- {openlit-1.18.2.dist-info → openlit-1.20.0.dist-info}/LICENSE +0 -0
- {openlit-1.18.2.dist-info → openlit-1.20.0.dist-info}/WHEEL +0 -0
openlit/__init__.py
CHANGED
@@ -33,6 +33,7 @@ from openlit.instrumentation.ollama import OllamaInstrumentor
|
|
33
33
|
from openlit.instrumentation.gpt4all import GPT4AllInstrumentor
|
34
34
|
from openlit.instrumentation.elevenlabs import ElevenLabsInstrumentor
|
35
35
|
from openlit.instrumentation.vllm import VLLMInstrumentor
|
36
|
+
from openlit.instrumentation.google_ai_studio import GoogleAIStudioInstrumentor
|
36
37
|
from openlit.instrumentation.langchain import LangChainInstrumentor
|
37
38
|
from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
|
38
39
|
from openlit.instrumentation.haystack import HaystackInstrumentor
|
@@ -196,6 +197,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
196
197
|
"gpt4all": "gpt4all",
|
197
198
|
"elevenlabs": "elevenlabs",
|
198
199
|
"vllm": "vllm",
|
200
|
+
"google-ai-studio": "google.generativeai",
|
199
201
|
"langchain": "langchain",
|
200
202
|
"llama_index": "llama_index",
|
201
203
|
"haystack": "haystack",
|
@@ -273,6 +275,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
|
|
273
275
|
"gpt4all": GPT4AllInstrumentor(),
|
274
276
|
"elevenlabs": ElevenLabsInstrumentor(),
|
275
277
|
"vllm": VLLMInstrumentor(),
|
278
|
+
"google-ai-studio": GoogleAIStudioInstrumentor(),
|
276
279
|
"langchain": LangChainInstrumentor(),
|
277
280
|
"llama_index": LlamaIndexInstrumentor(),
|
278
281
|
"haystack": HaystackInstrumentor(),
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
|
2
|
+
"""Initializer of Auto Instrumentation of Google AI Studio Functions"""
|
3
|
+
|
4
|
+
from typing import Collection
|
5
|
+
import importlib.metadata
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
7
|
+
from wrapt import wrap_function_wrapper
|
8
|
+
|
9
|
+
from openlit.instrumentation.google_ai_studio.google_ai_studio import (
|
10
|
+
generate
|
11
|
+
)
|
12
|
+
|
13
|
+
from openlit.instrumentation.google_ai_studio.async_google_ai_studio import (
|
14
|
+
async_generate
|
15
|
+
)
|
16
|
+
|
17
|
+
_instruments = ("google-generativeai >= 0.2.0",)
|
18
|
+
|
19
|
+
class GoogleAIStudioInstrumentor(BaseInstrumentor):
|
20
|
+
"""
|
21
|
+
An instrumentor for google-generativeai's client library.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
25
|
+
return _instruments
|
26
|
+
|
27
|
+
def _instrument(self, **kwargs):
|
28
|
+
application_name = kwargs.get("application_name", "default_application")
|
29
|
+
environment = kwargs.get("environment", "default_environment")
|
30
|
+
tracer = kwargs.get("tracer")
|
31
|
+
metrics = kwargs.get("metrics_dict")
|
32
|
+
pricing_info = kwargs.get("pricing_info", {})
|
33
|
+
trace_content = kwargs.get("trace_content", False)
|
34
|
+
disable_metrics = kwargs.get("disable_metrics")
|
35
|
+
version = importlib.metadata.version("ollama")
|
36
|
+
|
37
|
+
# sync generate
|
38
|
+
wrap_function_wrapper(
|
39
|
+
"google.generativeai.generative_models",
|
40
|
+
"GenerativeModel.generate_content",
|
41
|
+
generate("google_ai_studio.generate_content", version, environment, application_name,
|
42
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
43
|
+
)
|
44
|
+
|
45
|
+
# async generate
|
46
|
+
wrap_function_wrapper(
|
47
|
+
"google.generativeai.generative_models",
|
48
|
+
"GenerativeModel.generate_content_async",
|
49
|
+
async_generate("google_ai_studio.generate_content", version, environment,
|
50
|
+
application_name, tracer, pricing_info, trace_content, metrics,
|
51
|
+
disable_metrics),
|
52
|
+
)
|
53
|
+
|
54
|
+
def _uninstrument(self, **kwargs):
|
55
|
+
# Proper uninstrumentation logic to revert patched methods
|
56
|
+
pass
|
@@ -0,0 +1,259 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvetion
|
14
|
+
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
def async_generate(gen_ai_endpoint, version, environment, application_name,
|
19
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
20
|
+
"""
|
21
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
22
|
+
|
23
|
+
Args:
|
24
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
|
+
version: Version of the monitoring package.
|
26
|
+
environment: Deployment environment (e.g., production, staging).
|
27
|
+
application_name: Name of the application using the Ollama API.
|
28
|
+
tracer: OpenTelemetry tracer for creating spans.
|
29
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
30
|
+
trace_content: Flag indicating whether to trace the actual content.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
A function that wraps the chat method to add telemetry.
|
34
|
+
"""
|
35
|
+
|
36
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
37
|
+
"""
|
38
|
+
Wraps the 'chat' API call to add telemetry.
|
39
|
+
|
40
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
41
|
+
gracefully, adding details to the trace for observability.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
wrapped: The original 'chat' method to be wrapped.
|
45
|
+
instance: The instance of the class where the original method is defined.
|
46
|
+
args: Positional arguments for the 'chat' method.
|
47
|
+
kwargs: Keyword arguments for the 'chat' method.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The response from the original 'chat' method.
|
51
|
+
"""
|
52
|
+
# pylint: disable=no-else-return
|
53
|
+
if kwargs.get('stream', False) is True:
|
54
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
55
|
+
async def stream_generator():
|
56
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
llmresponse = ""
|
59
|
+
|
60
|
+
# Loop through streaming events capturing relevant details
|
61
|
+
async for chunk in await wrapped(*args, **kwargs):
|
62
|
+
# Collect message IDs and aggregated response from events
|
63
|
+
content = chunk.text
|
64
|
+
if content:
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
input_tokens = chunk.usage_metadata.prompt_token_count
|
68
|
+
output_tokens = chunk.usage_metadata.candidates_token_count
|
69
|
+
yield chunk
|
70
|
+
|
71
|
+
# Handling exception ensure observability without disrupting operation
|
72
|
+
try:
|
73
|
+
prompt = ""
|
74
|
+
for arg in args:
|
75
|
+
if isinstance(arg, str):
|
76
|
+
prompt = f"{prompt}{arg}\n"
|
77
|
+
elif isinstance(arg, list):
|
78
|
+
for subarg in arg:
|
79
|
+
prompt = f"{prompt}{subarg}\n"
|
80
|
+
if hasattr(instance, "_model_id"):
|
81
|
+
model = instance._model_id
|
82
|
+
if hasattr(instance, "_model_name"):
|
83
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
|
85
|
+
total_tokens = input_tokens + output_tokens
|
86
|
+
# Calculate cost of the operation
|
87
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
88
|
+
pricing_info, input_tokens,
|
89
|
+
output_tokens)
|
90
|
+
|
91
|
+
# Set Span attributes
|
92
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
93
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
94
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
95
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
96
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
97
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
98
|
+
gen_ai_endpoint)
|
99
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
100
|
+
environment)
|
101
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
102
|
+
application_name)
|
103
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
104
|
+
model)
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
106
|
+
True)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
108
|
+
input_tokens)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
110
|
+
output_tokens)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
112
|
+
total_tokens)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
114
|
+
cost)
|
115
|
+
if trace_content:
|
116
|
+
span.add_event(
|
117
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
118
|
+
attributes={
|
119
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
120
|
+
},
|
121
|
+
)
|
122
|
+
span.add_event(
|
123
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
124
|
+
attributes={
|
125
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
126
|
+
},
|
127
|
+
)
|
128
|
+
|
129
|
+
span.set_status(Status(StatusCode.OK))
|
130
|
+
|
131
|
+
if disable_metrics is False:
|
132
|
+
attributes = {
|
133
|
+
TELEMETRY_SDK_NAME:
|
134
|
+
"openlit",
|
135
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
136
|
+
application_name,
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
138
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
139
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
140
|
+
environment,
|
141
|
+
SemanticConvetion.GEN_AI_TYPE:
|
142
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
143
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
144
|
+
model
|
145
|
+
}
|
146
|
+
|
147
|
+
metrics["genai_requests"].add(1, attributes)
|
148
|
+
metrics["genai_total_tokens"].add(
|
149
|
+
total_tokens, attributes
|
150
|
+
)
|
151
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
152
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
153
|
+
metrics["genai_cost"].record(cost, attributes)
|
154
|
+
|
155
|
+
except Exception as e:
|
156
|
+
handle_exception(span, e)
|
157
|
+
logger.error("Error in trace creation: %s", e)
|
158
|
+
|
159
|
+
return stream_generator()
|
160
|
+
else:
|
161
|
+
# pylint: disable=line-too-long
|
162
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
163
|
+
response = await wrapped(*args, **kwargs)
|
164
|
+
|
165
|
+
try:
|
166
|
+
prompt = ""
|
167
|
+
for arg in args:
|
168
|
+
if isinstance(arg, str):
|
169
|
+
prompt = f"{prompt}{arg}\n"
|
170
|
+
elif isinstance(arg, list):
|
171
|
+
for subarg in arg:
|
172
|
+
prompt = f"{prompt}{subarg}\n"
|
173
|
+
if hasattr(instance, "_model_id"):
|
174
|
+
model = instance._model_id
|
175
|
+
if hasattr(instance, "_model_name"):
|
176
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
177
|
+
|
178
|
+
# Set base span attribues
|
179
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
180
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
181
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
182
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
183
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
184
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
185
|
+
gen_ai_endpoint)
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
187
|
+
environment)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
189
|
+
application_name)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
191
|
+
model)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
193
|
+
False)
|
194
|
+
|
195
|
+
if trace_content:
|
196
|
+
span.add_event(
|
197
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
198
|
+
attributes={
|
199
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
200
|
+
},
|
201
|
+
)
|
202
|
+
span.add_event(
|
203
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
204
|
+
attributes={
|
205
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.text,
|
206
|
+
},
|
207
|
+
)
|
208
|
+
|
209
|
+
prompt_tokens = response.usage_metadata.prompt_token_count
|
210
|
+
completion_tokens = response.usage_metadata.candidates_token_count
|
211
|
+
total_tokens = response.usage_metadata.total_token_count
|
212
|
+
# Calculate cost of the operation
|
213
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3"),
|
214
|
+
pricing_info, prompt_tokens, completion_tokens)
|
215
|
+
|
216
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
217
|
+
prompt_tokens)
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
219
|
+
completion_tokens)
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
221
|
+
total_tokens)
|
222
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
223
|
+
cost)
|
224
|
+
|
225
|
+
span.set_status(Status(StatusCode.OK))
|
226
|
+
|
227
|
+
if disable_metrics is False:
|
228
|
+
attributes = {
|
229
|
+
TELEMETRY_SDK_NAME:
|
230
|
+
"openlit",
|
231
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
232
|
+
application_name,
|
233
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
234
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
235
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
236
|
+
environment,
|
237
|
+
SemanticConvetion.GEN_AI_TYPE:
|
238
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
239
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
240
|
+
kwargs.get("model", "llama3")
|
241
|
+
}
|
242
|
+
|
243
|
+
metrics["genai_requests"].add(1, attributes)
|
244
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
245
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
246
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
247
|
+
metrics["genai_cost"].record(cost, attributes)
|
248
|
+
|
249
|
+
# Return original response
|
250
|
+
return response
|
251
|
+
|
252
|
+
except Exception as e:
|
253
|
+
handle_exception(span, e)
|
254
|
+
logger.error("Error in trace creation: %s", e)
|
255
|
+
|
256
|
+
# Return original response
|
257
|
+
return response
|
258
|
+
|
259
|
+
return wrapper
|
@@ -0,0 +1,261 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, protected-access
|
2
|
+
"""
|
3
|
+
Module for monitoring Ollama API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import (
|
10
|
+
handle_exception,
|
11
|
+
get_chat_model_cost,
|
12
|
+
)
|
13
|
+
from openlit.semcov import SemanticConvetion
|
14
|
+
|
15
|
+
# Initialize logger for logging potential issues and operations
|
16
|
+
logger = logging.getLogger(__name__)
|
17
|
+
|
18
|
+
def generate(gen_ai_endpoint, version, environment, application_name,
|
19
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
20
|
+
"""
|
21
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
22
|
+
|
23
|
+
Args:
|
24
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
25
|
+
version: Version of the monitoring package.
|
26
|
+
environment: Deployment environment (e.g., production, staging).
|
27
|
+
application_name: Name of the application using the Ollama API.
|
28
|
+
tracer: OpenTelemetry tracer for creating spans.
|
29
|
+
pricing_info: Information used for calculating the cost of Ollama usage.
|
30
|
+
trace_content: Flag indicating whether to trace the actual content.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
A function that wraps the chat method to add telemetry.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def wrapper(wrapped, instance, args, kwargs):
|
37
|
+
"""
|
38
|
+
Wraps the 'chat' API call to add telemetry.
|
39
|
+
|
40
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
41
|
+
gracefully, adding details to the trace for observability.
|
42
|
+
|
43
|
+
Args:
|
44
|
+
wrapped: The original 'chat' method to be wrapped.
|
45
|
+
instance: The instance of the class where the original method is defined.
|
46
|
+
args: Positional arguments for the 'chat' method.
|
47
|
+
kwargs: Keyword arguments for the 'chat' method.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The response from the original 'chat' method.
|
51
|
+
"""
|
52
|
+
# pylint: disable=no-else-return
|
53
|
+
if kwargs.get("stream", False) is True:
|
54
|
+
# Special handling for streaming response to accommodate the nature of data flow
|
55
|
+
def stream_generator():
|
56
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
57
|
+
# Placeholder for aggregating streaming response
|
58
|
+
llmresponse = ""
|
59
|
+
|
60
|
+
# Loop through streaming events capturing relevant details
|
61
|
+
for chunk in wrapped(*args, **kwargs):
|
62
|
+
# Collect message IDs and aggregated response from events
|
63
|
+
content = chunk.text
|
64
|
+
if content:
|
65
|
+
llmresponse += content
|
66
|
+
|
67
|
+
input_tokens = chunk.usage_metadata.prompt_token_count
|
68
|
+
output_tokens = chunk.usage_metadata.candidates_token_count
|
69
|
+
yield chunk
|
70
|
+
|
71
|
+
# Handling exception ensure observability without disrupting operation
|
72
|
+
try:
|
73
|
+
prompt = ""
|
74
|
+
for arg in args:
|
75
|
+
if isinstance(arg, str):
|
76
|
+
prompt = f"{prompt}{arg}\n"
|
77
|
+
elif isinstance(arg, list):
|
78
|
+
for subarg in arg:
|
79
|
+
prompt = f"{prompt}{subarg}\n"
|
80
|
+
if hasattr(instance, "_model_id"):
|
81
|
+
model = instance._model_id
|
82
|
+
if hasattr(instance, "_model_name"):
|
83
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
84
|
+
|
85
|
+
total_tokens = input_tokens + output_tokens
|
86
|
+
# Calculate cost of the operation
|
87
|
+
cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
|
88
|
+
pricing_info, input_tokens,
|
89
|
+
output_tokens)
|
90
|
+
|
91
|
+
# Set Span attributes
|
92
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
93
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
94
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
95
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
96
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
97
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
98
|
+
gen_ai_endpoint)
|
99
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
100
|
+
environment)
|
101
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
102
|
+
application_name)
|
103
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
104
|
+
model)
|
105
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
106
|
+
True)
|
107
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
108
|
+
input_tokens)
|
109
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
110
|
+
output_tokens)
|
111
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
112
|
+
total_tokens)
|
113
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
114
|
+
cost)
|
115
|
+
if trace_content:
|
116
|
+
span.add_event(
|
117
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
118
|
+
attributes={
|
119
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
120
|
+
},
|
121
|
+
)
|
122
|
+
span.add_event(
|
123
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
124
|
+
attributes={
|
125
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: llmresponse,
|
126
|
+
},
|
127
|
+
)
|
128
|
+
|
129
|
+
span.set_status(Status(StatusCode.OK))
|
130
|
+
|
131
|
+
if disable_metrics is False:
|
132
|
+
attributes = {
|
133
|
+
TELEMETRY_SDK_NAME:
|
134
|
+
"openlit",
|
135
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
136
|
+
application_name,
|
137
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
138
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO,
|
139
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
140
|
+
environment,
|
141
|
+
SemanticConvetion.GEN_AI_TYPE:
|
142
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
143
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
144
|
+
model
|
145
|
+
}
|
146
|
+
|
147
|
+
metrics["genai_requests"].add(1, attributes)
|
148
|
+
metrics["genai_total_tokens"].add(
|
149
|
+
total_tokens, attributes
|
150
|
+
)
|
151
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
152
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
153
|
+
metrics["genai_cost"].record(cost, attributes)
|
154
|
+
|
155
|
+
except Exception as e:
|
156
|
+
handle_exception(span, e)
|
157
|
+
logger.error("Error in trace creation: %s", e)
|
158
|
+
|
159
|
+
return stream_generator()
|
160
|
+
else:
|
161
|
+
# pylint: disable=line-too-long
|
162
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
163
|
+
response = wrapped(*args, **kwargs)
|
164
|
+
|
165
|
+
# print(instance._system_instruction.__dict__["_pb"].parts[0].text)
|
166
|
+
try:
|
167
|
+
prompt = ""
|
168
|
+
for arg in args:
|
169
|
+
if isinstance(arg, str):
|
170
|
+
prompt = f"{prompt}{arg}\n"
|
171
|
+
elif isinstance(arg, list):
|
172
|
+
for subarg in arg:
|
173
|
+
prompt = f"{prompt}{subarg}\n"
|
174
|
+
|
175
|
+
if hasattr(instance, "_model_id"):
|
176
|
+
model = instance._model_id
|
177
|
+
if hasattr(instance, "_model_name"):
|
178
|
+
model = instance._model_name.replace("publishers/google/models/", "")
|
179
|
+
|
180
|
+
# Set base span attribues
|
181
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
182
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
183
|
+
SemanticConvetion.GEN_AI_SYSTEM_GOOGLE_AI_STUDIO)
|
184
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
185
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
186
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
187
|
+
gen_ai_endpoint)
|
188
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
189
|
+
environment)
|
190
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
191
|
+
application_name)
|
192
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
193
|
+
model)
|
194
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
195
|
+
False)
|
196
|
+
|
197
|
+
if trace_content:
|
198
|
+
span.add_event(
|
199
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
200
|
+
attributes={
|
201
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
202
|
+
},
|
203
|
+
)
|
204
|
+
span.add_event(
|
205
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
206
|
+
attributes={
|
207
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.text,
|
208
|
+
},
|
209
|
+
)
|
210
|
+
|
211
|
+
prompt_tokens = response.usage_metadata.prompt_token_count
|
212
|
+
completion_tokens = response.usage_metadata.candidates_token_count
|
213
|
+
total_tokens = response.usage_metadata.total_token_count
|
214
|
+
# Calculate cost of the operation
|
215
|
+
cost = get_chat_model_cost(kwargs.get("model", "llama3"),
|
216
|
+
pricing_info, prompt_tokens, completion_tokens)
|
217
|
+
|
218
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
219
|
+
prompt_tokens)
|
220
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
221
|
+
completion_tokens)
|
222
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
223
|
+
total_tokens)
|
224
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
225
|
+
cost)
|
226
|
+
|
227
|
+
span.set_status(Status(StatusCode.OK))
|
228
|
+
|
229
|
+
if disable_metrics is False:
|
230
|
+
attributes = {
|
231
|
+
TELEMETRY_SDK_NAME:
|
232
|
+
"openlit",
|
233
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
234
|
+
application_name,
|
235
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
236
|
+
SemanticConvetion.GEN_AI_SYSTEM_OLLAMA,
|
237
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
238
|
+
environment,
|
239
|
+
SemanticConvetion.GEN_AI_TYPE:
|
240
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
241
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
242
|
+
kwargs.get("model", "llama3")
|
243
|
+
}
|
244
|
+
|
245
|
+
metrics["genai_requests"].add(1, attributes)
|
246
|
+
metrics["genai_total_tokens"].add(total_tokens, attributes)
|
247
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
248
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
249
|
+
metrics["genai_cost"].record(cost, attributes)
|
250
|
+
|
251
|
+
# Return original response
|
252
|
+
return response
|
253
|
+
|
254
|
+
except Exception as e:
|
255
|
+
handle_exception(span, e)
|
256
|
+
logger.error("Error in trace creation: %s", e)
|
257
|
+
|
258
|
+
# Return original response
|
259
|
+
return response
|
260
|
+
|
261
|
+
return wrapper
|
@@ -5,7 +5,14 @@ import importlib.metadata
|
|
5
5
|
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
6
6
|
from wrapt import wrap_function_wrapper
|
7
7
|
|
8
|
-
from openlit.instrumentation.langchain.langchain import
|
8
|
+
from openlit.instrumentation.langchain.langchain import (
|
9
|
+
general_wrap,
|
10
|
+
hub,
|
11
|
+
llm,
|
12
|
+
allm,
|
13
|
+
chat,
|
14
|
+
achat
|
15
|
+
)
|
9
16
|
|
10
17
|
_instruments = ("langchain >= 0.1.20",)
|
11
18
|
|
@@ -52,6 +59,18 @@ WRAPPED_METHODS = [
|
|
52
59
|
"endpoint": "langchain.llm",
|
53
60
|
"wrapper": allm,
|
54
61
|
},
|
62
|
+
{
|
63
|
+
"package": "langchain_core.language_models.chat_models",
|
64
|
+
"object": "BaseChatModel.invoke",
|
65
|
+
"endpoint": "langchain.chat_models",
|
66
|
+
"wrapper": chat,
|
67
|
+
},
|
68
|
+
{
|
69
|
+
"package": "langchain_core.language_models.chat_models",
|
70
|
+
"object": "BaseChatModel.ainvoke",
|
71
|
+
"endpoint": "langchain.chat_models",
|
72
|
+
"wrapper": achat,
|
73
|
+
},
|
55
74
|
]
|
56
75
|
|
57
76
|
class LangChainInstrumentor(BaseInstrumentor):
|
@@ -66,6 +85,8 @@ class LangChainInstrumentor(BaseInstrumentor):
|
|
66
85
|
tracer = kwargs.get("tracer")
|
67
86
|
pricing_info = kwargs.get("pricing_info")
|
68
87
|
trace_content = kwargs.get("trace_content")
|
88
|
+
metrics = kwargs.get("metrics_dict")
|
89
|
+
disable_metrics = kwargs.get("disable_metrics")
|
69
90
|
version = importlib.metadata.version("langchain")
|
70
91
|
|
71
92
|
for wrapped_method in WRAPPED_METHODS:
|
@@ -77,7 +98,7 @@ class LangChainInstrumentor(BaseInstrumentor):
|
|
77
98
|
wrap_package,
|
78
99
|
wrap_object,
|
79
100
|
wrapper(gen_ai_endpoint, version, environment, application_name,
|
80
|
-
tracer, pricing_info, trace_content),
|
101
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics),
|
81
102
|
)
|
82
103
|
|
83
104
|
@staticmethod
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, unused-import
|
2
2
|
"""
|
3
3
|
Module for monitoring Langchain applications.
|
4
4
|
"""
|
@@ -6,14 +6,14 @@ Module for monitoring Langchain applications.
|
|
6
6
|
import logging
|
7
7
|
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
8
|
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
-
from openlit.__helpers import handle_exception
|
9
|
+
from openlit.__helpers import handle_exception, get_chat_model_cost, general_tokens
|
10
10
|
from openlit.semcov import SemanticConvetion
|
11
11
|
|
12
12
|
# Initialize logger for logging potential issues and operations
|
13
13
|
logger = logging.getLogger(__name__)
|
14
14
|
|
15
15
|
def general_wrap(gen_ai_endpoint, version, environment, application_name,
|
16
|
-
tracer, pricing_info, trace_content):
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
17
|
"""
|
18
18
|
Creates a wrapper around a function call to trace and log its execution metrics.
|
19
19
|
|
@@ -86,7 +86,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
|
|
86
86
|
return wrapper
|
87
87
|
|
88
88
|
def hub(gen_ai_endpoint, version, environment, application_name, tracer,
|
89
|
-
pricing_info, trace_content):
|
89
|
+
pricing_info, trace_content, metrics, disable_metrics):
|
90
90
|
"""
|
91
91
|
Creates a wrapper around Langchain hub operations for tracing and logging.
|
92
92
|
|
@@ -162,7 +162,7 @@ def hub(gen_ai_endpoint, version, environment, application_name, tracer,
|
|
162
162
|
|
163
163
|
|
164
164
|
def allm(gen_ai_endpoint, version, environment, application_name,
|
165
|
-
tracer, pricing_info, trace_content):
|
165
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
166
166
|
"""
|
167
167
|
Creates a wrapper around a function call to trace and log its execution metrics.
|
168
168
|
|
@@ -207,6 +207,16 @@ def allm(gen_ai_endpoint, version, environment, application_name,
|
|
207
207
|
response = await wrapped(*args, **kwargs)
|
208
208
|
|
209
209
|
try:
|
210
|
+
prompt = args[0] or ""
|
211
|
+
# input_tokens = general_tokens(prompt)
|
212
|
+
# output_tokens = general_tokens(response)
|
213
|
+
|
214
|
+
# # Calculate cost of the operation
|
215
|
+
# cost = get_chat_model_cost(
|
216
|
+
# str(getattr(instance, 'model')),
|
217
|
+
# pricing_info, input_tokens, output_tokens
|
218
|
+
# )
|
219
|
+
|
210
220
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
211
221
|
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
212
222
|
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
@@ -226,13 +236,56 @@ def allm(gen_ai_endpoint, version, environment, application_name,
|
|
226
236
|
str(getattr(instance, 'top_k')))
|
227
237
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
228
238
|
str(getattr(instance, 'top_p')))
|
239
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
240
|
+
False)
|
241
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
242
|
+
# input_tokens)
|
243
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
244
|
+
# output_tokens)
|
245
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
246
|
+
# input_tokens + output_tokens)
|
247
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
248
|
+
# cost)
|
229
249
|
if trace_content:
|
230
|
-
span.
|
231
|
-
|
232
|
-
|
233
|
-
|
250
|
+
span.add_event(
|
251
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
252
|
+
attributes={
|
253
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
254
|
+
},
|
255
|
+
)
|
256
|
+
span.add_event(
|
257
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
258
|
+
attributes={
|
259
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response,
|
260
|
+
},
|
261
|
+
)
|
262
|
+
|
234
263
|
span.set_status(Status(StatusCode.OK))
|
235
264
|
|
265
|
+
# if disable_metrics is False:
|
266
|
+
# attributes = {
|
267
|
+
# TELEMETRY_SDK_NAME:
|
268
|
+
# "openlit",
|
269
|
+
# SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
270
|
+
# application_name,
|
271
|
+
# SemanticConvetion.GEN_AI_SYSTEM:
|
272
|
+
# SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
273
|
+
# SemanticConvetion.GEN_AI_ENVIRONMENT:
|
274
|
+
# environment,
|
275
|
+
# SemanticConvetion.GEN_AI_TYPE:
|
276
|
+
# SemanticConvetion.GEN_AI_TYPE_CHAT,
|
277
|
+
# SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
278
|
+
# str(getattr(instance, 'model'))
|
279
|
+
# }
|
280
|
+
|
281
|
+
# metrics["genai_requests"].add(1, attributes)
|
282
|
+
# metrics["genai_total_tokens"].add(
|
283
|
+
# input_tokens + output_tokens, attributes
|
284
|
+
# )
|
285
|
+
# metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
286
|
+
# metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
287
|
+
# metrics["genai_cost"].record(cost, attributes)
|
288
|
+
|
236
289
|
# Return original response
|
237
290
|
return response
|
238
291
|
|
@@ -246,7 +299,7 @@ def allm(gen_ai_endpoint, version, environment, application_name,
|
|
246
299
|
return wrapper
|
247
300
|
|
248
301
|
def llm(gen_ai_endpoint, version, environment, application_name,
|
249
|
-
tracer, pricing_info, trace_content):
|
302
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
250
303
|
"""
|
251
304
|
Creates a wrapper around a function call to trace and log its execution metrics.
|
252
305
|
|
@@ -291,6 +344,16 @@ def llm(gen_ai_endpoint, version, environment, application_name,
|
|
291
344
|
response = wrapped(*args, **kwargs)
|
292
345
|
|
293
346
|
try:
|
347
|
+
prompt = args[0] or ""
|
348
|
+
# input_tokens = general_tokens(prompt)
|
349
|
+
# output_tokens = general_tokens(response)
|
350
|
+
|
351
|
+
# # Calculate cost of the operation
|
352
|
+
# cost = get_chat_model_cost(
|
353
|
+
# str(getattr(instance, 'model')),
|
354
|
+
# pricing_info, input_tokens, output_tokens
|
355
|
+
# )
|
356
|
+
|
294
357
|
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
295
358
|
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
296
359
|
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
@@ -310,13 +373,332 @@ def llm(gen_ai_endpoint, version, environment, application_name,
|
|
310
373
|
str(getattr(instance, 'top_k')))
|
311
374
|
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
312
375
|
str(getattr(instance, 'top_p')))
|
376
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
377
|
+
False)
|
378
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
379
|
+
# input_tokens)
|
380
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
381
|
+
# output_tokens)
|
382
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
383
|
+
# input_tokens + output_tokens)
|
384
|
+
# span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
385
|
+
# cost)
|
386
|
+
if trace_content:
|
387
|
+
span.add_event(
|
388
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
389
|
+
attributes={
|
390
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: prompt,
|
391
|
+
},
|
392
|
+
)
|
393
|
+
span.add_event(
|
394
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
395
|
+
attributes={
|
396
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response,
|
397
|
+
},
|
398
|
+
)
|
399
|
+
|
400
|
+
span.set_status(Status(StatusCode.OK))
|
401
|
+
|
402
|
+
# if disable_metrics is False:
|
403
|
+
# attributes = {
|
404
|
+
# TELEMETRY_SDK_NAME:
|
405
|
+
# "openlit",
|
406
|
+
# SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
407
|
+
# application_name,
|
408
|
+
# SemanticConvetion.GEN_AI_SYSTEM:
|
409
|
+
# SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
410
|
+
# SemanticConvetion.GEN_AI_ENVIRONMENT:
|
411
|
+
# environment,
|
412
|
+
# SemanticConvetion.GEN_AI_TYPE:
|
413
|
+
# SemanticConvetion.GEN_AI_TYPE_CHAT,
|
414
|
+
# SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
415
|
+
# str(getattr(instance, 'model'))
|
416
|
+
# }
|
417
|
+
|
418
|
+
# metrics["genai_requests"].add(1, attributes)
|
419
|
+
# metrics["genai_total_tokens"].add(
|
420
|
+
# input_tokens + output_tokens, attributes
|
421
|
+
# )
|
422
|
+
# metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
423
|
+
# metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
424
|
+
# metrics["genai_cost"].record(cost, attributes)
|
425
|
+
|
426
|
+
# Return original response
|
427
|
+
return response
|
428
|
+
|
429
|
+
except Exception as e:
|
430
|
+
handle_exception(span, e)
|
431
|
+
logger.error("Error in trace creation: %s", e)
|
432
|
+
|
433
|
+
# Return original response
|
434
|
+
return response
|
435
|
+
|
436
|
+
return wrapper
|
437
|
+
|
438
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
439
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
440
|
+
"""
|
441
|
+
Creates a wrapper around a function call to trace and log its execution metrics.
|
442
|
+
|
443
|
+
This function wraps any given function to measure its execution time,
|
444
|
+
log its operation, and trace its execution using OpenTelemetry.
|
445
|
+
|
446
|
+
Parameters:
|
447
|
+
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
448
|
+
- version (str): The version of the Langchain application.
|
449
|
+
- environment (str): The deployment environment (e.g., 'production', 'development').
|
450
|
+
- application_name (str): Name of the Langchain application.
|
451
|
+
- tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
|
452
|
+
- pricing_info (dict): Information about the pricing for internal metrics (currently not used).
|
453
|
+
- trace_content (bool): Flag indicating whether to trace the content of the response.
|
454
|
+
|
455
|
+
Returns:
|
456
|
+
- function: A higher-order function that takes a function 'wrapped' and returns
|
457
|
+
a new function that wraps 'wrapped' with additional tracing and logging.
|
458
|
+
"""
|
459
|
+
|
460
|
+
def wrapper(wrapped, instance, args, kwargs):
|
461
|
+
"""
|
462
|
+
An inner wrapper function that executes the wrapped function, measures execution
|
463
|
+
time, and records trace data using OpenTelemetry.
|
464
|
+
|
465
|
+
Parameters:
|
466
|
+
- wrapped (Callable): The original function that this wrapper will execute.
|
467
|
+
- instance (object): The instance to which the wrapped function belongs. This
|
468
|
+
is used for instance methods. For static and classmethods,
|
469
|
+
this may be None.
|
470
|
+
- args (tuple): Positional arguments passed to the wrapped function.
|
471
|
+
- kwargs (dict): Keyword arguments passed to the wrapped function.
|
472
|
+
|
473
|
+
Returns:
|
474
|
+
- The result of the wrapped function call.
|
475
|
+
|
476
|
+
The wrapper initiates a span with the provided tracer, sets various attributes
|
477
|
+
on the span based on the function's execution and response, and ensures
|
478
|
+
errors are handled and logged appropriately.
|
479
|
+
"""
|
480
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
481
|
+
response = wrapped(*args, **kwargs)
|
482
|
+
|
483
|
+
try:
|
484
|
+
input_tokens = response.response_metadata["prompt_eval_count"] or 0
|
485
|
+
output_tokens = response.response_metadata["eval_count"] or 0
|
486
|
+
|
487
|
+
# Calculate cost of the operation
|
488
|
+
cost = get_chat_model_cost(
|
489
|
+
str(getattr(instance, 'model')),
|
490
|
+
pricing_info, input_tokens, output_tokens
|
491
|
+
)
|
492
|
+
|
493
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
494
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
495
|
+
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
496
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
497
|
+
gen_ai_endpoint)
|
498
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
499
|
+
environment)
|
500
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
501
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
502
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
503
|
+
application_name)
|
504
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
505
|
+
str(getattr(instance, 'model')))
|
506
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
507
|
+
str(getattr(instance, 'temperature')))
|
508
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
509
|
+
str(getattr(instance, 'top_k')))
|
510
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
511
|
+
str(getattr(instance, 'top_p')))
|
512
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
513
|
+
[response.response_metadata["done_reason"]])
|
514
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
515
|
+
False)
|
516
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
517
|
+
input_tokens)
|
518
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
519
|
+
output_tokens)
|
520
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
521
|
+
input_tokens + output_tokens)
|
522
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
523
|
+
cost)
|
313
524
|
if trace_content:
|
314
|
-
span.
|
315
|
-
|
316
|
-
|
317
|
-
|
525
|
+
span.add_event(
|
526
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
527
|
+
attributes={
|
528
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: args[0],
|
529
|
+
},
|
530
|
+
)
|
531
|
+
span.add_event(
|
532
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
533
|
+
attributes={
|
534
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.content,
|
535
|
+
},
|
536
|
+
)
|
537
|
+
|
318
538
|
span.set_status(Status(StatusCode.OK))
|
319
539
|
|
540
|
+
if disable_metrics is False:
|
541
|
+
attributes = {
|
542
|
+
TELEMETRY_SDK_NAME:
|
543
|
+
"openlit",
|
544
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
545
|
+
application_name,
|
546
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
547
|
+
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
548
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
549
|
+
environment,
|
550
|
+
SemanticConvetion.GEN_AI_TYPE:
|
551
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
552
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
553
|
+
str(getattr(instance, 'model'))
|
554
|
+
}
|
555
|
+
|
556
|
+
metrics["genai_requests"].add(1, attributes)
|
557
|
+
metrics["genai_total_tokens"].add(
|
558
|
+
input_tokens + output_tokens, attributes
|
559
|
+
)
|
560
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
561
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
562
|
+
metrics["genai_cost"].record(cost, attributes)
|
563
|
+
|
564
|
+
# Return original response
|
565
|
+
return response
|
566
|
+
|
567
|
+
except Exception as e:
|
568
|
+
handle_exception(span, e)
|
569
|
+
logger.error("Error in trace creation: %s", e)
|
570
|
+
|
571
|
+
# Return original response
|
572
|
+
return response
|
573
|
+
|
574
|
+
return wrapper
|
575
|
+
|
576
|
+
def achat(gen_ai_endpoint, version, environment, application_name,
|
577
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
578
|
+
"""
|
579
|
+
Creates a wrapper around a function call to trace and log its execution metrics.
|
580
|
+
|
581
|
+
This function wraps any given function to measure its execution time,
|
582
|
+
log its operation, and trace its execution using OpenTelemetry.
|
583
|
+
|
584
|
+
Parameters:
|
585
|
+
- gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
|
586
|
+
- version (str): The version of the Langchain application.
|
587
|
+
- environment (str): The deployment environment (e.g., 'production', 'development').
|
588
|
+
- application_name (str): Name of the Langchain application.
|
589
|
+
- tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
|
590
|
+
- pricing_info (dict): Information about the pricing for internal metrics (currently not used).
|
591
|
+
- trace_content (bool): Flag indicating whether to trace the content of the response.
|
592
|
+
|
593
|
+
Returns:
|
594
|
+
- function: A higher-order function that takes a function 'wrapped' and returns
|
595
|
+
a new function that wraps 'wrapped' with additional tracing and logging.
|
596
|
+
"""
|
597
|
+
|
598
|
+
async def wrapper(wrapped, instance, args, kwargs):
|
599
|
+
"""
|
600
|
+
An inner wrapper function that executes the wrapped function, measures execution
|
601
|
+
time, and records trace data using OpenTelemetry.
|
602
|
+
|
603
|
+
Parameters:
|
604
|
+
- wrapped (Callable): The original function that this wrapper will execute.
|
605
|
+
- instance (object): The instance to which the wrapped function belongs. This
|
606
|
+
is used for instance methods. For static and classmethods,
|
607
|
+
this may be None.
|
608
|
+
- args (tuple): Positional arguments passed to the wrapped function.
|
609
|
+
- kwargs (dict): Keyword arguments passed to the wrapped function.
|
610
|
+
|
611
|
+
Returns:
|
612
|
+
- The result of the wrapped function call.
|
613
|
+
|
614
|
+
The wrapper initiates a span with the provided tracer, sets various attributes
|
615
|
+
on the span based on the function's execution and response, and ensures
|
616
|
+
errors are handled and logged appropriately.
|
617
|
+
"""
|
618
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
619
|
+
response = await wrapped(*args, **kwargs)
|
620
|
+
|
621
|
+
try:
|
622
|
+
input_tokens = response.response_metadata["prompt_eval_count"] or 0
|
623
|
+
output_tokens = response.response_metadata["eval_count"] or 0
|
624
|
+
|
625
|
+
# Calculate cost of the operation
|
626
|
+
cost = get_chat_model_cost(
|
627
|
+
str(getattr(instance, 'model')),
|
628
|
+
pricing_info, input_tokens, output_tokens
|
629
|
+
)
|
630
|
+
|
631
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
632
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
633
|
+
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
|
634
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
635
|
+
gen_ai_endpoint)
|
636
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
637
|
+
environment)
|
638
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
639
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
640
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
641
|
+
application_name)
|
642
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
643
|
+
str(getattr(instance, 'model')))
|
644
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
645
|
+
str(getattr(instance, 'temperature')))
|
646
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
|
647
|
+
str(getattr(instance, 'top_k')))
|
648
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
649
|
+
str(getattr(instance, 'top_p')))
|
650
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
651
|
+
[response.response_metadata["done_reason"]])
|
652
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
653
|
+
False)
|
654
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
655
|
+
input_tokens)
|
656
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
657
|
+
output_tokens)
|
658
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
659
|
+
input_tokens + output_tokens)
|
660
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
661
|
+
cost)
|
662
|
+
if trace_content:
|
663
|
+
span.add_event(
|
664
|
+
name=SemanticConvetion.GEN_AI_CONTENT_PROMPT_EVENT,
|
665
|
+
attributes={
|
666
|
+
SemanticConvetion.GEN_AI_CONTENT_PROMPT: args[0],
|
667
|
+
},
|
668
|
+
)
|
669
|
+
span.add_event(
|
670
|
+
name=SemanticConvetion.GEN_AI_CONTENT_COMPLETION_EVENT,
|
671
|
+
attributes={
|
672
|
+
SemanticConvetion.GEN_AI_CONTENT_COMPLETION: response.content,
|
673
|
+
},
|
674
|
+
)
|
675
|
+
|
676
|
+
span.set_status(Status(StatusCode.OK))
|
677
|
+
|
678
|
+
if disable_metrics is False:
|
679
|
+
attributes = {
|
680
|
+
TELEMETRY_SDK_NAME:
|
681
|
+
"openlit",
|
682
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
683
|
+
application_name,
|
684
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
685
|
+
SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN,
|
686
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
687
|
+
environment,
|
688
|
+
SemanticConvetion.GEN_AI_TYPE:
|
689
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
690
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
691
|
+
str(getattr(instance, 'model'))
|
692
|
+
}
|
693
|
+
|
694
|
+
metrics["genai_requests"].add(1, attributes)
|
695
|
+
metrics["genai_total_tokens"].add(
|
696
|
+
input_tokens + output_tokens, attributes
|
697
|
+
)
|
698
|
+
metrics["genai_completion_tokens"].add(output_tokens, attributes)
|
699
|
+
metrics["genai_prompt_tokens"].add(input_tokens, attributes)
|
700
|
+
metrics["genai_cost"].record(cost, attributes)
|
701
|
+
|
320
702
|
# Return original response
|
321
703
|
return response
|
322
704
|
|
openlit/semcov/__init__.py
CHANGED
@@ -102,6 +102,7 @@ class SemanticConvetion:
|
|
102
102
|
GEN_AI_SYSTEM_GPT4ALL = "gpt4all"
|
103
103
|
GEN_AI_SYSTEM_ELEVENLABS = "elevenlabs"
|
104
104
|
GEN_AI_SYSTEM_VLLM = "vLLM"
|
105
|
+
GEN_AI_SYSTEM_GOOGLE_AI_STUDIO = "google-ai-studio"
|
105
106
|
GEN_AI_SYSTEM_LANGCHAIN = "langchain"
|
106
107
|
GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
|
107
108
|
GEN_AI_SYSTEM_HAYSTACK = "haystack"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: openlit
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.20.0
|
4
4
|
Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications and GPUs, facilitating the integration of observability into your GenAI-driven projects
|
5
5
|
Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
|
6
6
|
Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT,gpu
|
@@ -60,15 +60,17 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
60
60
|
| [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) | |
|
61
61
|
| [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) | |
|
62
62
|
| [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) | |
|
63
|
-
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) |
|
64
|
-
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | |
|
65
|
-
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | |
|
66
|
-
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | |
|
67
|
-
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | |
|
63
|
+
| [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) | |
|
64
|
+
| [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | | [✅ Guardrails](https://docs.openlit.io/latest/integrations/guardrails) | |
|
65
|
+
| [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | | | |
|
66
|
+
| [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | | | |
|
67
|
+
| [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | | | |
|
68
68
|
| [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | | | |
|
69
69
|
| [✅ Groq](https://docs.openlit.io/latest/integrations/groq) | | | |
|
70
70
|
| [✅ ElevenLabs](https://docs.openlit.io/latest/integrations/elevenlabs) | | | |
|
71
71
|
| [✅ vLLM](https://docs.openlit.io/latest/integrations/vllm) | | | |
|
72
|
+
| [✅ OLA Krutrim](https://docs.openlit.io/latest/integrations/krutrim) | | | |
|
73
|
+
| [✅ Google AI Studio](https://docs.openlit.io/latest/integrations/google-ai-studio) | | | |
|
72
74
|
|
73
75
|
## Supported Destinations
|
74
76
|
- [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
|
@@ -77,8 +79,10 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
|
|
77
79
|
- [✅ Grafana Cloud](https://docs.openlit.io/latest/connections/grafanacloud)
|
78
80
|
- [✅ New Relic](https://docs.openlit.io/latest/connections/new-relic)
|
79
81
|
- [✅ Elastic](https://docs.openlit.io/latest/connections/elastic)
|
82
|
+
- [✅ HyperDX](https://docs.openlit.io/latest/connections/hyperdx)
|
80
83
|
- [✅ DataDog](https://docs.openlit.io/latest/connections/datadog)
|
81
84
|
- [✅ SigNoz](https://docs.openlit.io/latest/connections/signoz)
|
85
|
+
- [✅ OneUptime](https://docs.openlit.io/latest/connections/oneuptime)
|
82
86
|
- [✅ Dynatrace](https://docs.openlit.io/latest/connections/dynatrace)
|
83
87
|
- [✅ OpenObserve](https://docs.openlit.io/latest/connections/openobserve)
|
84
88
|
- [✅ Highlight.io](https://docs.openlit.io/latest/connections/highlight)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
openlit/__helpers.py,sha256=lrn4PBs9owDudiCY2NBoVbAi7AU_HtUpyOj0oqPBsPY,5545
|
2
|
-
openlit/__init__.py,sha256=
|
2
|
+
openlit/__init__.py,sha256=fqeMFg76VYEX4VdxTn76Fh-0kbrN5_Sk8ahlm7Xlp9k,15296
|
3
3
|
openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
|
4
4
|
openlit/instrumentation/anthropic/anthropic.py,sha256=y7CEGhKOGHWt8G_5Phr4qPJTfPGRJIAr9Yk6nM3CcvM,16775
|
5
5
|
openlit/instrumentation/anthropic/async_anthropic.py,sha256=Zz1KRKIG9wGn0quOoLvjORC-49IvHQpJ6GBdB-4PfCQ,16816
|
@@ -14,6 +14,9 @@ openlit/instrumentation/elevenlabs/async_elevenlabs.py,sha256=yMYACh95SFr5EYklKn
|
|
14
14
|
openlit/instrumentation/elevenlabs/elevenlabs.py,sha256=mFnD7sgT47OxaXJz0Vc1nrNjXEpcGQDj5run3gA48Lw,6089
|
15
15
|
openlit/instrumentation/embedchain/__init__.py,sha256=8TYk1OEbz46yF19dr-gB_x80VZMagU3kJ8-QihPXTeA,1929
|
16
16
|
openlit/instrumentation/embedchain/embedchain.py,sha256=SLlr7qieT3kp4M6OYSRy8FaVCXQ2t3oPyIiE99ioNE4,7892
|
17
|
+
openlit/instrumentation/google_ai_studio/__init__.py,sha256=vG4WzaavOiiwI3r5stDMotM5TSBxdcxQhC3W4XjJIG8,2146
|
18
|
+
openlit/instrumentation/google_ai_studio/async_google_ai_studio.py,sha256=cEy5FNu92gvdmsKKVDrUcY5LpY4hHzWwJl9yezxN-Zo,13404
|
19
|
+
openlit/instrumentation/google_ai_studio/google_ai_studio.py,sha256=mLABvD756GEgVfAjiYsfLYWATT1AxPuWDuElwpX4voo,13453
|
17
20
|
openlit/instrumentation/gpt4all/__init__.py,sha256=-59CP2B3-HGZJ_vC-fI9Dt-0BuQXRhSCWCjnaGeU15Q,1802
|
18
21
|
openlit/instrumentation/gpt4all/gpt4all.py,sha256=dbxqZeuTrv_y6wyDOIEmC8-Dc4iCGgLpj3l5JiodLMI,18787
|
19
22
|
openlit/instrumentation/gpu/__init__.py,sha256=Dj2MLar0DB20-t6W3pfR-3jfR_mwg4SYwhzIrH_n9sU,5596
|
@@ -22,8 +25,8 @@ openlit/instrumentation/groq/async_groq.py,sha256=myob-d9V66YiNmkFd9rtmMaXjlLiSM
|
|
22
25
|
openlit/instrumentation/groq/groq.py,sha256=m4gFPbYzjUUIgjXZ0Alu2Zy1HcO5takCFA2XFnkcGVo,19975
|
23
26
|
openlit/instrumentation/haystack/__init__.py,sha256=QK6XxxZUHX8vMv2Crk7rNBOc64iOOBLhJGL_lPlAZ8s,1758
|
24
27
|
openlit/instrumentation/haystack/haystack.py,sha256=oQIZiDhdp3gnJnhYQ1OouJMc9YT0pQ-_31cmNuopa68,3891
|
25
|
-
openlit/instrumentation/langchain/__init__.py,sha256=
|
26
|
-
openlit/instrumentation/langchain/langchain.py,sha256=
|
28
|
+
openlit/instrumentation/langchain/__init__.py,sha256=0AI2Dnqw81IcJw3jM--gGkv_HRh2GtosOGJjvOpw7Zk,3431
|
29
|
+
openlit/instrumentation/langchain/langchain.py,sha256=7K-m35sS3yTu9IklRo6n9LCcymeg6OyIYKrMzMG_uDQ,35730
|
27
30
|
openlit/instrumentation/llamaindex/__init__.py,sha256=vPtK65G6b-TwJERowVRUVl7f_nBSlFdwPBtpg8dOGos,1977
|
28
31
|
openlit/instrumentation/llamaindex/llamaindex.py,sha256=uiIigbwhonSbJWA7LpgOVI1R4kxxPODS1K5wyHIQ4hM,4048
|
29
32
|
openlit/instrumentation/milvus/__init__.py,sha256=qi1yfmMrvkDtnrN_6toW8qC9BRL78bq7ayWpObJ8Bq4,2961
|
@@ -52,8 +55,8 @@ openlit/instrumentation/vllm/__init__.py,sha256=OVWalQ1dXvip1DUsjUGaHX4J-2FrSp-T
|
|
52
55
|
openlit/instrumentation/vllm/vllm.py,sha256=lDzM7F5pgxvh8nKL0dcKB4TD0Mc9wXOWeXOsOGN7Wd8,6527
|
53
56
|
openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
|
54
57
|
openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
|
55
|
-
openlit/semcov/__init__.py,sha256=
|
56
|
-
openlit-1.
|
57
|
-
openlit-1.
|
58
|
-
openlit-1.
|
59
|
-
openlit-1.
|
58
|
+
openlit/semcov/__init__.py,sha256=56daxsJtWFqp87TTT3R5OxSeMH7eOZqb4k-7AELirTI,7554
|
59
|
+
openlit-1.20.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
60
|
+
openlit-1.20.0.dist-info/METADATA,sha256=DvK9Dt8ZvBBvdPc_Fdbi7HxkCu9Kp-Z4IkzCOuynkg4,14934
|
61
|
+
openlit-1.20.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
62
|
+
openlit-1.20.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|