openlit 1.10.0__py3-none-any.whl → 1.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openlit/__init__.py CHANGED
@@ -21,6 +21,7 @@ from openlit.instrumentation.bedrock import BedrockInstrumentor
21
21
  from openlit.instrumentation.vertexai import VertexAIInstrumentor
22
22
  from openlit.instrumentation.groq import GroqInstrumentor
23
23
  from openlit.instrumentation.ollama import OllamaInstrumentor
24
+ from openlit.instrumentation.gpt4all import GPT4AllInstrumentor
24
25
  from openlit.instrumentation.langchain import LangChainInstrumentor
25
26
  from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
26
27
  from openlit.instrumentation.haystack import HaystackInstrumentor
@@ -161,6 +162,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
161
162
  "vertexai": "vertexai",
162
163
  "groq": "groq",
163
164
  "ollama": "ollama",
165
+ "gpt4all": "gpt4all",
164
166
  "langchain": "langchain",
165
167
  "llama_index": "llama_index",
166
168
  "haystack": "haystack",
@@ -216,6 +218,7 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
216
218
  "vertexai": VertexAIInstrumentor(),
217
219
  "groq": GroqInstrumentor(),
218
220
  "ollama": OllamaInstrumentor(),
221
+ "gpt4all": GPT4AllInstrumentor(),
219
222
  "langchain": LangChainInstrumentor(),
220
223
  "llama_index": LlamaIndexInstrumentor(),
221
224
  "haystack": HaystackInstrumentor(),
@@ -0,0 +1,52 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of GPT4All Functions"""
3
+
4
+ from typing import Collection
5
+ import importlib.metadata
6
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
7
+ from wrapt import wrap_function_wrapper
8
+
9
+ from openlit.instrumentation.gpt4all.gpt4all import (
10
+ embed, generate
11
+ )
12
+
13
+ _instruments = ("gpt4all >= 2.6.0",)
14
+
15
+ class GPT4AllInstrumentor(BaseInstrumentor):
16
+ """
17
+ An instrumentor for GPT4All's client library.
18
+ """
19
+
20
+ def instrumentation_dependencies(self) -> Collection[str]:
21
+ return _instruments
22
+
23
+ def _instrument(self, **kwargs):
24
+ application_name = kwargs.get("application_name", "default_application")
25
+ environment = kwargs.get("environment", "default_environment")
26
+ tracer = kwargs.get("tracer")
27
+ metrics = kwargs.get("metrics_dict")
28
+ pricing_info = kwargs.get("pricing_info", {})
29
+ trace_content = kwargs.get("trace_content", False)
30
+ disable_metrics = kwargs.get("disable_metrics")
31
+ version = importlib.metadata.version("gpt4all")
32
+
33
+ # generate
34
+ wrap_function_wrapper(
35
+ "gpt4all",
36
+ "GPT4All.generate",
37
+ generate("gpt4all.generate", version, environment, application_name,
38
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
39
+ )
40
+
41
+ # embed
42
+ wrap_function_wrapper(
43
+ "gpt4all",
44
+ "Embed4All.embed",
45
+ embed("gpt4all.embed", version, environment, application_name,
46
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
47
+ )
48
+
49
+
50
+ def _uninstrument(self, **kwargs):
51
+ # Proper uninstrumentation logic to revert patched methods
52
+ pass
@@ -0,0 +1,352 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
+ """
3
+ Module for monitoring GPT4All API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception, general_tokens
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def generate(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for generate to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the GPT4All API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of GPT4All usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the generate method to add telemetry.
31
+ """
32
+
33
+ def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'generate' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'generate' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'generate' method.
44
+ kwargs: Keyword arguments for the 'generate' method.
45
+
46
+ Returns:
47
+ The response from the original 'generate' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("streaming", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ for chunk in wrapped(*args, **kwargs):
63
+ # Collect aggregated response from events
64
+ llmresponse += chunk
65
+
66
+ yield chunk
67
+
68
+ # Handling exception ensure observability without disrupting operation
69
+ try:
70
+ # Calculate cost of the operation
71
+ cost = 0
72
+
73
+ # pylint: disable=line-too-long
74
+ model = str(instance.model.model_path).rsplit('/', maxsplit=1)[-1] or "orca-mini-3b-gguf2-q4_0.gguf"
75
+ prompt = kwargs.get("prompt") or args[0] or ""
76
+
77
+ # Calculate cost of the operation
78
+ cost = 0
79
+ prompt_tokens = general_tokens(prompt)
80
+ completion_tokens = general_tokens(llmresponse)
81
+ total_tokens = prompt_tokens + completion_tokens
82
+
83
+ # Set base span attribues
84
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
85
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
86
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL)
87
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
88
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
89
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
90
+ gen_ai_endpoint)
91
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
92
+ environment)
93
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
94
+ application_name)
95
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
96
+ model)
97
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
98
+ kwargs.get("top_k", 40))
99
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
100
+ kwargs.get("top_p", 0.4))
101
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
102
+ kwargs.get("max_tokens", 200))
103
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
104
+ kwargs.get("temperature", 0.7))
105
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
106
+ kwargs.get("frequency_penalty", 1.18))
107
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
108
+ True)
109
+ if trace_content:
110
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
111
+ prompt)
112
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
113
+ llmresponse)
114
+
115
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
116
+ prompt_tokens)
117
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
118
+ completion_tokens)
119
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
120
+ total_tokens)
121
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
122
+ cost)
123
+
124
+ span.set_status(Status(StatusCode.OK))
125
+
126
+ if disable_metrics is False:
127
+ attributes = {
128
+ TELEMETRY_SDK_NAME:
129
+ "openlit",
130
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
131
+ application_name,
132
+ SemanticConvetion.GEN_AI_SYSTEM:
133
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL,
134
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
135
+ environment,
136
+ SemanticConvetion.GEN_AI_TYPE:
137
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
138
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
139
+ model
140
+ }
141
+
142
+ metrics["genai_requests"].add(1, attributes)
143
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
144
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
145
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
146
+ metrics["genai_cost"].record(cost, attributes)
147
+
148
+ except Exception as e:
149
+ handle_exception(span, e)
150
+ logger.error("Error in trace creation: %s", e)
151
+
152
+ return stream_generator()
153
+
154
+ # Handling for non-streaming responses
155
+ else:
156
+ # pylint: disable=line-too-long
157
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
158
+ response = wrapped(*args, **kwargs)
159
+
160
+ # pylint: disable=line-too-long
161
+ model = str(instance.model.model_path).rsplit('/', maxsplit=1)[-1] or "orca-mini-3b-gguf2-q4_0.gguf"
162
+ prompt = kwargs.get("prompt") or args[0] or ""
163
+
164
+ # Calculate cost of the operation
165
+ cost = 0
166
+ prompt_tokens = general_tokens(prompt)
167
+ completion_tokens = general_tokens(response)
168
+ total_tokens = prompt_tokens + completion_tokens
169
+
170
+ try:
171
+ # Set base span attribues
172
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
173
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
174
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL)
175
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
176
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
177
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
178
+ gen_ai_endpoint)
179
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
180
+ environment)
181
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
182
+ application_name)
183
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
184
+ model)
185
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_K,
186
+ kwargs.get("top_k", 40))
187
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
188
+ kwargs.get("top_p", 0.4))
189
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
190
+ kwargs.get("max_tokens", 200))
191
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
192
+ kwargs.get("temperature", 0.7))
193
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
194
+ kwargs.get("frequency_penalty", 1.18))
195
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
196
+ False)
197
+ if trace_content:
198
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
199
+ prompt)
200
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
201
+ response)
202
+
203
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
204
+ prompt_tokens)
205
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
206
+ completion_tokens)
207
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
208
+ total_tokens)
209
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
210
+ cost)
211
+
212
+ span.set_status(Status(StatusCode.OK))
213
+
214
+ if disable_metrics is False:
215
+ attributes = {
216
+ TELEMETRY_SDK_NAME:
217
+ "openlit",
218
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
219
+ application_name,
220
+ SemanticConvetion.GEN_AI_SYSTEM:
221
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL,
222
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
223
+ environment,
224
+ SemanticConvetion.GEN_AI_TYPE:
225
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
226
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
227
+ model
228
+ }
229
+
230
+ metrics["genai_requests"].add(1, attributes)
231
+ metrics["genai_total_tokens"].add(total_tokens, attributes)
232
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
233
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
234
+ metrics["genai_cost"].record(cost, attributes)
235
+
236
+ # Return original response
237
+ return response
238
+
239
+ except Exception as e:
240
+ handle_exception(span, e)
241
+ logger.error("Error in trace creation: %s", e)
242
+
243
+ # Return original response
244
+ return response
245
+
246
+ return wrapper
247
+
248
+ def embed(gen_ai_endpoint, version, environment, application_name,
249
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
250
+ """
251
+ Generates a telemetry wrapper for embeddings to collect metrics.
252
+
253
+ Args:
254
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
255
+ version: Version of the monitoring package.
256
+ environment: Deployment environment (e.g., production, staging).
257
+ application_name: Name of the application using the GPT4All API.
258
+ tracer: OpenTelemetry tracer for creating spans.
259
+ pricing_info: Information used for calculating the cost of GPT4All usage.
260
+ trace_content: Flag indicating whether to trace the actual content.
261
+
262
+ Returns:
263
+ A function that wraps the embeddings method to add telemetry.
264
+ """
265
+
266
+ def wrapper(wrapped, instance, args, kwargs):
267
+ """
268
+ Wraps the 'embeddings' API call to add telemetry.
269
+
270
+ This collects metrics such as execution time, cost, and token usage, and handles errors
271
+ gracefully, adding details to the trace for observability.
272
+
273
+ Args:
274
+ wrapped: The original 'embeddings' method to be wrapped.
275
+ instance: The instance of the class where the original method is defined.
276
+ args: Positional arguments for the 'embeddings' method.
277
+ kwargs: Keyword arguments for the 'embeddings' method.
278
+
279
+ Returns:
280
+ The response from the original 'embeddings' method.
281
+ """
282
+
283
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
284
+ response = wrapped(*args, **kwargs)
285
+
286
+ try:
287
+ # pylint: disable=line-too-long
288
+ model = str(instance.gpt4all.model.model_path).rsplit('/', maxsplit=1)[-1] or "all-MiniLM-L6-v2.gguf2.f16.gguf"
289
+ prompt = kwargs.get("prompt") or args[0] or ""
290
+
291
+ # Calculate cost of the operation
292
+ cost = 0
293
+ prompt_tokens = general_tokens(prompt)
294
+
295
+ # Set Span attributes
296
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
297
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
298
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL)
299
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
300
+ SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
301
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
302
+ gen_ai_endpoint)
303
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
304
+ environment)
305
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
306
+ application_name)
307
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
308
+ model)
309
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
310
+ prompt_tokens)
311
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
312
+ prompt_tokens)
313
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
314
+ cost)
315
+ if trace_content:
316
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
317
+ prompt)
318
+
319
+ span.set_status(Status(StatusCode.OK))
320
+
321
+ if disable_metrics is False:
322
+ attributes = {
323
+ TELEMETRY_SDK_NAME:
324
+ "openlit",
325
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
326
+ application_name,
327
+ SemanticConvetion.GEN_AI_SYSTEM:
328
+ SemanticConvetion.GEN_AI_SYSTEM_GPT4ALL,
329
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
330
+ environment,
331
+ SemanticConvetion.GEN_AI_TYPE:
332
+ SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
333
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
334
+ model
335
+ }
336
+
337
+ metrics["genai_requests"].add(1, attributes)
338
+ metrics["genai_total_tokens"].add(prompt_tokens, attributes)
339
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
340
+ metrics["genai_cost"].record(cost, attributes)
341
+
342
+ # Return original response
343
+ return response
344
+
345
+ except Exception as e:
346
+ handle_exception(span, e)
347
+ logger.error("Error in trace creation: %s", e)
348
+
349
+ # Return original response
350
+ return response
351
+
352
+ return wrapper
@@ -95,6 +95,7 @@ class SemanticConvetion:
95
95
  GEN_AI_SYSTEM_VERTEXAI = "vertexai"
96
96
  GEN_AI_SYSTEM_GROQ = "groq"
97
97
  GEN_AI_SYSTEM_OLLAMA = "ollama"
98
+ GEN_AI_SYSTEM_GPT4ALL = "gpt4all"
98
99
  GEN_AI_SYSTEM_LANGCHAIN = "langchain"
99
100
  GEN_AI_SYSTEM_LLAMAINDEX = "llama_index"
100
101
  GEN_AI_SYSTEM_HAYSTACK = "haystack"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: openlit
3
- Version: 1.10.0
3
+ Version: 1.11.0
4
4
  Summary: OpenTelemetry-native Auto instrumentation library for monitoring LLM Applications, facilitating the integration of observability into your GenAI-driven projects
5
5
  Home-page: https://github.com/openlit/openlit/tree/main/openlit/python
6
6
  Keywords: OpenTelemetry,otel,otlp,llm,tracing,openai,anthropic,claude,cohere,llm monitoring,observability,monitoring,gpt,Generative AI,chatGPT
@@ -51,18 +51,19 @@ This project adheres to the [Semantic Conventions](https://github.com/open-telem
51
51
 
52
52
  ## Auto Instrumentation Capabilities
53
53
 
54
- | LLMs | Vector DBs | Frameworks |
55
- |----------------------------------------------------------|----------------------------------------------|----------------------------------------------|
56
- | [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain) |
57
- | [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) |
58
- | [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) |
59
- | [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) |
60
- | [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | |
61
- | [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | |
54
+ | LLMs | Vector DBs | Frameworks |
55
+ |-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
56
+ | [✅ OpenAI](https://docs.openlit.io/latest/integrations/openai) | [✅ ChromaDB](https://docs.openlit.io/latest/integrations/chromadb) | [✅ Langchain](https://docs.openlit.io/latest/integrations/langchain) |
57
+ | [✅ Ollama](https://docs.openlit.io/latest/integrations/ollama) | [✅ Pinecone](https://docs.openlit.io/latest/integrations/pinecone) | [✅ LiteLLM](https://docs.openlit.io/latest/integrations/litellm) |
58
+ | [✅ Anthropic](https://docs.openlit.io/latest/integrations/anthropic) | [✅ Qdrant](https://docs.openlit.io/latest/integrations/qdrant) | [✅ LlamaIndex](https://docs.openlit.io/latest/integrations/llama-index) |
59
+ | [✅ GPT4All](https://docs.openlit.io/latest/integrations/gpt4all) | [✅ Milvus](https://docs.openlit.io/latest/integrations/milvus) | [✅ Haystack](https://docs.openlit.io/latest/integrations/haystack) |
60
+ | [✅ Cohere](https://docs.openlit.io/latest/integrations/cohere) | | [✅ EmbedChain](https://docs.openlit.io/latest/integrations/embedchain) |
61
+ | [✅ Mistral](https://docs.openlit.io/latest/integrations/mistral) | |
62
+ | [✅ Azure OpenAI](https://docs.openlit.io/latest/integrations/azure-openai) | |
62
63
  | [✅ HuggingFace Transformers](https://docs.openlit.io/latest/integrations/huggingface) | |
63
- | [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | |
64
+ | [✅ Amazon Bedrock](https://docs.openlit.io/latest/integrations/bedrock) | |
64
65
  | [✅ Vertex AI](https://docs.openlit.io/latest/integrations/vertexai) | |
65
- | [✅ Groq](https://docs.openlit.io/latest/integrations/groq) | |
66
+ | [✅ Groq](https://docs.openlit.io/latest/integrations/groq) |
66
67
 
67
68
  ## Supported Destinations
68
69
  - [✅ OpenTelemetry Collector](https://docs.openlit.io/latest/connections/otelcol)
@@ -1,5 +1,5 @@
1
1
  openlit/__helpers.py,sha256=lrn4PBs9owDudiCY2NBoVbAi7AU_HtUpyOj0oqPBsPY,5545
2
- openlit/__init__.py,sha256=rKjXPouODce9nDeysIwf5k8YWA27Fpnr8J6PDCg4k4Q,10299
2
+ openlit/__init__.py,sha256=uW32Zg5R6NK3qqy3rfQhUnFi_YfvhnM4TFJSLo6Yr54,10439
3
3
  openlit/instrumentation/anthropic/__init__.py,sha256=oaU53BOPyfUKbEzYvLr1DPymDluurSnwo4Hernf2XdU,1955
4
4
  openlit/instrumentation/anthropic/anthropic.py,sha256=CYBui5eEfWdSfFF0xtCQjh1xO-gCVJc_V9Hli0szVZE,16026
5
5
  openlit/instrumentation/anthropic/async_anthropic.py,sha256=NW84kTQ3BkUx1zZuMRps_J7zTYkmq5BxOrqSjqWInBs,16068
@@ -11,6 +11,8 @@ openlit/instrumentation/cohere/__init__.py,sha256=PC5T1qIg9pwLNocBP_WjG5B_6p_z01
11
11
  openlit/instrumentation/cohere/cohere.py,sha256=GvxIp55TJIu4YyG0_FwLBDHvAMUlAXyvMNIFhl2CQP4,20437
12
12
  openlit/instrumentation/embedchain/__init__.py,sha256=8TYk1OEbz46yF19dr-gB_x80VZMagU3kJ8-QihPXTeA,1929
13
13
  openlit/instrumentation/embedchain/embedchain.py,sha256=SLlr7qieT3kp4M6OYSRy8FaVCXQ2t3oPyIiE99ioNE4,7892
14
+ openlit/instrumentation/gpt4all/__init__.py,sha256=-59CP2B3-HGZJ_vC-fI9Dt-0BuQXRhSCWCjnaGeU15Q,1802
15
+ openlit/instrumentation/gpt4all/gpt4all.py,sha256=iDu8CAat4j5VPAlhIdkGOclZvhFPG-u7zKwadsKeJps,17948
14
16
  openlit/instrumentation/groq/__init__.py,sha256=uW_0G6HSanQyK2dIXYhzR604pDiyPQfybzc37DsfSew,1911
15
17
  openlit/instrumentation/groq/async_groq.py,sha256=WQwHpC-NJoyEf-jAJlxEcdnpd5jmlfAsDtEBRJ47CxA,19084
16
18
  openlit/instrumentation/groq/groq.py,sha256=4uiEFUjxJ0q-c3GlgPAMc4NijG1YLgQp7o3wcwFrxeg,19048
@@ -44,8 +46,8 @@ openlit/instrumentation/vertexai/async_vertexai.py,sha256=PMHYyLf1J4gZpC_-KZ_ZVx
44
46
  openlit/instrumentation/vertexai/vertexai.py,sha256=UvpNKBHPoV9idVMfGigZnmWuEQiyqSwZn0zK9-U7Lzw,52125
45
47
  openlit/otel/metrics.py,sha256=O7NoaDz0bY19mqpE4-0PcKwEe-B-iJFRgOCaanAuZAc,4291
46
48
  openlit/otel/tracing.py,sha256=vL1ifMbARPBpqK--yXYsCM6y5dSu5LFIKqkhZXtYmUc,3712
47
- openlit/semcov/__init__.py,sha256=sjbSzGH2p25cLrdm3OZxHxxv2gF2eh9Ij1hPamQtMdM,6649
48
- openlit-1.10.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
49
- openlit-1.10.0.dist-info/METADATA,sha256=0oJJupg32D01gTLE2_YTna8zgf4TOF5hxpHJC2d3_Wk,12841
50
- openlit-1.10.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
51
- openlit-1.10.0.dist-info/RECORD,,
49
+ openlit/semcov/__init__.py,sha256=6t5P_0_oS4TtorvKsfLtCQchO0HtIzTenxSye_F4G2Y,6687
50
+ openlit-1.11.0.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
51
+ openlit-1.11.0.dist-info/METADATA,sha256=EAwsft48mdWV1fOxy_XghH1H1rnvhdTOpIrvKviIXSE,13055
52
+ openlit-1.11.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
53
+ openlit-1.11.0.dist-info/RECORD,,