openlit 0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openlit/__helpers.py +143 -0
- openlit/__init__.py +184 -0
- openlit/instrumentation/anthropic/__init__.py +50 -0
- openlit/instrumentation/anthropic/anthropic.py +291 -0
- openlit/instrumentation/anthropic/async_anthropic.py +291 -0
- openlit/instrumentation/chroma/__init__.py +86 -0
- openlit/instrumentation/chroma/chroma.py +197 -0
- openlit/instrumentation/cohere/__init__.py +51 -0
- openlit/instrumentation/cohere/cohere.py +397 -0
- openlit/instrumentation/langchain/__init__.py +74 -0
- openlit/instrumentation/langchain/langchain.py +161 -0
- openlit/instrumentation/mistral/__init__.py +80 -0
- openlit/instrumentation/mistral/async_mistral.py +417 -0
- openlit/instrumentation/mistral/mistral.py +416 -0
- openlit/instrumentation/openai/__init__.py +335 -0
- openlit/instrumentation/openai/async_azure_openai.py +841 -0
- openlit/instrumentation/openai/async_openai.py +875 -0
- openlit/instrumentation/openai/azure_openai.py +840 -0
- openlit/instrumentation/openai/openai.py +891 -0
- openlit/instrumentation/pinecone/__init__.py +66 -0
- openlit/instrumentation/pinecone/pinecone.py +173 -0
- openlit/instrumentation/transformers/__init__.py +37 -0
- openlit/instrumentation/transformers/transformers.py +156 -0
- openlit/otel/metrics.py +109 -0
- openlit/otel/tracing.py +83 -0
- openlit/semcov/__init__.py +123 -0
- openlit-0.0.1.dist-info/LICENSE +201 -0
- openlit-0.0.1.dist-info/METADATA +113 -0
- openlit-0.0.1.dist-info/RECORD +30 -0
- openlit-0.0.1.dist-info/WHEEL +4 -0
@@ -0,0 +1,416 @@
|
|
1
|
+
# pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
|
2
|
+
"""
|
3
|
+
Module for monitoring Mistral API calls.
|
4
|
+
"""
|
5
|
+
|
6
|
+
import logging
|
7
|
+
from opentelemetry.trace import SpanKind, Status, StatusCode
|
8
|
+
from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
|
9
|
+
from openlit.__helpers import get_chat_model_cost, get_embed_model_cost, handle_exception
|
10
|
+
from openlit.semcov import SemanticConvetion
|
11
|
+
|
12
|
+
# Initialize logger for logging potential issues and operations
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def chat(gen_ai_endpoint, version, environment, application_name,
|
16
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
17
|
+
"""
|
18
|
+
Generates a telemetry wrapper for chat to collect metrics.
|
19
|
+
|
20
|
+
Args:
|
21
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
22
|
+
version: Version of the monitoring package.
|
23
|
+
environment: Deployment environment (e.g., production, staging).
|
24
|
+
application_name: Name of the application using the OpenAI API.
|
25
|
+
tracer: OpenTelemetry tracer for creating spans.
|
26
|
+
pricing_info: Information used for calculating the cost of OpenAI usage.
|
27
|
+
trace_content: Flag indicating whether to trace the actual content.
|
28
|
+
|
29
|
+
Returns:
|
30
|
+
A function that wraps the chat method to add telemetry.
|
31
|
+
"""
|
32
|
+
|
33
|
+
def wrapper(wrapped, instance, args, kwargs):
|
34
|
+
"""
|
35
|
+
Wraps the 'chat' API call to add telemetry.
|
36
|
+
|
37
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
38
|
+
gracefully, adding details to the trace for observability.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
wrapped: The original 'chat' method to be wrapped.
|
42
|
+
instance: The instance of the class where the original method is defined.
|
43
|
+
args: Positional arguments for the 'chat' method.
|
44
|
+
kwargs: Keyword arguments for the 'chat' method.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The response from the original 'chat' method.
|
48
|
+
"""
|
49
|
+
|
50
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
51
|
+
response = wrapped(*args, **kwargs)
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Format 'messages' into a single string
|
55
|
+
message_prompt = kwargs.get('messages', "")
|
56
|
+
formatted_messages = []
|
57
|
+
for message in message_prompt:
|
58
|
+
role = message.role
|
59
|
+
content = message.content
|
60
|
+
|
61
|
+
if isinstance(content, list):
|
62
|
+
content_str = ", ".join(
|
63
|
+
# pylint: disable=line-too-long
|
64
|
+
f"{item['type']}: {item['text'] if 'text' in item else item['image_url']}"
|
65
|
+
if 'type' in item else f"text: {item['text']}"
|
66
|
+
for item in content
|
67
|
+
)
|
68
|
+
formatted_messages.append(f"{role}: {content_str}")
|
69
|
+
else:
|
70
|
+
formatted_messages.append(f"{role}: {content}")
|
71
|
+
prompt = " ".join(formatted_messages)
|
72
|
+
|
73
|
+
# Calculate cost of the operation
|
74
|
+
cost = get_chat_model_cost(kwargs.get("model", "mistral-small-latest"),
|
75
|
+
pricing_info, response.usage.prompt_tokens,
|
76
|
+
response.usage.completion_tokens)
|
77
|
+
|
78
|
+
# Set Span attributes
|
79
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
80
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
81
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL)
|
82
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
83
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
84
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
85
|
+
gen_ai_endpoint)
|
86
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
87
|
+
response.id)
|
88
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
89
|
+
environment)
|
90
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
91
|
+
application_name)
|
92
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
93
|
+
kwargs.get("model", "mistral-small-latest"))
|
94
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
95
|
+
kwargs.get("temperature", 0.7))
|
96
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
97
|
+
kwargs.get("top_p", 1))
|
98
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
99
|
+
kwargs.get("max_tokens", ""))
|
100
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
101
|
+
kwargs.get("random_seed", ""))
|
102
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
103
|
+
False)
|
104
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
105
|
+
response.choices[0].finish_reason)
|
106
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
107
|
+
response.usage.prompt_tokens)
|
108
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
109
|
+
response.usage.completion_tokens)
|
110
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
111
|
+
response.usage.total_tokens)
|
112
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
113
|
+
cost)
|
114
|
+
if trace_content:
|
115
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
116
|
+
prompt)
|
117
|
+
# pylint: disable=line-too-long
|
118
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION, response.choices[0].message.content if response.choices[0].message.content else "")
|
119
|
+
|
120
|
+
span.set_status(Status(StatusCode.OK))
|
121
|
+
|
122
|
+
if disable_metrics is False:
|
123
|
+
attributes = {
|
124
|
+
TELEMETRY_SDK_NAME:
|
125
|
+
"openlit",
|
126
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
127
|
+
application_name,
|
128
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
129
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL,
|
130
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
131
|
+
environment,
|
132
|
+
SemanticConvetion.GEN_AI_TYPE:
|
133
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
134
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
135
|
+
kwargs.get("model", "mistral-small-latest")
|
136
|
+
}
|
137
|
+
|
138
|
+
metrics["genai_requests"].add(1, attributes)
|
139
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
140
|
+
metrics["genai_completion_tokens"].add(
|
141
|
+
response.usage.completion_tokens, attributes
|
142
|
+
)
|
143
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
144
|
+
metrics["genai_cost"].record(cost, attributes)
|
145
|
+
|
146
|
+
# Return original response
|
147
|
+
return response
|
148
|
+
|
149
|
+
except Exception as e:
|
150
|
+
handle_exception(span, e)
|
151
|
+
logger.error("Error in trace creation: %s", e)
|
152
|
+
|
153
|
+
# Return original response
|
154
|
+
return response
|
155
|
+
|
156
|
+
return wrapper
|
157
|
+
|
158
|
+
def chat_stream(gen_ai_endpoint, version, environment, application_name,
|
159
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
160
|
+
"""
|
161
|
+
Generates a telemetry wrapper for chat_stream to collect metrics.
|
162
|
+
|
163
|
+
Args:
|
164
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
165
|
+
version: Version of the monitoring package.
|
166
|
+
environment: Deployment environment (e.g., production, staging).
|
167
|
+
application_name: Name of the application using the OpenAI API.
|
168
|
+
tracer: OpenTelemetry tracer for creating spans.
|
169
|
+
pricing_info: Information used for calculating the cost of OpenAI usage.
|
170
|
+
trace_content: Flag indicating whether to trace the actual content.
|
171
|
+
|
172
|
+
Returns:
|
173
|
+
A function that wraps the chat method to add telemetry.
|
174
|
+
"""
|
175
|
+
|
176
|
+
def wrapper(wrapped, instance, args, kwargs):
|
177
|
+
"""
|
178
|
+
Wraps the 'chat_stream' API call to add telemetry.
|
179
|
+
|
180
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
181
|
+
gracefully, adding details to the trace for observability.
|
182
|
+
|
183
|
+
Args:
|
184
|
+
wrapped: The original 'chat_stream' method to be wrapped.
|
185
|
+
instance: The instance of the class where the original method is defined.
|
186
|
+
args: Positional arguments for the 'chat_stream' method.
|
187
|
+
kwargs: Keyword arguments for the 'chat_stream' method.
|
188
|
+
|
189
|
+
Returns:
|
190
|
+
The response from the original 'chat_stream' method.
|
191
|
+
"""
|
192
|
+
|
193
|
+
def stream_generator():
|
194
|
+
# pylint: disable=line-too-long
|
195
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
196
|
+
# Placeholder for aggregating streaming response
|
197
|
+
llmresponse = ""
|
198
|
+
|
199
|
+
# Loop through streaming events capturing relevant details
|
200
|
+
for event in wrapped(*args, **kwargs):
|
201
|
+
response_id = event.id
|
202
|
+
llmresponse += event.choices[0].delta.content
|
203
|
+
if event.usage is not None:
|
204
|
+
prompt_tokens = event.usage.prompt_tokens
|
205
|
+
completion_tokens = event.usage.completion_tokens
|
206
|
+
total_tokens = event.usage.total_tokens
|
207
|
+
finish_reason = event.choices[0].finish_reason
|
208
|
+
yield event
|
209
|
+
|
210
|
+
# Handling exception ensure observability without disrupting operation
|
211
|
+
try:
|
212
|
+
# Format 'messages' into a single string
|
213
|
+
message_prompt = kwargs.get('messages', "")
|
214
|
+
formatted_messages = []
|
215
|
+
for message in message_prompt:
|
216
|
+
role = message.role
|
217
|
+
content = message.content
|
218
|
+
|
219
|
+
if isinstance(content, list):
|
220
|
+
content_str = ", ".join(
|
221
|
+
# pylint: disable=line-too-long
|
222
|
+
f"{item['type']}: {item['text'] if 'text' in item else item['image_url']}"
|
223
|
+
if 'type' in item else f"text: {item['text']}"
|
224
|
+
for item in content
|
225
|
+
)
|
226
|
+
formatted_messages.append(f"{role}: {content_str}")
|
227
|
+
else:
|
228
|
+
formatted_messages.append(f"{role}: {content}")
|
229
|
+
prompt = " ".join(formatted_messages)
|
230
|
+
|
231
|
+
# Calculate cost of the operation
|
232
|
+
cost = get_chat_model_cost(kwargs.get("model", "mistral-small-latest"),
|
233
|
+
pricing_info, prompt_tokens, completion_tokens)
|
234
|
+
|
235
|
+
# Set Span attributes
|
236
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
237
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
238
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL)
|
239
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
240
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT)
|
241
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
242
|
+
gen_ai_endpoint)
|
243
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
244
|
+
response_id)
|
245
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
246
|
+
environment)
|
247
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
248
|
+
application_name)
|
249
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
250
|
+
kwargs.get("model", "mistral-small-latest"))
|
251
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
|
252
|
+
kwargs.get("temperature", 0.7))
|
253
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
|
254
|
+
kwargs.get("top_p", 1))
|
255
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
|
256
|
+
kwargs.get("max_tokens", ""))
|
257
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
|
258
|
+
kwargs.get("random_seed", ""))
|
259
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
|
260
|
+
True)
|
261
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
|
262
|
+
finish_reason)
|
263
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
264
|
+
prompt_tokens)
|
265
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
|
266
|
+
completion_tokens)
|
267
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
268
|
+
total_tokens)
|
269
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
270
|
+
cost)
|
271
|
+
if trace_content:
|
272
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
273
|
+
prompt)
|
274
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
|
275
|
+
llmresponse)
|
276
|
+
|
277
|
+
span.set_status(Status(StatusCode.OK))
|
278
|
+
|
279
|
+
if disable_metrics is False:
|
280
|
+
attributes = {
|
281
|
+
TELEMETRY_SDK_NAME:
|
282
|
+
"openlit",
|
283
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
284
|
+
application_name,
|
285
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
286
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL,
|
287
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
288
|
+
environment,
|
289
|
+
SemanticConvetion.GEN_AI_TYPE:
|
290
|
+
SemanticConvetion.GEN_AI_TYPE_CHAT,
|
291
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
292
|
+
kwargs.get("model", "mistral-small-latest")
|
293
|
+
}
|
294
|
+
|
295
|
+
metrics["genai_requests"].add(1, attributes)
|
296
|
+
metrics["genai_total_tokens"].add(prompt_tokens + completion_tokens, attributes)
|
297
|
+
metrics["genai_completion_tokens"].add(completion_tokens, attributes)
|
298
|
+
metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
|
299
|
+
metrics["genai_cost"].record(cost)
|
300
|
+
|
301
|
+
except Exception as e:
|
302
|
+
handle_exception(span, e)
|
303
|
+
logger.error("Error in trace creation: %s", e)
|
304
|
+
|
305
|
+
return stream_generator()
|
306
|
+
|
307
|
+
return wrapper
|
308
|
+
|
309
|
+
def embeddings(gen_ai_endpoint, version, environment, application_name,
|
310
|
+
tracer, pricing_info, trace_content, metrics, disable_metrics):
|
311
|
+
"""
|
312
|
+
Generates a telemetry wrapper for embeddings to collect metrics.
|
313
|
+
|
314
|
+
Args:
|
315
|
+
gen_ai_endpoint: Endpoint identifier for logging and tracing.
|
316
|
+
version: Version of the monitoring package.
|
317
|
+
environment: Deployment environment (e.g., production, staging).
|
318
|
+
application_name: Name of the application using the OpenAI API.
|
319
|
+
tracer: OpenTelemetry tracer for creating spans.
|
320
|
+
pricing_info: Information used for calculating the cost of OpenAI usage.
|
321
|
+
trace_content: Flag indicating whether to trace the actual content.
|
322
|
+
|
323
|
+
Returns:
|
324
|
+
A function that wraps the embeddings method to add telemetry.
|
325
|
+
"""
|
326
|
+
|
327
|
+
def wrapper(wrapped, instance, args, kwargs):
|
328
|
+
"""
|
329
|
+
Wraps the 'embeddings' API call to add telemetry.
|
330
|
+
|
331
|
+
This collects metrics such as execution time, cost, and token usage, and handles errors
|
332
|
+
gracefully, adding details to the trace for observability.
|
333
|
+
|
334
|
+
Args:
|
335
|
+
wrapped: The original 'embeddings' method to be wrapped.
|
336
|
+
instance: The instance of the class where the original method is defined.
|
337
|
+
args: Positional arguments for the 'embeddings' method.
|
338
|
+
kwargs: Keyword arguments for the 'embeddings' method.
|
339
|
+
|
340
|
+
Returns:
|
341
|
+
The response from the original 'embeddings' method.
|
342
|
+
"""
|
343
|
+
|
344
|
+
with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
|
345
|
+
response = wrapped(*args, **kwargs)
|
346
|
+
|
347
|
+
try:
|
348
|
+
# Get prompt from kwargs and store as a single string
|
349
|
+
prompt = ', '.join(kwargs.get('input', []))
|
350
|
+
|
351
|
+
# Calculate cost of the operation
|
352
|
+
cost = get_embed_model_cost(kwargs.get('model', "mistral-embed"),
|
353
|
+
pricing_info, response.usage.prompt_tokens)
|
354
|
+
|
355
|
+
# Set Span attributes
|
356
|
+
span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
|
357
|
+
span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
|
358
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL)
|
359
|
+
span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
|
360
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING)
|
361
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
|
362
|
+
gen_ai_endpoint)
|
363
|
+
span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
|
364
|
+
environment)
|
365
|
+
span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
|
366
|
+
application_name)
|
367
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
|
368
|
+
kwargs.get('model', "mistral-embed"))
|
369
|
+
span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_EMBEDDING_FORMAT,
|
370
|
+
kwargs.get("encoding_format", "float"))
|
371
|
+
span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
|
372
|
+
response.id)
|
373
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
|
374
|
+
response.usage.prompt_tokens)
|
375
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
|
376
|
+
response.usage.total_tokens)
|
377
|
+
span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
|
378
|
+
cost)
|
379
|
+
if trace_content:
|
380
|
+
span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
|
381
|
+
prompt)
|
382
|
+
|
383
|
+
span.set_status(Status(StatusCode.OK))
|
384
|
+
|
385
|
+
if disable_metrics is False:
|
386
|
+
attributes = {
|
387
|
+
TELEMETRY_SDK_NAME:
|
388
|
+
"openlit",
|
389
|
+
SemanticConvetion.GEN_AI_APPLICATION_NAME:
|
390
|
+
application_name,
|
391
|
+
SemanticConvetion.GEN_AI_SYSTEM:
|
392
|
+
SemanticConvetion.GEN_AI_SYSTEM_MISTRAL,
|
393
|
+
SemanticConvetion.GEN_AI_ENVIRONMENT:
|
394
|
+
environment,
|
395
|
+
SemanticConvetion.GEN_AI_TYPE:
|
396
|
+
SemanticConvetion.GEN_AI_TYPE_EMBEDDING,
|
397
|
+
SemanticConvetion.GEN_AI_REQUEST_MODEL:
|
398
|
+
kwargs.get('model', "mistral-embed")
|
399
|
+
}
|
400
|
+
|
401
|
+
metrics["genai_requests"].add(1, attributes)
|
402
|
+
metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
|
403
|
+
metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
|
404
|
+
metrics["genai_cost"].record(cost, attributes)
|
405
|
+
|
406
|
+
# Return original response
|
407
|
+
return response
|
408
|
+
|
409
|
+
except Exception as e:
|
410
|
+
handle_exception(span, e)
|
411
|
+
logger.error("Error in trace creation: %s", e)
|
412
|
+
|
413
|
+
# Return original response
|
414
|
+
return response
|
415
|
+
|
416
|
+
return wrapper
|