openfund-core 1.0.5__py3-none-any.whl → 1.0.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
core/Exchange.py CHANGED
@@ -31,19 +31,8 @@ class Exchange:
31
31
  self.exchange.load_markets()
32
32
 
33
33
  return self.exchange.market(symbol)
34
-
35
- def get_tick_size(self,symbol) -> Decimal:
36
-
37
- market = self.getMarket(symbol)
38
- if market and 'precision' in market and 'price' in market['precision']:
39
- return OPTools.toDecimal(market['precision']['price'])
40
- else:
41
- raise ValueError(f"{symbol}: 无法从市场数据中获取价格精度")
42
-
43
- def amount_to_precision(self,symbol, contract_size):
44
- return self.exchange.amount_to_precision(symbol, contract_size)
45
-
46
- def get_position_mode(self):
34
+
35
+ def get_position_mode(self) -> str:
47
36
 
48
37
  try:
49
38
  # 假设获取账户持仓模式的 API
@@ -61,6 +50,19 @@ class Exchange:
61
50
  error_message = f"Error fetching position mode: {e}"
62
51
  self.logger.error(error_message)
63
52
  raise Exception(error_message)
53
+
54
+ def get_tick_size(self,symbol) -> Decimal:
55
+
56
+ market = self.getMarket(symbol)
57
+ if market and 'precision' in market and 'price' in market['precision']:
58
+ return OPTools.toDecimal(market['precision']['price'])
59
+ else:
60
+ raise ValueError(f"{symbol}: 无法从市场数据中获取价格精度")
61
+
62
+ def amount_to_precision(self,symbol, contract_size):
63
+ return self.exchange.amount_to_precision(symbol, contract_size)
64
+
65
+
64
66
 
65
67
  def set_leverage(self,symbol, leverage, mgnMode='isolated',posSide=None):
66
68
  try:
@@ -105,10 +107,66 @@ class Exchange:
105
107
  elif direction == 'cost_to_contract':
106
108
  contract_size = amount / price / market_contractSize
107
109
  else:
108
- raise Exception(f"{symbol}:{direction} 是无效的转换方向,请输入 'amount_to_contract' 或 'cost_to_contract'。")
110
+ raise Exception(f"{symbol} : {direction} 是无效的转换方向,请输入 'amount_to_contract' 或 'cost_to_contract'。")
109
111
 
110
112
  return self.amount_to_precision(symbol, contract_size)
111
-
113
+
114
+ def close_position(self, symbol, position, params={}) -> dict:
115
+
116
+ amount = abs(float(position['contracts']))
117
+
118
+ if amount <= 0:
119
+ self.logger.warning(f"{symbol}: position contracts must be greater than 0")
120
+ return
121
+
122
+ max_retries = 3
123
+ retry_count = 0
124
+ while retry_count < max_retries:
125
+
126
+ try:
127
+ side = position[self.SIDE_KEY]
128
+ self.logger.debug(f"{symbol}: Preparing to close position, side= {side}, amount={amount}")
129
+ position_mode = self.get_position_mode() # 获取持仓模式
130
+ if position_mode == 'long_short_mode':
131
+ # 在双向持仓模式下,指定平仓方向
132
+ # pos_side = 'long' if side == 'long' else 'short'
133
+ pos_side = side
134
+ else:
135
+ # 在单向模式下,不指定方向
136
+ pos_side = 'net'
137
+ orderSide = 'buy' if side == 'long' else 'sell'
138
+
139
+ td_mode = position['marginMode']
140
+ params = {
141
+ 'mgnMode': td_mode,
142
+ 'posSide': pos_side,
143
+ # 当市价全平时,平仓单是否需要自动撤销,默认为false. false:不自动撤单 true:自动撤单
144
+ 'autoCxl': 'true',
145
+ **params
146
+
147
+ }
148
+
149
+ # 发送平仓请求并获取返回值
150
+ order = self.exchange.close_position(
151
+ symbol=symbol,
152
+ side=orderSide,
153
+ params=params
154
+ )
155
+
156
+ self.logger.info(f"{symbol} Close position response : {order}")
157
+ return order
158
+
159
+ except Exception as e:
160
+
161
+ retry_count += 1
162
+ if retry_count == max_retries:
163
+ error_message = f"{symbol} Error closing position : {str(e)}"
164
+ self.logger.error(error_message)
165
+ raise Exception(error_message)
166
+ else:
167
+ self.logger.warning(f"{symbol} 平仓失败,正在进行第{retry_count}次重试: {str(e)}")
168
+ time.sleep(0.1) # 重试前等待0.1秒
169
+
112
170
 
113
171
  def cancel_all_orders(self, symbol):
114
172
  max_retries = 3
@@ -262,7 +320,7 @@ class Exchange:
262
320
 
263
321
  max_retries = 3
264
322
  retry_count = 0
265
- self.logger.debug(f"{symbol} : Pre Algo Order placed: {order} ")
323
+ self.logger.info(f"{symbol} : Pre Algo Order placed: {order} ")
266
324
  while retry_count < max_retries:
267
325
  try:
268
326
 
@@ -355,10 +413,11 @@ class Exchange:
355
413
  max_retries = 3
356
414
  retry_count = 0
357
415
 
416
+ self.logger.info(f"{symbol} : Pre Order placed: {order} ")
417
+
358
418
  while retry_count < max_retries:
359
419
  try:
360
420
  # 使用ccxt创建订单
361
- self.logger.debug(f"{symbol} : Pre Order placed: {order} ")
362
421
  order_result = self.exchange.create_order(
363
422
  **order
364
423
  # symbol=symbol,
@@ -371,24 +430,24 @@ class Exchange:
371
430
  except ccxt.NetworkError as e:
372
431
  # 处理网络相关错误
373
432
  retry_count += 1
374
- self.logger.warning(f"{symbol} : 设置下单时发生网络错误,正在进行第{retry_count}次重试: {str(e)}")
433
+ self.logger.warning(f"{symbol} : 下单时发生网络错误,正在进行第{retry_count}次重试: {str(e)}")
375
434
  time.sleep(0.1) # 重试前等待1秒
376
435
  continue
377
436
  except ccxt.ExchangeError as e:
378
437
  # 处理交易所API相关错误
379
438
  retry_count += 1
380
- self.logger.warning(f"{symbol} : 设置下单时发生交易所错误,正在进行第{retry_count}次重试: {str(e)}")
439
+ self.logger.warning(f"{symbol} : 下单时发生交易所错误,正在进行第{retry_count}次重试: {str(e)}")
381
440
  time.sleep(0.1)
382
441
  continue
383
442
  except Exception as e:
384
443
  # 处理其他未预期的错误
385
444
  retry_count += 1
386
- self.logger.warning(f"{symbol} : 设置下单时发生未知错误,正在进行第{retry_count}次重试: {str(e)}")
445
+ self.logger.warning(f"{symbol} : 下单时发生未知错误,正在进行第{retry_count}次重试: {str(e)}")
387
446
  time.sleep(0.1)
388
447
  continue
389
448
  if retry_count >= max_retries:
390
449
  # 重试次数用完仍未成功设置止损单
391
- error_message = f"!! {symbol}: 设置止盈止损单时重试次数用完仍未成功设置成功。 "
450
+ error_message = f"!! {symbol}: 下单时重试次数用完仍未成功设置成功。 "
392
451
  self.logger.error(error_message)
393
452
  raise Exception(error_message)
394
453
  self.logger.debug(f"{symbol} : --------- ++ Order placed done. --------")
core/smc/SMCFVG.py CHANGED
@@ -47,12 +47,12 @@ class SMCFVG(SMCStruct):
47
47
  # 使用向量化操作替代apply,提高性能
48
48
  if side == self.BUY_SIDE:
49
49
  condition = df[self.HIGH_COL].shift(1) < df[self.LOW_COL].shift(-1)
50
- side_value = "Bullish"
50
+ side_value = self.BULLISH_TREND
51
51
  price_top = df[self.LOW_COL].shift(-1)
52
52
  price_bot = df[self.HIGH_COL].shift(1)
53
53
  else:
54
54
  condition = df[self.LOW_COL].shift(1) > df[self.HIGH_COL].shift(-1)
55
- side_value = "Bearish"
55
+ side_value = self.BEARISH_TREND
56
56
  price_top = df[self.LOW_COL].shift(1)
57
57
  price_bot = df[self.HIGH_COL].shift(-1)
58
58
 
@@ -64,9 +64,9 @@ class SMCFVG(SMCStruct):
64
64
  df.loc[:, self.FVG_MID] = (df[self.FVG_TOP] + df[self.FVG_BOT]) / 2
65
65
 
66
66
  fvg_df = df[
67
- df[self.FVG_SIDE] == "Bullish"
67
+ df[self.FVG_SIDE] == self.BULLISH_TREND
68
68
  if side == self.BUY_SIDE
69
- else df[self.FVG_SIDE] == "Bearish"
69
+ else df[self.FVG_SIDE] == self.BEARISH_TREND
70
70
  ]
71
71
  fvg_df = fvg_df.copy()
72
72
  if check_balanced:
core/smc/SMCLiquidity.py CHANGED
@@ -1,7 +1,206 @@
1
1
  import logging
2
+ from core.smc.SMCStruct import SMCStruct
3
+
4
+
5
+ class SMCLiquidity(SMCStruct):
6
+ EQUAL_HIGH_COL = "equal_high"
7
+ EQUAL_LOW_COL = "equal_low"
8
+ LIQU_HIGH_COL = "liqu_high"
9
+ LIQU_LOW_COL = "liqu_low"
10
+ EQUAL_HIGH_INDEX_KEY = "equal_high_index"
11
+ EQUAL_LOW_INDEX_KEY = "equal_low_index"
12
+ HAS_EQ_KEY = "has_EQ"
13
+ LIQU_HIGH_DIFF_COL = "liqu_high_diff"
14
+ LIQU_LOW_DIFF_COL = "liqu_low_diff"
15
+
2
16
 
3
- class SMCLiquidity:
4
17
  def __init__(self):
18
+ super().__init__()
5
19
  self.logger = logging.getLogger(__name__)
6
-
7
-
20
+
21
+
22
+ def _identify_liquidity_pivots(self, data, pivot_length=1):
23
+ """
24
+ 识别流动性的高点和低点
25
+ """
26
+
27
+ df = data.copy()
28
+
29
+ # 识别高点
30
+ df[self.LIQU_HIGH_COL] = 0
31
+ for i in range(pivot_length, len(df) - pivot_length):
32
+ if df[self.HIGH_COL].iloc[i] == max(df[self.HIGH_COL].iloc[i-pivot_length:i+pivot_length+1]):
33
+ df.loc[df.index[i], self.LIQU_HIGH_COL] = df[self.HIGH_COL].iloc[i]
34
+
35
+ # 识别低点
36
+ df[self.LIQU_LOW_COL] = 0
37
+ for i in range(pivot_length, len(df) - pivot_length):
38
+
39
+ if df[self.LOW_COL].iloc[i] == min(df[self.LOW_COL].iloc[i-pivot_length:i+pivot_length+1]):
40
+ df.loc[df.index[i], self.LIQU_LOW_COL] = df[self.LOW_COL].iloc[i]
41
+
42
+
43
+
44
+ return df
45
+
46
+ def find_EQH_EQL(self, data, trend, end_idx=-1, atr_offset=0.1) -> dict:
47
+ """_summary_
48
+ 识别等高等低流动性
49
+ Args:
50
+ data (_type_): _description_
51
+ trend (_type_): _description_
52
+ end_idx (int, optional): _description_. Defaults to -1.
53
+ atr_offset (float, optional): _description_. Defaults to 0.1.
54
+
55
+ Returns:
56
+ dict: _description_
57
+ """
58
+
59
+ df = data.copy() if end_idx == -1 else data.copy().iloc[:end_idx+1]
60
+
61
+ check_columns = [self.LIQU_HIGH_COL, self.LIQU_LOW_COL]
62
+
63
+ try:
64
+ self.check_columns(df, check_columns)
65
+ except ValueError as e:
66
+ self.logger.warning(f"DataFrame must contain columns {check_columns} : {str(e)}")
67
+ df = self._identify_liquidity_pivots(df)
68
+
69
+ df = df[(df[self.LIQU_HIGH_COL] > 0) | (df[self.LIQU_LOW_COL] > 0)]
70
+ # 初始化结果列
71
+ df[self.EQUAL_HIGH_COL] = 0
72
+ df[self.EQUAL_LOW_COL] = 0
73
+ df[self.ATR_COL] = self.calculate_atr(df)
74
+ # 跟踪前一个高点和低点
75
+ previous_high = None
76
+ previous_high_index = None
77
+ previous_high_pos = -1
78
+ previous_low = None
79
+ previous_low_index = None
80
+ previous_low_pos = -1
81
+ for i in range(len(df)-1, -1, -1):
82
+
83
+ offset = self.toDecimal(df[self.ATR_COL].iloc[i] * atr_offset)
84
+
85
+ if trend == self.BULLISH_TREND:
86
+ current_high = df[self.LIQU_HIGH_COL].iloc[i]
87
+ if current_high == 0:
88
+ continue
89
+
90
+ if previous_high is None:
91
+ previous_high = current_high
92
+ previous_high_index = df.index[i]
93
+ previous_high_pos = i
94
+ continue
95
+
96
+ max_val = max(current_high, previous_high)
97
+ min_val = min(current_high, previous_high)
98
+
99
+
100
+ if abs(max_val - min_val) <= offset: # EQH|EQL
101
+
102
+ df.loc[df.index[i], self.EQUAL_HIGH_COL] = previous_high_index
103
+ df.loc[df.index[previous_high_pos], self.EQUAL_HIGH_COL] = previous_high_index
104
+
105
+ else:
106
+ # 倒序遍历,等高线被高点破坏,则更新等高点位置
107
+ if current_high > previous_high:
108
+ previous_high = current_high
109
+ previous_high_index = df.index[i]
110
+ previous_high_pos = i
111
+
112
+
113
+
114
+ else:
115
+ current_low = df[self.LIQU_LOW_COL].iloc[i]
116
+ if current_low == 0:
117
+ continue
118
+
119
+ # current_low = df[self.EQUAL_LOW_COL].iloc[i]
120
+ if previous_low is None:
121
+ previous_low = current_low
122
+ previous_low_index = df.index[i]
123
+ previous_low_pos = i
124
+ continue
125
+
126
+ max_val = max(current_low, previous_low)
127
+ min_val = min(current_low, previous_low)
128
+
129
+
130
+
131
+
132
+ if abs(max_val - min_val) <= offset: # EQH|EQL
133
+
134
+ df.loc[df.index[i], self.EQUAL_LOW_COL] = previous_low_index
135
+ df.loc[df.index[previous_low_pos], self.EQUAL_LOW_COL] = previous_low_index
136
+
137
+ else:
138
+ # 倒序遍历,等高线被高点破坏,则更新等高点位置
139
+ if current_low < previous_low:
140
+ previous_low = current_low
141
+ previous_low_index = df.index[i]
142
+ previous_low_pos = i
143
+
144
+ # 筛选有效结构且在prd范围内的数据
145
+ last_EQ = {
146
+
147
+ }
148
+ if trend == self.BULLISH_TREND :
149
+ mask = df[self.EQUAL_HIGH_COL] > 0
150
+ valid_EQH_df = df[ mask ]
151
+ if not valid_EQH_df.empty:
152
+ last_EQ[self.HAS_EQ_KEY] = True
153
+ last_EQ[self.EQUAL_HIGH_COL] = valid_EQH_df.iloc[-1][self.LIQU_HIGH_COL]
154
+ last_EQ[self.EQUAL_HIGH_INDEX_KEY] = valid_EQH_df.iloc[-1][self.EQUAL_HIGH_COL]
155
+ else:
156
+ mask = df[self.EQUAL_LOW_COL] > 0
157
+ valid_EQL_df = df[ mask ]
158
+ if not valid_EQL_df.empty:
159
+ last_EQ[self.HAS_EQ_KEY] = True
160
+ last_EQ[self.EQUAL_LOW_COL] = valid_EQL_df.iloc[-1][self.LIQU_LOW_COL]
161
+ last_EQ[self.EQUAL_LOW_INDEX_KEY] = valid_EQL_df.iloc[-1][self.EQUAL_LOW_COL]
162
+
163
+ return last_EQ
164
+
165
+ def identify_dynamic_trendlines(self, data, trend, start_idx=-1, end_idx=-1, ratio=0.8) -> tuple:
166
+ """
167
+ 识别动态趋势线或隧道
168
+ Args:
169
+ data (pd.DataFrame): _description_
170
+
171
+ Returns:
172
+ pd.DataFrame: _description_
173
+ """
174
+
175
+ df = data.copy() if start_idx == -1 or end_idx == -1 else data.copy().iloc[start_idx-1:end_idx+2] #考虑poivt值,前后各增加一个
176
+
177
+ check_columns = [self.LIQU_HIGH_COL]
178
+
179
+ try:
180
+ self.check_columns(df, check_columns)
181
+ except ValueError as e:
182
+ self.logger.warning(f"DataFrame must contain columns {check_columns} : {str(e)}")
183
+ df = self._identify_liquidity_pivots(df)
184
+ diff_ratio = 0.0
185
+ if trend == self.BEARISH_TREND:
186
+ # 判断Bearish趋势是高点不断升高,
187
+ liqu_bear_df = df[df[self.LIQU_HIGH_COL] > 0]
188
+ liqu_bear_df[self.LIQU_HIGH_DIFF_COL] = liqu_bear_df[self.LIQU_HIGH_COL].diff()
189
+ # self.logger.info(f"dynamic_trendlines:\n {liqu_bear_df[[self.TIMESTAMP_COL,self.LIQU_HIGH_COL,self.LIQU_HIGH_DIFF_COL]]}")
190
+ diff_ratio = self.toDecimal(liqu_bear_df[self.LIQU_HIGH_DIFF_COL].dropna().lt(0).mean(),2)
191
+ if diff_ratio >= ratio:
192
+ return diff_ratio,True
193
+ else:
194
+ # Bullish趋势是低点不断降低
195
+ liqu_bullish_df = df[df[self.LIQU_LOW_COL] > 0]
196
+ liqu_bullish_df[self.LIQU_LOW_DIFF_COL] = liqu_bullish_df[self.LIQU_LOW_COL].diff()
197
+ # self.logger.info(f"dynamic_trendlines:\n {liqu_bullish_df[[self.TIMESTAMP_COL,self.LIQU_LOW_COL,self.LIQU_LOW_DIFF_COL]]}")
198
+ diff_ratio = self.toDecimal(liqu_bullish_df[self.LIQU_LOW_DIFF_COL].dropna().gt(0).mean(),2)
199
+ if diff_ratio >= ratio:
200
+ return diff_ratio,True
201
+
202
+ return diff_ratio,False
203
+
204
+
205
+
206
+
core/smc/SMCOrderBlock.py CHANGED
@@ -34,7 +34,7 @@ class SMCOrderBlock(SMCStruct):
34
34
  symbol (_type_): _description_
35
35
  data (pd.DataFrame): _description_
36
36
  side (_type_): _description_ 如果是None, 则返回所有OB boxes(包括bullish和bearish)
37
- pivot_index (int): _description_ 开始的位置
37
+ start_index (int): _description_ 开始的位置
38
38
  is_valid (bool): _description_ 找到有效的OB,没有被crossed
39
39
  if_combine (bool): _description_ 是否合并OB
40
40
  Returns:
@@ -63,8 +63,8 @@ class SMCOrderBlock(SMCStruct):
63
63
  else any(df.loc[row.name + 1 :, self.HIGH_COL] >= row[self.OB_HIGH_COL]),
64
64
  axis=1,
65
65
  )
66
-
67
- ob_df = ob_df[~ob_df[self.OB_WAS_CROSSED]]
66
+ if is_valid :
67
+ ob_df = ob_df[~ob_df[self.OB_WAS_CROSSED]]
68
68
 
69
69
  if if_combine:
70
70
  # 合并OB
@@ -238,7 +238,7 @@ class SMCOrderBlock(SMCStruct):
238
238
  # df.at[i, self.OB_START_TS_COL] = df.loc[index, self.TIMESTAMP_COL]
239
239
  df.at[index, self.OB_ATR] = atr
240
240
 
241
- def get_lastest_OB(self, data, trend, start_index=-1):
241
+ def get_latest_OB(self, data, trend, start_index=-1):
242
242
  """
243
243
  获取最新的Order Block
244
244
 
core/smc/SMCPDArray.py CHANGED
@@ -15,16 +15,15 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
15
15
  self.logger = logging.getLogger(__name__)
16
16
 
17
17
  def find_PDArrays(
18
- self, struct: pd.DataFrame, side, start_index=-1
18
+ self, struct: pd.DataFrame, side, start_index=-1, check_balanced=True,
19
19
  ) -> pd.DataFrame:
20
20
  """_summary_
21
21
  寻找PDArrays,包括Fair Value Gap (FVG)|Order Block (OB)|Breaker Block(BB)|Mitigation Block(BB)
22
22
  Args:
23
23
  data (pd.DataFrame): K线数据
24
24
  side (_type_): 交易方向 'buy'|'sell'
25
- threshold (_type_): 阈值价格,通常为溢价和折价区的CE
26
- check_balanced (bool): 是否检查FVG是否被平衡过,默认为True
27
25
  start_index (int): 开始查找索引的起点,默认为-1
26
+ check_balanced (bool): PD是否有效,默认为True。PD被crossed过,则是无效PD
28
27
 
29
28
  Returns:
30
29
  pd.DataFrame: _description_
@@ -37,11 +36,11 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
37
36
  else struct.copy().iloc[max(0, start_index - 1) :]
38
37
  )
39
38
 
40
- df_FVGs = self.find_FVGs(df, side)
39
+ df_FVGs = self.find_FVGs(df, side, check_balanced, start_index)
41
40
  # self.logger.info(f"fvgs:\n{df_FVGs[['timestamp', self.FVG_SIDE, self.FVG_TOP, self.FVG_BOT, self.FVG_WAS_BALANCED]]}")
42
41
 
43
42
 
44
- df_OBs = self.find_OBs(df, side)
43
+ df_OBs = self.find_OBs(df, side, start_index, is_valid=check_balanced)
45
44
  # self.logger.info("find_OBs:\n %s", df_OBs)
46
45
 
47
46
  # 使用更简洁的方式重命名和合并时间戳列
@@ -67,9 +66,44 @@ class SMCPDArray(SMCFVG,SMCOrderBlock):
67
66
  df_PDArrays.loc[:, self.PD_HIGH_COL] = df_PDArrays[[self.FVG_TOP, self.OB_HIGH_COL]].max(axis=1)
68
67
  df_PDArrays.loc[:, self.PD_LOW_COL] = df_PDArrays[[self.FVG_BOT, self.OB_LOW_COL]].min(axis=1)
69
68
  df_PDArrays.loc[:, self.PD_MID_COL] = (df_PDArrays[self.PD_HIGH_COL] + df_PDArrays[self.PD_LOW_COL]) / 2
70
-
71
-
72
-
69
+
73
70
 
74
71
  return df_PDArrays
75
72
 
73
+
74
+ def get_latest_PDArray(self, df_PDArrays: pd.DataFrame, side, start_index=-1, check_balanced=True, mask:str=None) -> dict:
75
+ """_summary_
76
+ 过滤PDArrays,只保留指定方向的PDArrays
77
+ Args:
78
+ df_PDArrays (pd.DataFrame): _description_
79
+ mask (str): _description_
80
+
81
+ Returns:
82
+ pd.DataFrame: _description_
83
+ """
84
+
85
+ # 检查数据中是否包含必要的列
86
+ df = df_PDArrays.copy()
87
+ check_columns = [self.STRUCT_COL]
88
+ try:
89
+ self.check_columns(df, check_columns)
90
+ except ValueError as e:
91
+ df = self.build_struct(df)
92
+
93
+ df = self.find_PDArrays(df, side, start_index, check_balanced)
94
+
95
+ if mask:
96
+ df = df[df[mask]]
97
+
98
+ if len(df) == 0:
99
+ self.logger.info("未找到PDArray.")
100
+ return None
101
+ else:
102
+ last_pd = df.iloc[-1]
103
+ return {
104
+ self.TIMESTAMP_COL: last_pd[self.TIMESTAMP_COL],
105
+ self.PD_TYPE_COL: last_pd[self.PD_TYPE_COL],
106
+ self.PD_HIGH_COL: last_pd[self.PD_HIGH_COL],
107
+ self.PD_LOW_COL: last_pd[self.PD_LOW_COL],
108
+ self.PD_MID_COL: last_pd[self.PD_MID_COL],
109
+ }
core/smc/SMCStruct.py CHANGED
@@ -265,15 +265,18 @@ class SMCStruct(SMCBase):
265
265
  df.at[i, self.STRUCT_HIGH_INDEX_COL] = structure[self.HIGH_START_COL]
266
266
  df.at[i, self.STRUCT_LOW_INDEX_COL] = structure[self.LOW_START_COL]
267
267
 
268
- def get_last_struct(self, df):
268
+ def get_latest_struct(self, df):
269
269
  """
270
270
  获取最新的结构
271
271
  """
272
272
  check_columns = [self.STRUCT_COL]
273
- if not self.check_columns(df, check_columns):
274
- data = self.build_struct(df=df)
275
- else:
276
- data = df.copy()
273
+ # if not self.check_columns(df, check_columns):
274
+ try :
275
+ self.check_columns(df, check_columns)
276
+ except ValueError as e:
277
+ df = self.build_struct(df)
278
+
279
+ data = df.copy()
277
280
 
278
281
  # 筛选有效结构且在prd范围内的数据
279
282
  last_struct = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openfund-core
3
- Version: 1.0.5
3
+ Version: 1.0.8
4
4
  Summary: Openfund-core.
5
5
  Requires-Python: >=3.9,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -0,0 +1,15 @@
1
+ core/Exchange.py,sha256=MDhV71jmWyM1IGaUI-iSfZqrUG9RNOpSWqm0jNV_GXU,23173
2
+ core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ core/main.py,sha256=E-VZzem7-0_J6EmOo9blLPokc5MRcgjqCbqAvbkPnWI,630
4
+ core/smc/SMCBase.py,sha256=epRC5bWDymx7ZMIhn_bVJRjvBHItt6BCnYASO2fhSDg,4302
5
+ core/smc/SMCFVG.py,sha256=KDyqR8dQiKYpJ25HpXeVPdxVgAxbtwc9LJ-OVrGIlZk,3009
6
+ core/smc/SMCLiquidity.py,sha256=bK5iOz0TQVd5y-xNNUmTh8pny3bWr0OVVPFunAppv1Q,7976
7
+ core/smc/SMCOrderBlock.py,sha256=lh868FUjb6RHQ0DwUeBfYymf9j-Lcv6YWJvYlJF3iUo,9918
8
+ core/smc/SMCPDArray.py,sha256=jIBo2anp9_5C9_CFSe-pbwprm14Qs__zVbsfNAu2_bE,4127
9
+ core/smc/SMCStruct.py,sha256=dW3iLKNV78pDbcpyL7SjLVUyAsc1DrO8gSCJkGbrKO4,12339
10
+ core/smc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ core/utils/OPTools.py,sha256=tJ1Jq_Caab6OWaX12xn4_g9ryf98Rm5I1zsJEEU8NIQ,1002
12
+ openfund_core-1.0.8.dist-info/METADATA,sha256=is_DnPGzyBUwQUi7ysyqCnMmu9ecRpA6uP3jB5yXN0I,1953
13
+ openfund_core-1.0.8.dist-info/WHEEL,sha256=fGIA9gx4Qxk2KDKeNJCbOEwSrmLtjWCwzBz351GyrPQ,88
14
+ openfund_core-1.0.8.dist-info/entry_points.txt,sha256=g8GUw3cyKFtcG5VWs8geU5VBLqiWr59GElqERuH8zD0,48
15
+ openfund_core-1.0.8.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.0.1
2
+ Generator: poetry-core 2.1.2
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,15 +0,0 @@
1
- core/Exchange.py,sha256=eanGV-8ZLDFxP2tV6xumo8c68yqFTUeseJA_dHMhYb0,20785
2
- core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- core/main.py,sha256=E-VZzem7-0_J6EmOo9blLPokc5MRcgjqCbqAvbkPnWI,630
4
- core/smc/SMCBase.py,sha256=epRC5bWDymx7ZMIhn_bVJRjvBHItt6BCnYASO2fhSDg,4302
5
- core/smc/SMCFVG.py,sha256=QtqlW1oooYVA7CG5ld5X0Q5twX1XCELO118IlMUhX6M,2974
6
- core/smc/SMCLiquidity.py,sha256=lZt2IQk3TWaT-nA7he57dUxPdLEWW61jRZWLAzOTat0,119
7
- core/smc/SMCOrderBlock.py,sha256=Il5JKmVER2vT6AKZLo0mD4wRqV_Op9IBK3jB1SfgTqY,9894
8
- core/smc/SMCPDArray.py,sha256=Vn_nTBLaIhrBhxe_hX3Iycn0gY0tmYd_qaqNalztfmA,2841
9
- core/smc/SMCStruct.py,sha256=FZoh_F81YvONZObbDF7jzH8F6lDgo0-17tNQwOS3V_g,12260
10
- core/smc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- core/utils/OPTools.py,sha256=tJ1Jq_Caab6OWaX12xn4_g9ryf98Rm5I1zsJEEU8NIQ,1002
12
- openfund_core-1.0.5.dist-info/METADATA,sha256=VZWu0jgtwFtrr5fqdgk3p28GZWGwoMQeNNHwFj5QHsk,1953
13
- openfund_core-1.0.5.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
14
- openfund_core-1.0.5.dist-info/entry_points.txt,sha256=g8GUw3cyKFtcG5VWs8geU5VBLqiWr59GElqERuH8zD0,48
15
- openfund_core-1.0.5.dist-info/RECORD,,