openfund-core 0.0.4__py3-none-any.whl → 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. core/Exchange.py +276 -0
  2. core/main.py +23 -0
  3. core/smc/SMCBase.py +130 -0
  4. core/smc/SMCFVG.py +86 -0
  5. core/smc/SMCLiquidity.py +7 -0
  6. core/smc/SMCOrderBlock.py +288 -0
  7. core/smc/SMCPDArray.py +77 -0
  8. core/smc/SMCStruct.py +290 -0
  9. core/smc/__init__.py +0 -0
  10. core/utils/OPTools.py +30 -0
  11. openfund_core-1.0.1.dist-info/METADATA +48 -0
  12. openfund_core-1.0.1.dist-info/RECORD +15 -0
  13. {openfund_core-0.0.4.dist-info → openfund_core-1.0.1.dist-info}/WHEEL +1 -1
  14. openfund_core-1.0.1.dist-info/entry_points.txt +3 -0
  15. openfund/core/__init__.py +0 -14
  16. openfund/core/api_tools/__init__.py +0 -16
  17. openfund/core/api_tools/binance_futures_tools.py +0 -23
  18. openfund/core/api_tools/binance_tools.py +0 -26
  19. openfund/core/api_tools/enums.py +0 -539
  20. openfund/core/base_collector.py +0 -72
  21. openfund/core/base_tool.py +0 -58
  22. openfund/core/factory.py +0 -97
  23. openfund/core/openfund_old/continuous_klines.py +0 -153
  24. openfund/core/openfund_old/depth.py +0 -92
  25. openfund/core/openfund_old/historical_trades.py +0 -123
  26. openfund/core/openfund_old/index_info.py +0 -67
  27. openfund/core/openfund_old/index_price_kline.py +0 -118
  28. openfund/core/openfund_old/klines.py +0 -95
  29. openfund/core/openfund_old/klines_qrr.py +0 -103
  30. openfund/core/openfund_old/mark_price.py +0 -121
  31. openfund/core/openfund_old/mark_price_klines.py +0 -122
  32. openfund/core/openfund_old/ticker_24hr_price_change.py +0 -99
  33. openfund/core/pyopenfund.py +0 -85
  34. openfund/core/services/um_futures_collector.py +0 -142
  35. openfund/core/sycu_exam/__init__.py +0 -1
  36. openfund/core/sycu_exam/exam.py +0 -19
  37. openfund/core/sycu_exam/random_grade_cplus.py +0 -440
  38. openfund/core/sycu_exam/random_grade_web.py +0 -404
  39. openfund/core/utils/time_tools.py +0 -25
  40. openfund_core-0.0.4.dist-info/LICENSE +0 -201
  41. openfund_core-0.0.4.dist-info/METADATA +0 -67
  42. openfund_core-0.0.4.dist-info/RECORD +0 -30
  43. {openfund/core/openfund_old → core}/__init__.py +0 -0
core/Exchange.py ADDED
@@ -0,0 +1,276 @@
1
+ import logging
2
+ import time
3
+ import ccxt
4
+ import pandas as pd
5
+
6
+
7
+ from decimal import Decimal
8
+ from core.utils.OPTools import OPTools
9
+ from ccxt.base.exchange import ConstructorArgs
10
+
11
+
12
+ class Exchange:
13
+ def __init__(self, config:ConstructorArgs, exchangeKey:str = "okx",) :
14
+ # 配置交易所
15
+ self.exchange = getattr(ccxt, exchangeKey)(config)
16
+ self.logger = logging.getLogger(__name__)
17
+
18
+
19
+
20
+ def getMarket(self, symbol:str):
21
+ # 配置交易对
22
+ self.exchange.load_markets()
23
+
24
+ return self.exchange.market(symbol)
25
+
26
+ def get_tick_size(self,symbol) -> Decimal:
27
+
28
+ market = self.getMarket(symbol)
29
+ if market and 'precision' in market and 'price' in market['precision']:
30
+ return OPTools.toDecimal(market['precision']['price'])
31
+ else:
32
+ raise ValueError(f"{symbol}: 无法从市场数据中获取价格精度")
33
+
34
+ def amount_to_precision(self,symbol, contract_size):
35
+ return self.exchange.amount_to_precision(symbol, contract_size)
36
+
37
+ def get_position_mode(self):
38
+
39
+ try:
40
+ # 假设获取账户持仓模式的 API
41
+ response = self.exchange.private_get_account_config()
42
+ data = response.get('data', [])
43
+ if data and isinstance(data, list):
44
+ # 取列表的第一个元素(假设它是一个字典),然后获取 'posMode'
45
+ position_mode = data[0].get('posMode', 'single') # 默认值为单向
46
+
47
+ return position_mode
48
+ else:
49
+
50
+ return 'single' # 返回默认值
51
+ except Exception as e:
52
+ error_message = f"Error fetching position mode: {e}"
53
+ self.logger.error(error_message)
54
+ raise Exception(error_message)
55
+
56
+ def set_leverage(self,symbol, leverage, mgnMode='isolated',posSide=None):
57
+ try:
58
+ # 设置杠杆
59
+ params = {
60
+ # 'instId': instId,
61
+ 'leverage': leverage,
62
+ 'marginMode': mgnMode
63
+ }
64
+ if posSide:
65
+ params['side'] = posSide
66
+
67
+ self.exchange.set_leverage(leverage, symbol=symbol, params=params)
68
+ self.logger.info(f"{symbol} Successfully set leverage to {leverage}x")
69
+ except Exception as e:
70
+ error_message = f"{symbol} Error setting leverage: {e}"
71
+ self.logger.error(error_message)
72
+ raise Exception(error_message)
73
+ # 获取价格精度
74
+ def get_precision_length(self,symbol) -> int:
75
+ tick_size = self.get_tick_size(symbol)
76
+ return len(f"{tick_size:.15f}".rstrip('0').split('.')[1]) if '.' in f"{tick_size:.15f}" else 0
77
+
78
+ def format_price(self, symbol, price:Decimal) -> str:
79
+ precision = self.get_precision_length(symbol)
80
+ return f"{price:.{precision}f}"
81
+
82
+ def convert_contract(self, symbol, amount, price:Decimal, direction='cost_to_contract'):
83
+ """
84
+ 进行合约与币的转换
85
+ :param symbol: 交易对符号,如 'BTC/USDT:USDT'
86
+ :param amount: 输入的数量,可以是合约数量或币的数量
87
+ :param direction: 转换方向,'amount_to_contract' 表示从数量转换为合约,'cost_to_contract' 表示从金额转换为合约
88
+ :return: 转换后的数量
89
+ """
90
+
91
+ # 获取合约规模
92
+ market_contractSize = OPTools.toDecimal(self.getMarket(symbol)['contractSize'])
93
+ amount = OPTools.toDecimal(amount)
94
+ if direction == 'amount_to_contract':
95
+ contract_size = amount / market_contractSize
96
+ elif direction == 'cost_to_contract':
97
+ contract_size = amount / price / market_contractSize
98
+ else:
99
+ raise Exception(f"{symbol}:{direction} 是无效的转换方向,请输入 'amount_to_contract' 或 'cost_to_contract'。")
100
+
101
+ return self.amount_to_precision(symbol, contract_size)
102
+
103
+
104
+ def cancel_all_orders(self, symbol):
105
+ max_retries = 3
106
+ retry_count = 0
107
+
108
+ while retry_count < max_retries:
109
+ try:
110
+ # 获取所有未完成订单
111
+ params = {
112
+ # 'instId': instId
113
+ }
114
+ open_orders = self.exchange.fetch_open_orders(symbol=symbol, params=params)
115
+
116
+ # 批量取消所有订单
117
+ if open_orders:
118
+ order_ids = [order['id'] for order in open_orders]
119
+ self.exchange.cancel_orders(order_ids, symbol, params=params)
120
+
121
+ self.logger.debug(f"{symbol}: {order_ids} 挂单取消成功.")
122
+ else:
123
+ self.logger.debug(f"{symbol}: 无挂单.")
124
+ return True
125
+
126
+ except Exception as e:
127
+ retry_count += 1
128
+ if retry_count == max_retries:
129
+ error_message = f"{symbol} 取消挂单失败(重试{retry_count}次): {str(e)}"
130
+ self.logger.error(error_message)
131
+ raise Exception(error_message)
132
+ else:
133
+ self.logger.warning(f"{symbol} 取消挂单失败,正在进行第{retry_count}次重试: {str(e)}")
134
+ time.sleep(0.1) # 重试前等待0.1秒
135
+
136
+
137
+ def place_order(self, symbol, price: Decimal, amount_usdt, side, leverage=20, order_type='limit'):
138
+ """
139
+ 下单
140
+ Args:
141
+ symbol: 交易对
142
+ price: 下单价格
143
+ amount_usdt: 下单金额
144
+ side: 下单方向
145
+ order_type: 订单类型
146
+ """
147
+ # 格式化价格
148
+ adjusted_price = self.format_price(symbol, price)
149
+
150
+ if amount_usdt > 0:
151
+ if side == 'buy':
152
+ pos_side = 'long'
153
+ else:
154
+ pos_side = 'short'
155
+ # 设置杠杆
156
+ self.set_leverage(symbol=symbol, leverage=leverage, mgnMode='isolated',posSide=pos_side)
157
+ # 20250220 SWAP类型计算合约数量
158
+ contract_size = self.convert_contract(symbol=symbol, price = OPTools.toDecimal(adjusted_price) ,amount=amount_usdt)
159
+
160
+ params = {
161
+
162
+ "tdMode": 'isolated',
163
+ "side": side,
164
+ "ordType": order_type,
165
+ "sz": contract_size,
166
+ "px": adjusted_price
167
+ }
168
+
169
+ # # 模拟盘(demo_trading)需要 posSide
170
+ # if self.is_demo_trading == 1 :
171
+ # params["posSide"] = pos_side
172
+
173
+ # self.logger.debug(f"---- Order placed params: {params}")
174
+ try:
175
+ order = {
176
+ 'symbol': symbol,
177
+ 'side': side,
178
+ 'type': 'limit',
179
+ 'amount': contract_size,
180
+ 'price': adjusted_price,
181
+ 'params': params
182
+ }
183
+ # 使用ccxt创建订单
184
+ self.logger.debug(f"Pre Order placed: {order} ")
185
+ order_result = self.exchange.create_order(
186
+ **order
187
+ # symbol=symbol,
188
+ # type='limit',
189
+ # side=side,
190
+ # amount=amount_usdt,
191
+ # price=float(adjusted_price),
192
+ # params=params
193
+ )
194
+ # self.logger.debug(f"{symbol} ++ Order placed rs : {order_result}")
195
+ except Exception as e:
196
+ error_message = f"{symbol} Failed to place order: {e}"
197
+ self.logger.error(error_message)
198
+ raise Exception(error_message)
199
+
200
+ self.logger.debug(f"--------- ++ {symbol} Order placed done! --------")
201
+
202
+ def fetch_position(self, symbol):
203
+ """_summary_
204
+
205
+ Args:
206
+ symbol (_type_): _description_
207
+
208
+ Returns:
209
+ _type_: _description_
210
+ """
211
+
212
+ max_retries = 3
213
+ retry_count = 0
214
+
215
+ while retry_count < max_retries:
216
+ try:
217
+ position = self.exchange.fetch_position(symbol=symbol)
218
+ if position and position['contracts'] > 0:
219
+ self.logger.debug(f"{symbol} 有持仓合约数: {position['contracts']}")
220
+ return position
221
+ return None
222
+ except Exception as e:
223
+ retry_count += 1
224
+ if retry_count == max_retries:
225
+ error_message = f"!!{symbol} 获取持仓失败(重试{retry_count}次): {str(e)}"
226
+ self.logger.error(error_message)
227
+ raise Exception(error_message)
228
+
229
+ self.logger.warning(f"{symbol} 检查持仓失败,正在进行第{retry_count}次重试: {str(e)}")
230
+ time.sleep(0.1) # 重试前等待0.1秒
231
+
232
+
233
+ def get_historical_klines(self, symbol, bar='15m', limit=300, after:str=None, params={}):
234
+ """
235
+ 获取历史K线数据
236
+ Args:
237
+ symbol: 交易对
238
+ bar: K线周期
239
+ limit: 数据条数
240
+ after: 之后时间,格式为 "2025-05-21 23:00:00+08:00"
241
+ """
242
+
243
+ params = {
244
+ **params,
245
+ # 'instId': instId,
246
+ }
247
+ since = None
248
+ if after:
249
+ since = self.exchange.parse8601(after)
250
+ limit = None
251
+ if since:
252
+ params['paginate'] = True
253
+
254
+ klines = self.exchange.fetch_ohlcv(symbol, timeframe=bar,since=since, limit=limit, params=params)
255
+ # if 'data' in response and len(response['data']) > 0:
256
+ if klines :
257
+ # return response['data']
258
+ return klines
259
+ else:
260
+ raise Exception(f"{symbol} : Unexpected response structure or missing candlestick data")
261
+
262
+ def get_historical_klines_df(self, symbol, bar='15m', limit=300, after:str=None, params={}) -> pd.DataFrame:
263
+ klines = self.get_historical_klines(symbol, bar=bar, limit=limit, after=after, params=params)
264
+ return self.format_klines(klines)
265
+
266
+ def format_klines(self, klines) -> pd.DataFrame:
267
+ """_summary_
268
+ 格式化K线数据
269
+ Args:
270
+ klines (_type_): _description_
271
+ """
272
+ klines_df = pd.DataFrame(klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
273
+ # 转换时间戳为日期时间
274
+ klines_df['timestamp'] = pd.to_datetime(klines_df['timestamp'], unit='ms').dt.tz_localize('UTC').dt.tz_convert('Asia/Shanghai')
275
+
276
+ return klines_df
core/main.py ADDED
@@ -0,0 +1,23 @@
1
+ import logging
2
+ from pyfiglet import Figlet
3
+
4
+ def main():
5
+
6
+ # import importlib.metadata
7
+ # package_name = __package__ or "openfund-core"
8
+ # version = importlib.metadata.version("openfund-core")
9
+
10
+ # 创建日志记录器并设置输出到屏幕
11
+ logger = logging.getLogger(__name__)
12
+ console_handler = logging.StreamHandler()
13
+ logger.addHandler(console_handler)
14
+ # # 设置日志级别为INFO
15
+ logger.setLevel(logging.INFO)
16
+
17
+ f = Figlet(font="standard") # 字体可选(如 "block", "bubble")
18
+ logger.info(f"\n{f.renderText("OpenFund Core")}")
19
+
20
+
21
+
22
+ if __name__ == "__main__":
23
+ main()
core/smc/SMCBase.py ADDED
@@ -0,0 +1,130 @@
1
+ from decimal import Decimal
2
+ import logging
3
+ import pandas as pd
4
+ import numpy as np
5
+ from core.utils.OPTools import OPTools
6
+
7
+ class SMCBase(object):
8
+ HIGH_COL = "high"
9
+ LOW_COL = "low"
10
+ CLOSE_COL = "close"
11
+ OPEN_COL = "open"
12
+ VOLUME_COL = "volume"
13
+ AMOUNT_COL = "amount"
14
+ TIMESTAMP_COL = "timestamp"
15
+ ATR_COL = "atr"
16
+
17
+ BUY_SIDE = "buy"
18
+ SELL_SIDE = "sell"
19
+
20
+
21
+ def __init__(self):
22
+ self.logger = logging.getLogger(__name__)
23
+
24
+ @staticmethod
25
+ def check_columns(df: pd.DataFrame, required_columns: list) -> bool:
26
+ """
27
+ 检查DataFrame是否包含指定的列
28
+ 参数:
29
+ df (pd.DataFrame): 要检查的DataFrame
30
+ columns (list): 要检查的列名列表
31
+ 返回:
32
+ bool: 如果DataFrame包含所有指定的列,则返回True;否则返回False
33
+ """
34
+ has_pass = all(col in df.columns for col in required_columns)
35
+ if not has_pass:
36
+ raise ValueError(f"DataFrame必须包含列: {required_columns}")
37
+ return has_pass
38
+
39
+ @staticmethod
40
+ def toDecimal(value, precision:int=None) -> Decimal:
41
+ return OPTools.toDecimal(value, precision)
42
+
43
+ @staticmethod
44
+ def get_precision_length(value) -> int:
45
+ return len(f"{value:.15f}".rstrip('0').split('.')[1]) if '.' in f"{value:.15f}" else 0
46
+
47
+ @staticmethod
48
+ def calculate_atr(df, period=14, multiplier=2):
49
+ """
50
+ 计算增强版ATR指标,等效于Pine Script中的 ta.highest(ta.atr(200),200)*2
51
+
52
+ 参数:
53
+ df: 包含OHLCV数据的DataFrame
54
+ period: ATR计算周期,默认200
55
+ multiplier: 放大倍数,默认2
56
+
57
+ 返回:
58
+ 增强版ATR序列
59
+ """
60
+ # df = data.copy()
61
+ # 计算真实波幅(TR)
62
+ high = df[SMCBase.HIGH_COL]
63
+ low = df[SMCBase.LOW_COL]
64
+ close = df[SMCBase.CLOSE_COL]
65
+
66
+ close_prev = close.shift(1)
67
+ tr = pd.DataFrame({
68
+ 'tr1': high - low,
69
+ 'tr2': abs(high - close_prev),
70
+ 'tr3': abs(low - close_prev)
71
+ }).max(axis=1)
72
+
73
+ # 计算ATR (使用简单移动平均)
74
+ atr = tr.rolling(window=period, min_periods=1).mean()
75
+
76
+ # 计算ATR的N周期最大值
77
+ max_atr = atr.rolling(window=period, min_periods=1).max()
78
+
79
+
80
+ # 应用放大倍数
81
+ enhanced_atr = max_atr * multiplier
82
+
83
+ return enhanced_atr
84
+
85
+
86
+
87
+
88
+ def calculate_atr_with_smoothing(df, length=14, smoothing='RMA'):
89
+ """
90
+ 计算ATR (Average True Range) 指标
91
+
92
+ 参数:
93
+ df (pd.DataFrame): 包含OHLCV数据的DataFrame,需包含列:['high', 'low', 'close']
94
+ length (int): 计算周期,默认为14
95
+ smoothing (str): 平滑方法,支持 'RMA', 'SMA', 'EMA', 'WMA',默认为 'RMA'
96
+
97
+ 返回:
98
+ pd.Series: ATR值序列
99
+ """
100
+ # 确保数据包含所需的列
101
+ required_columns = [SMCBase.HIGH_COL, SMCBase.LOW_COL, SMCBase.CLOSE_COL]
102
+ SMCBase.check_columns(df, required_columns)
103
+
104
+ # 计算真实波幅 (TR)
105
+ high_low = df[SMCBase.HIGH_COL] - df[SMCBase.LOW_COL]
106
+ high_close = (df[SMCBase.HIGH_COL] - df[SMCBase.CLOSE_COL].shift()).abs()
107
+ low_close = (df[SMCBase.LOW_COL] - df[SMCBase.CLOSE_COL].shift()).abs()
108
+
109
+ # 计算TR列,取三个值中的最大值
110
+ tr = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)
111
+
112
+ # Apply smoothing
113
+ if smoothing == 'RMA':
114
+ # RMA is approximately an EMA with alpha = 1/length
115
+ atr = tr.ewm(alpha=1/length, adjust=False).mean()
116
+ elif smoothing == 'SMA':
117
+ atr = tr.rolling(window=length).mean()
118
+ elif smoothing == 'EMA':
119
+ atr = tr.ewm(span=length, adjust=False).mean()
120
+ elif smoothing == 'WMA':
121
+ # WMA implementation
122
+ weights = pd.Series(range(1, length+1))
123
+ def wma(series):
124
+ return (series * weights).sum() / weights.sum()
125
+ atr = tr.rolling(window=length).apply(wma)
126
+ else:
127
+ raise ValueError("Invalid smoothing method. Use 'RMA', 'SMA', 'EMA', or 'WMA'")
128
+
129
+ return atr
130
+
core/smc/SMCFVG.py ADDED
@@ -0,0 +1,86 @@
1
+ import logging
2
+ import pandas as pd
3
+
4
+ from core.smc.SMCStruct import SMCStruct
5
+
6
+
7
+ class SMCFVG(SMCStruct):
8
+ FVG_TOP = "fvg_top"
9
+ FVG_BOT = "fvg_bot"
10
+ FVG_MID = "fvg_mid"
11
+ FVG_SIDE = "fvg_side"
12
+ FVG_WAS_BALANCED = "fvg_was_balanced"
13
+
14
+ def __init__(self):
15
+ super().__init__()
16
+ self.logger = logging.getLogger(__name__)
17
+
18
+ def find_FVGs(
19
+ self, struct: pd.DataFrame, side, check_balanced=True, start_index=-1
20
+ ) -> pd.DataFrame:
21
+ """_summary_
22
+ 寻找公允价值缺口
23
+ Args:
24
+ data (pd.DataFrame): K线数据
25
+ side (_type_): 交易方向 'buy'|'sell'
26
+ threshold (_type_): 阈值价格,通常为溢价和折价区的CE
27
+ check_balanced (bool): 是否检查FVG是否被平衡过,默认为True
28
+ start_index (int): 开始查找索引的起点,默认为-1
29
+
30
+ Returns:
31
+ pd.DataFrame: _description_
32
+
33
+ """
34
+ # bug2.2.5_1,未到折价区,计算FVG需要前一根K线
35
+ # df = data.copy().iloc[pivot_index:]
36
+ df = (
37
+ struct.copy()
38
+ if start_index == -1
39
+ else struct.copy().iloc[max(0, start_index - 1) :]
40
+ )
41
+
42
+ # 检查数据中是否包含必要的列
43
+ check_columns = [self.HIGH_COL, self.LOW_COL]
44
+ self.check_columns(df, check_columns)
45
+
46
+ # 处理公允价值缺口
47
+ # 使用向量化操作替代apply,提高性能
48
+ if side == self.BUY_SIDE:
49
+ condition = df[self.HIGH_COL].shift(1) < df[self.LOW_COL].shift(-1)
50
+ side_value = "Bullish"
51
+ price_top = df[self.LOW_COL].shift(-1)
52
+ price_bot = df[self.HIGH_COL].shift(1)
53
+ else:
54
+ condition = df[self.LOW_COL].shift(1) > df[self.HIGH_COL].shift(-1)
55
+ side_value = "Bearish"
56
+ price_top = df[self.LOW_COL].shift(1)
57
+ price_bot = df[self.HIGH_COL].shift(-1)
58
+
59
+ df.loc[:, self.FVG_SIDE] = pd.Series(
60
+ [side_value if x else None for x in condition], index=df.index
61
+ )
62
+ df.loc[:, self.FVG_TOP] = price_top.where(condition, 0)
63
+ df.loc[:, self.FVG_BOT] = price_bot.where(condition, 0)
64
+ df.loc[:, self.FVG_MID] = (df[self.FVG_TOP] + df[self.FVG_BOT]) / 2
65
+
66
+ fvg_df = df[
67
+ df[self.FVG_SIDE] == "Bullish"
68
+ if side == self.BUY_SIDE
69
+ else df[self.FVG_SIDE] == "Bearish"
70
+ ]
71
+ fvg_df = fvg_df.copy()
72
+ if check_balanced:
73
+ # 检查FVG是否被平衡过
74
+ fvg_df.loc[:, self.FVG_WAS_BALANCED] = fvg_df.apply(
75
+ lambda row: any(df.loc[row.name + 2 :, self.LOW_COL] <= row[self.FVG_BOT])
76
+ if side == self.BUY_SIDE
77
+ else any(
78
+ df.loc[row.name + 2 :, self.HIGH_COL] >= row[self.FVG_TOP]
79
+ ),
80
+ axis=1,
81
+ )
82
+
83
+ fvg_df = fvg_df[~fvg_df[self.FVG_WAS_BALANCED]]
84
+
85
+ return fvg_df
86
+
@@ -0,0 +1,7 @@
1
+ import logging
2
+
3
+ class SMCLiquidity:
4
+ def __init__(self):
5
+ self.logger = logging.getLogger(__name__)
6
+
7
+