openforis-whisp 2.0.0a4__py3-none-any.whl → 2.0.0a6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openforis_whisp/utils.py CHANGED
@@ -1,154 +1,154 @@
1
- import base64
2
- import ee
3
- import math
4
- import os
5
- import pandas as pd
6
-
7
- import importlib.resources as pkg_resources
8
-
9
- from dotenv import load_dotenv
10
- from pathlib import Path
11
-
12
- from .logger import StdoutLogger
13
-
14
-
15
- logger = StdoutLogger(__name__)
16
-
17
-
18
- def get_example_data_path(filename):
19
- """
20
- Get the path to an example data file included in the package.
21
-
22
- Parameters:
23
- -----------
24
- filename : str
25
- The name of the example data file.
26
-
27
- Returns:
28
- --------
29
- str
30
- The path to the example data file.
31
- """
32
- return os.path.join("..", "tests", "fixtures", filename)
33
-
34
-
35
- def load_env_vars() -> None:
36
- """Loads the environment variables required for testing the codebase.
37
-
38
- Returns
39
- -------
40
- out : None
41
- """
42
-
43
- all_dotenv_paths = [Path(__file__).parents[2] / ".env", Path.cwd() / ".env"]
44
- dotenv_loaded = False
45
-
46
- for dotenv_path in all_dotenv_paths:
47
- logger.logger.debug(f"dotenv_path: {dotenv_path}")
48
- if dotenv_path.exists():
49
- dotenv_loaded = load_dotenv(dotenv_path)
50
- break
51
-
52
- if not dotenv_loaded:
53
- raise DotEnvNotFoundError
54
- logger.logger.info(f"Loaded evironment variables from '{dotenv_path}'")
55
-
56
-
57
- def init_ee() -> None:
58
- """Initialize earth engine according to the environment"""
59
-
60
- # only do the initialization if the credential are missing
61
- if not ee.data._credentials:
62
-
63
- # if in test env use the private key
64
- if "EE_PRIVATE_KEY" in os.environ:
65
-
66
- # key need to be decoded in a file
67
- content = base64.b64decode(os.environ["EE_PRIVATE_KEY"]).decode()
68
- with open("ee_private_key.json", "w") as f:
69
- f.write(content)
70
-
71
- # connection to the service account
72
- service_account = "test-sepal-ui@sepal-ui.iam.gserviceaccount.com"
73
- credentials = ee.ServiceAccountCredentials(
74
- service_account, "ee_private_key.json"
75
- )
76
- ee.Initialize(credentials)
77
- logger.logger.info(f"Used env var")
78
-
79
- # if in local env use the local user credential
80
- else:
81
- try:
82
- load_env_vars()
83
- logger.logger.info("Called 'ee.Initialize()'.")
84
- ee.Initialize(project=os.environ["PROJECT"])
85
- except ee.ee_exception.EEException:
86
- logger.logger.info("Called 'ee.Authenticate()'.")
87
- ee.Authenticate()
88
- ee.Initialize(project=os.environ["PROJECT"])
89
-
90
-
91
- def clear_ee_credentials():
92
-
93
- path_to_creds = Path().home() / ".config" / "earthengine" / "credentials"
94
- if not path_to_creds.exists():
95
- logger.logger.error(
96
- f"GEE credentials file '{path_to_creds}' not found, could not de-authenticate."
97
- )
98
- else:
99
- path_to_creds.unlink()
100
- logger.logger.warning(f"GEE credentials file deleted.")
101
-
102
-
103
- def remove_geometry_from_feature_collection(feature_collection):
104
- """Define the function to remove geometry from features in a feature collection"""
105
- # Function to remove geometry from features
106
- def remove_geometry(feature):
107
- # Remove the geometry property
108
- feature = feature.setGeometry(None)
109
- return feature
110
-
111
- # Apply the function to remove geometry to the feature collection
112
- feature_collection_no_geometry = feature_collection.map(remove_geometry)
113
- return feature_collection_no_geometry
114
-
115
-
116
- # Compute centroids of each polygon
117
- def get_centroid(feature, geo_id_column="Geo_id"):
118
- keepProperties = [geo_id_column]
119
- # Get the centroid of the feature's geometry.
120
- centroid = feature.geometry().centroid(1)
121
- # Return a new Feature, copying properties from the old Feature.
122
- return ee.Feature(centroid).copyProperties(feature, keepProperties)
123
-
124
-
125
- def buffer_point_to_required_area(feature, area, area_unit):
126
- """buffers feature to get a given area (needs math library); area unit in 'ha' or 'km2' (the default)"""
127
- area = feature.get("REP_AREA")
128
-
129
- # buffer_size = get_radius_m_to_buffer_for_given_area(area,"km2")# should work but untested in this function
130
-
131
- buffer_size = (
132
- (ee.Number(feature.get("REP_AREA")).divide(math.pi)).sqrt().multiply(1000)
133
- ) # calculating radius in metres from REP_AREA in km2
134
-
135
- return ee.Feature(feature).buffer(buffer_size, 1)
136
- ### buffering (incl., max error parameter should be 0m. But put as 1m anyhow - doesn't seem to make too much of a difference for speed)
137
-
138
-
139
- def get_radius_m_to_buffer_to_required_area(area, area_unit="km2"):
140
- """gets radius in metres to buffer to get an area (needs math library); area unit ha or km2 (the default)"""
141
- if area_unit == "km2":
142
- unit_fix_factor = 1000
143
- elif area_unit == "ha":
144
- unit_fix_factor = 100
145
- radius = ee.Number(area).divide(math.pi).sqrt().multiply(unit_fix_factor)
146
- return radius
147
-
148
-
149
- class DotEnvNotFoundError(FileNotFoundError):
150
- def __init__(self) -> None:
151
- super().__init__(
152
- "Running tests requires setting an appropriate '.env' in the root directory or in your current working "
153
- "directory. You may copy and edit the '.env.template' file from the root directory or from the README.",
154
- )
1
+ import base64
2
+ import ee
3
+ import math
4
+ import os
5
+ import pandas as pd
6
+
7
+ import importlib.resources as pkg_resources
8
+
9
+ from dotenv import load_dotenv
10
+ from pathlib import Path
11
+
12
+ from .logger import StdoutLogger
13
+
14
+
15
+ logger = StdoutLogger(__name__)
16
+
17
+
18
+ def get_example_data_path(filename):
19
+ """
20
+ Get the path to an example data file included in the package.
21
+
22
+ Parameters:
23
+ -----------
24
+ filename : str
25
+ The name of the example data file.
26
+
27
+ Returns:
28
+ --------
29
+ str
30
+ The path to the example data file.
31
+ """
32
+ return os.path.join("..", "tests", "fixtures", filename)
33
+
34
+
35
+ def load_env_vars() -> None:
36
+ """Loads the environment variables required for testing the codebase.
37
+
38
+ Returns
39
+ -------
40
+ out : None
41
+ """
42
+
43
+ all_dotenv_paths = [Path(__file__).parents[2] / ".env", Path.cwd() / ".env"]
44
+ dotenv_loaded = False
45
+
46
+ for dotenv_path in all_dotenv_paths:
47
+ logger.logger.debug(f"dotenv_path: {dotenv_path}")
48
+ if dotenv_path.exists():
49
+ dotenv_loaded = load_dotenv(dotenv_path)
50
+ break
51
+
52
+ if not dotenv_loaded:
53
+ raise DotEnvNotFoundError
54
+ logger.logger.info(f"Loaded evironment variables from '{dotenv_path}'")
55
+
56
+
57
+ def init_ee() -> None:
58
+ """Initialize earth engine according to the environment"""
59
+
60
+ # only do the initialization if the credential are missing
61
+ if not ee.data._credentials:
62
+
63
+ # if in test env use the private key
64
+ if "EE_PRIVATE_KEY" in os.environ:
65
+
66
+ # key need to be decoded in a file
67
+ content = base64.b64decode(os.environ["EE_PRIVATE_KEY"]).decode()
68
+ with open("ee_private_key.json", "w") as f:
69
+ f.write(content)
70
+
71
+ # connection to the service account
72
+ service_account = "test-sepal-ui@sepal-ui.iam.gserviceaccount.com"
73
+ credentials = ee.ServiceAccountCredentials(
74
+ service_account, "ee_private_key.json"
75
+ )
76
+ ee.Initialize(credentials)
77
+ logger.logger.info(f"Used env var")
78
+
79
+ # if in local env use the local user credential
80
+ else:
81
+ try:
82
+ load_env_vars()
83
+ logger.logger.info("Called 'ee.Initialize()'.")
84
+ ee.Initialize(project=os.environ["PROJECT"])
85
+ except ee.ee_exception.EEException:
86
+ logger.logger.info("Called 'ee.Authenticate()'.")
87
+ ee.Authenticate()
88
+ ee.Initialize(project=os.environ["PROJECT"])
89
+
90
+
91
+ def clear_ee_credentials():
92
+
93
+ path_to_creds = Path().home() / ".config" / "earthengine" / "credentials"
94
+ if not path_to_creds.exists():
95
+ logger.logger.error(
96
+ f"GEE credentials file '{path_to_creds}' not found, could not de-authenticate."
97
+ )
98
+ else:
99
+ path_to_creds.unlink()
100
+ logger.logger.warning(f"GEE credentials file deleted.")
101
+
102
+
103
+ def remove_geometry_from_feature_collection(feature_collection):
104
+ """Define the function to remove geometry from features in a feature collection"""
105
+ # Function to remove geometry from features
106
+ def remove_geometry(feature):
107
+ # Remove the geometry property
108
+ feature = feature.setGeometry(None)
109
+ return feature
110
+
111
+ # Apply the function to remove geometry to the feature collection
112
+ feature_collection_no_geometry = feature_collection.map(remove_geometry)
113
+ return feature_collection_no_geometry
114
+
115
+
116
+ # Compute centroids of each polygon including the external_id_column
117
+ def get_centroid(feature, external_id_column="external_id"):
118
+ keepProperties = [external_id_column]
119
+ # Get the centroid of the feature's geometry.
120
+ centroid = feature.geometry().centroid(1)
121
+ # Return a new Feature, copying properties from the old Feature.
122
+ return ee.Feature(centroid).copyProperties(feature, keepProperties)
123
+
124
+
125
+ def buffer_point_to_required_area(feature, area, area_unit):
126
+ """buffers feature to get a given area (needs math library); area unit in 'ha' or 'km2' (the default)"""
127
+ area = feature.get("REP_AREA")
128
+
129
+ # buffer_size = get_radius_m_to_buffer_for_given_area(area,"km2")# should work but untested in this function
130
+
131
+ buffer_size = (
132
+ (ee.Number(feature.get("REP_AREA")).divide(math.pi)).sqrt().multiply(1000)
133
+ ) # calculating radius in metres from REP_AREA in km2
134
+
135
+ return ee.Feature(feature).buffer(buffer_size, 1)
136
+ ### buffering (incl., max error parameter should be 0m. But put as 1m anyhow - doesn't seem to make too much of a difference for speed)
137
+
138
+
139
+ def get_radius_m_to_buffer_to_required_area(area, area_unit="km2"):
140
+ """gets radius in metres to buffer to get an area (needs math library); area unit ha or km2 (the default)"""
141
+ if area_unit == "km2":
142
+ unit_fix_factor = 1000
143
+ elif area_unit == "ha":
144
+ unit_fix_factor = 100
145
+ radius = ee.Number(area).divide(math.pi).sqrt().multiply(unit_fix_factor)
146
+ return radius
147
+
148
+
149
+ class DotEnvNotFoundError(FileNotFoundError):
150
+ def __init__(self) -> None:
151
+ super().__init__(
152
+ "Running tests requires setting an appropriate '.env' in the root directory or in your current working "
153
+ "directory. You may copy and edit the '.env.template' file from the root directory or from the README.",
154
+ )
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2023 lecrabe
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
1
+ MIT License
2
+
3
+ Copyright (c) 2023 lecrabe
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openforis-whisp
3
- Version: 2.0.0a4
3
+ Version: 2.0.0a6
4
4
  Summary: Whisp (What is in that plot) is an open-source solution which helps to produce relevant forest monitoring information and support compliance with deforestation-related regulations.
5
5
  License: MIT
6
6
  Keywords: whisp,geospatial,data-processing
@@ -77,8 +77,6 @@ Description-Content-Type: text/markdown
77
77
 
78
78
 
79
79
  ## Whisp datasets <a name="whisp_datasets"></a>
80
- All output columns from Whisp are described in [this excel file](https://github.com/forestdatapartnership/whisp/blob/main/whisp_columns.xlsx)
81
-
82
80
  ***Whisp*** implements the convergence of evidence approach by providing a transparent and public processing flow using datasets covering the following categories:
83
81
 
84
82
  1) Tree and forest cover (at the end of 2020);
@@ -86,27 +84,39 @@ Description-Content-Type: text/markdown
86
84
  3) Disturbances **before 2020** (i.e., degradation or deforestation until 2020-12-31);
87
85
  4) Disturbances **after 2020** (i.e., degradation or deforestation from 2021-01-01 onward).
88
86
 
87
+ Additional categories are specific for the timber commodity, considering a harvesting date in 2023:
88
+
89
+ 5) Primary forests in 2020;
90
+ 6) Naturally regenerating forests in 2020;
91
+ 7) Planted and plantation forests in 2020;
92
+ 8) Planted and plantation forests in 2023;
93
+ 9) Treecover in 2023;
94
+ 10) Commodities or croplands in 2023.
95
+ 11) Logging concessions;
96
+
89
97
  There are multiple datasets for each category. Find the full current [list of datasets used in Whisp here](https://github.com/forestdatapartnership/whisp/blob/main/layers_description.md).
90
- Whisp checks the plots provided by the user by running zonal statistics on them to answer the following questions:
98
+
99
+ ### Whisp risk assessment <a name="whisp_risk"></a>
100
+
101
+ Whisp checks the plots provided by the user by running zonal statistics on them to answer the following questions:
91
102
 
92
103
  1) Was there tree cover in 2020?
93
104
  2) Were there commodity plantations or other agricultural uses in 2020?
94
105
  3) Were there disturbances until 2020-12-31?
95
106
  4) Were there disturbances after 2020-12-31 / starting 2021-01-01?
96
107
 
97
- If no treecover dataset indicates any tree cover for a plot by the end of 2020, **Whisp will categorize the deforestation risk as low.**
98
-
99
- If one or more treecover datasets indicate tree cover on a plot by the end of 2020, but a commodity dataset indicates agricultural use by the end of 2020, **Whisp will categorize the deforestation risk as low.**
100
-
101
- If treecover datasets indicate tree cover on a plot by late 2020, no commodity datasets indicate agricultural use, but a disturbance dataset indicates disturbances before the end of 2020, **Whisp will categorize the deforestation risk as <u>low</u>.** Such deforestation has happened before 2020, which aligns with the cutoff date for legislation such as EUDR, and is therefore not considered high risk.
102
-
103
- Now, if the datasets under 1., 2. & 3. indicate that there was tree cover, but no agriculture and no disturbances before or by the end of 2020, the Whisp algorithm checks whether degradation or deforestation have been reported in a disturbance dataset after 2020-12-31. If they have, **Whisp will categorize the deforestation risk as <u>high</u>.** <br>
104
- However, under the same circumstances but with <u>no</u> disturbances reported after 2020-12-31 there is insufficient evidence and the **Whisp output will be "More info needed".** Such can be the case for, e.g., cocoa or coffee grown under the shade of treecover or agroforestry.
108
+ And specifically for the timber commodity, considering a harvesting date in 2023:
105
109
 
110
+ 5) Were there primary forests in 2020?
111
+ 6) Were there naturally regenerating forests in 2020?
112
+ 7) Were there planted and plantation forests in 2020?
113
+ 8) Were there planted and plantation forests in 2023?
114
+ 9) Was there treecover in 2023?
115
+ 10) Were there commodity plantations or other agricultural uses in 2023?
116
+ 11) Is it part of a logging concession?
106
117
 
107
- *The Whisp algorithm for **Perennial Crops** visualized:*
108
- ![CoE_Graphic 5](https://github.com/user-attachments/assets/007b5f50-3939-4707-95fa-98be4d56745f)
109
118
  The Whisp algorithm outputs multiple statistical columns with disaggregated data from the input datasets, followed by aggregated indicator columns, and the final risk assessment columns.
119
+ All output columns from Whisp are described in [this excel file](https://github.com/forestdatapartnership/whisp/blob/main/whisp_columns.xlsx)
110
120
 
111
121
  The **relevant risk assessment column depends on the commodity** in question:
112
122
 
@@ -141,47 +151,28 @@ The **relevant risk assessment column depends on the commodity** in question:
141
151
  </tr>
142
152
  </table>
143
153
 
144
- The decision tree for the timber risk assessment slightly differs from the above. For more information see below.
145
-
146
-
154
+ *The Whisp algorithm for **Perennial Crops** visualized:*
155
+ ![CoE_Graphic 5](https://github.com/user-attachments/assets/007b5f50-3939-4707-95fa-98be4d56745f)
156
+
157
+ If no treecover dataset indicates any tree cover for a plot by the end of 2020, **Whisp will categorize the deforestation risk as low.**
147
158
 
159
+ If one or more treecover datasets indicate tree cover on a plot by the end of 2020, but a commodity dataset indicates agricultural use by the end of 2020, **Whisp will categorize the deforestation risk as low.**
148
160
 
149
- ## Whisp datasets for timber <a name="whisp_datasets_timber"></a>
150
- ***Whisp*** implements the convergence of evidence approach by providing a transparent and public processing flow using datasets covering the following categories:
151
- 1) Tree and forest cover (at the end of 2020);
152
- 2) Commodities (i.e., crop plantations and other agricultural uses at the end of 2020);
153
- 3) Disturbances **before 2020** (i.e., degradation or deforestation until 2020-12-31);
154
- 4) Disturbances **after 2020** (i.e., degradation or deforestation from 2021-01-01 onward).
155
- 5) Primary forests in 2020;
156
- 6) Naturally regenerating forests in 2020;
157
- 7) Planted and plantation forests in 2020;
158
- 8) Planted and plantation forests in 2023;
159
- 9) Treecover in 2023;
160
- 10) Commodities or croplands in 2023.
161
- 11) Logging concessions;
161
+ If treecover datasets indicate tree cover on a plot by late 2020, no commodity datasets indicate agricultural use, but a disturbance dataset indicates disturbances before the end of 2020, **Whisp will categorize the deforestation risk as <u>low</u>.** Such deforestation has happened before 2020, which aligns with the cutoff date for legislation such as EUDR, and is therefore not considered high risk.
162
162
 
163
- There are multiple datasets for each category. Find the full current [list of datasets used in Whisp here](https://github.com/forestdatapartnership/whisp/blob/main/layers_description.md).
164
- Whisp checks the plots provided by the user by running zonal statistics on them to answer the following questions:
163
+ Now, if the datasets under 1., 2. & 3. indicate that there was tree cover, but no agriculture and no disturbances before or by the end of 2020, the Whisp algorithm checks whether degradation or deforestation have been reported in a disturbance dataset after 2020-12-31. If they have, **Whisp will categorize the deforestation risk as <u>high</u>.** <br>
164
+ However, under the same circumstances but with <u>no</u> disturbances reported after 2020-12-31 there is insufficient evidence and the **Whisp output will be "More info needed".** Such can be the case for, e.g., cocoa or coffee grown under the shade of treecover or agroforestry.
165
165
 
166
- 1) Was there tree cover in 2020?
167
- 2) Were there commodity plantations or other agricultural uses in 2020?
168
- 3) Were there disturbances until 2020-12-31?
169
- 4) Were there disturbances after 2020-12-31 / starting 2021-01-01?
170
- 5) Were there primary forests in 2020?
171
- 6) Were there naturally regenerating forests in 2020?
172
- 7) Were there planted and plantation forests in 2020?
173
- 8) Were there planted and plantation forests in 2023?
174
- 9) Was there treecover in 2023?
175
- 10) Were there commodity plantations or other agricultural uses in 2023?
176
- 11) Were there logging concessions?
177
166
 
178
- # Run Whisp python package from a notebook <a name="whisp_notebooks"></a>
167
+ ## Run Whisp python package from a notebook <a name="whisp_notebooks"></a>
179
168
 
180
169
  For most users we suggest using the Whisp App to process their plot data. But for some, using the python package directly will fit their workflow.
181
170
 
182
171
  A simple example of the package functionality can be seen in this [Colab Notebook](https://github.com/forestdatapartnership/whisp/blob/main/notebooks/Colab_whisp_geojson_to_csv.ipynb)
183
172
 
184
- ## Requirements for running the package
173
+ For an example notebook adapted for running locally (or in Sepal), see: [whisp_geojson_to_csv.ipynb](https://github.com/forestdatapartnership/whisp/blob/main/notebooks/whisp_geojson_to_csv.ipynb) or if datasets are very large, see [whisp_geojson_to_drive.ipynb](https://github.com/forestdatapartnership/whisp/blob/main/notebooks/whisp_geojson_to_drive.ipynb)
174
+
175
+ ### Requirements for running the package
185
176
 
186
177
  - A Google Earth Engine (GEE) account.
187
178
  - A registered cloud GEE project.
@@ -190,7 +181,7 @@ The **relevant risk assessment column depends on the commodity** in question:
190
181
  More info on Whisp can be found in [here](https://openknowledge.fao.org/items/e9284dc7-4b19-4f9c-b3e1-e6c142585865)
191
182
 
192
183
 
193
- ## Python package installation
184
+ ### Python package installation
194
185
 
195
186
  The Whisp package is available on pip
196
187
  https://pypi.org/project/openforis-whisp/
@@ -0,0 +1,17 @@
1
+ openforis_whisp/__init__.py,sha256=OOCc-TFeVPAdYb06jMNzHqpeLBhoaWKOvzhAe2QaeLE,2328
2
+ openforis_whisp/data_conversion.py,sha256=u4lJ39B22H2KBKDFEd-lgwH_IRW2MTldaOxFQjmDGA0,16416
3
+ openforis_whisp/datasets.py,sha256=aDwoPmO_MViiGjyqmn7Sp17YYxaz-_gDKEdslSCz0Zc,50629
4
+ openforis_whisp/logger.py,sha256=73Eppe-Rd8wtzUGswUNUY3jOaNrNHy0N7qJ1TxgLSKk,2233
5
+ openforis_whisp/parameters/__init__.py,sha256=1ThsS9HYwZJzBR_3_BWU2UkyVtzN9u4CgdnmuClt4ug,334
6
+ openforis_whisp/parameters/config_runtime.py,sha256=wm1dC9cuDkrNPBMMoncK2a4TKcwd8Jw47HY_zsUuk_0,1377
7
+ openforis_whisp/parameters/lookup_context_and_metadata.csv,sha256=_UQ8u7WOJH1ZHOGUVUNirfj-XdyALuLk_ele1ANSvZk,1285
8
+ openforis_whisp/parameters/lookup_gee_datasets.csv,sha256=5K1LQyuvwvG1vOdlyCknv_foDtRUKHPU3VvOU_zsoWQ,17626
9
+ openforis_whisp/pd_schemas.py,sha256=lTv7fbwwG9bGOi6M4-tsJ3xm_HpiWJW-fhrZ0ELUF2c,2604
10
+ openforis_whisp/reformat.py,sha256=ckSO8N_2GySe7X_Pot72N88wz2Y0RFIB774asWY69lc,17427
11
+ openforis_whisp/risk.py,sha256=DKfFN4RrqSkVDbDFcEEWjlFIiDfNO-XACSzxxI1MNNI,31182
12
+ openforis_whisp/stats.py,sha256=oNLr6yU5M-BY61L6NIcDUy93t1VwUTLEgnh8T6YyweA,39748
13
+ openforis_whisp/utils.py,sha256=jWfq12wiVxcnlPPAtfDy0scHwYwSNKANoY2rRsDYx88,5224
14
+ openforis_whisp-2.0.0a6.dist-info/LICENSE,sha256=RmwgaoqiMSysLXZaB9GP-f106r1F1OiC7dLKxjrfh20,1064
15
+ openforis_whisp-2.0.0a6.dist-info/METADATA,sha256=AbMJGBkxVId1lSEWTFRfRDoaieBqwLR_sR2sxTVPCVk,16681
16
+ openforis_whisp-2.0.0a6.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
17
+ openforis_whisp-2.0.0a6.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.1.1
2
+ Generator: poetry-core 2.1.3
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,17 +0,0 @@
1
- openforis_whisp/__init__.py,sha256=xfXNzskPfnlQkmf3QZHEydhte3U9_uLdoYM04eowNqw,2403
2
- openforis_whisp/data_conversion.py,sha256=Ean2SBxhGr1YwzhbrHQD9kDdRYdNTJZLBiAmYZtBIM8,11812
3
- openforis_whisp/datasets.py,sha256=IXKvUe0R06Ha0K7ITYlRoOwSTEvE08qmRfx64HpbtX4,51915
4
- openforis_whisp/logger.py,sha256=n9k0EhAZYZKesnfskv8KyWnkGbjqRqk84ulx9-u_Jsc,2308
5
- openforis_whisp/parameters/__init__.py,sha256=KL7iORJVjSpZatYjoyWckcmQJnE89_DBC8R6_0_eR6o,349
6
- openforis_whisp/parameters/config_runtime.py,sha256=aH00CFV09f7JQnZQzpCFR5BIlvsovVfM4K_KUjMl0N8,1416
7
- openforis_whisp/parameters/lookup_context_and_metadata.csv,sha256=54uZ4oqfsiHgj2I39pAcsCr4SeSUqgIRboDhlxIAdik,1293
8
- openforis_whisp/parameters/lookup_gee_datasets.csv,sha256=3YRG-ZvMAeekGTSvrDMyDnioOZUvy_iMbEaZcLhVPw0,17622
9
- openforis_whisp/pd_schemas.py,sha256=W_ocS773LHfc05dJqvWRa-bRdX0wKFoNp0lMxgFx94Y,2681
10
- openforis_whisp/reformat.py,sha256=o3TpeuddR1UlP1C3uFeI957kIZYMQqEW1pXsjKbAtiY,17922
11
- openforis_whisp/risk.py,sha256=E9yZJ2wCinYrOydKK7EB0O5Imk5quG9Cs1uNkcv8AlM,31531
12
- openforis_whisp/stats.py,sha256=yAa6j3RpkPIjAM06IKQ7XGaFrwXhxfzIXn37aTOEwP4,33562
13
- openforis_whisp/utils.py,sha256=hpeY9aA3BND2m9c15PZ6_nClemsfiVNUEzA4pQXfztA,5330
14
- openforis_whisp-2.0.0a4.dist-info/LICENSE,sha256=nqyqICO95iw_iwzP1t_IIAf7ZX3DPbL_M9WyQfh2q1k,1085
15
- openforis_whisp-2.0.0a4.dist-info/METADATA,sha256=Xd8wihc9vGDwt5CLXtVTWy2urFSeWFGY_D2MlhCL8-c,17278
16
- openforis_whisp-2.0.0a4.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
17
- openforis_whisp-2.0.0a4.dist-info/RECORD,,