openforis-whisp 1.0.0a1__py3-none-any.whl → 2.0.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openforis_whisp/__init__.py +6 -3
- openforis_whisp/data_conversion.py +36 -13
- openforis_whisp/datasets.py +743 -176
- openforis_whisp/logger.py +38 -2
- openforis_whisp/parameters/config_runtime.py +4 -7
- openforis_whisp/parameters/lookup_context_and_metadata.csv +13 -13
- openforis_whisp/parameters/lookup_gee_datasets.csv +202 -172
- openforis_whisp/reformat.py +245 -96
- openforis_whisp/risk.py +255 -102
- openforis_whisp/stats.py +271 -70
- openforis_whisp-2.0.0a1.dist-info/METADATA +381 -0
- openforis_whisp-2.0.0a1.dist-info/RECORD +17 -0
- openforis_whisp-1.0.0a1.dist-info/METADATA +0 -231
- openforis_whisp-1.0.0a1.dist-info/RECORD +0 -17
- {openforis_whisp-1.0.0a1.dist-info → openforis_whisp-2.0.0a1.dist-info}/LICENSE +0 -0
- {openforis_whisp-1.0.0a1.dist-info → openforis_whisp-2.0.0a1.dist-info}/WHEEL +0 -0
openforis_whisp/reformat.py
CHANGED
|
@@ -3,7 +3,7 @@ import pandera as pa
|
|
|
3
3
|
import pandas as pd
|
|
4
4
|
import os
|
|
5
5
|
import logging
|
|
6
|
-
|
|
6
|
+
from pathlib import Path # Add this import
|
|
7
7
|
|
|
8
8
|
from openforis_whisp.logger import StdoutLogger, FileLogger
|
|
9
9
|
|
|
@@ -24,20 +24,22 @@ cached_file_mtimes = {}
|
|
|
24
24
|
|
|
25
25
|
|
|
26
26
|
def validate_dataframe_using_lookups(
|
|
27
|
-
df_stats: pd.DataFrame, file_paths: list = None
|
|
27
|
+
df_stats: pd.DataFrame, file_paths: list = None, national_codes: list = None
|
|
28
28
|
) -> pd.DataFrame:
|
|
29
29
|
"""
|
|
30
30
|
Load the schema if any file in the list has changed and validate the DataFrame against the loaded schema.
|
|
31
|
+
Optionally filter columns by country code.
|
|
31
32
|
|
|
32
33
|
Args:
|
|
33
34
|
df_stats (pd.DataFrame): The DataFrame to validate.
|
|
34
35
|
file_paths (list): List of paths to schema files.
|
|
36
|
+
national_codes (list, optional): List of ISO2 country codes to include.
|
|
35
37
|
|
|
36
38
|
Returns:
|
|
37
39
|
pd.DataFrame: The validated DataFrame.
|
|
38
40
|
"""
|
|
39
41
|
# Load the schema
|
|
40
|
-
schema = load_schema_if_any_file_changed(file_paths)
|
|
42
|
+
schema = load_schema_if_any_file_changed(file_paths, national_codes=national_codes)
|
|
41
43
|
|
|
42
44
|
# Validate the DataFrame
|
|
43
45
|
validated_df = validate_dataframe(df_stats, schema)
|
|
@@ -45,10 +47,8 @@ def validate_dataframe_using_lookups(
|
|
|
45
47
|
return validated_df
|
|
46
48
|
|
|
47
49
|
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
"""Load schema only if any file in the list has changed."""
|
|
51
|
-
global cached_schema, cached_file_mtimes
|
|
50
|
+
def load_schema_if_any_file_changed(file_paths=None, national_codes=None):
|
|
51
|
+
"""Load schema if files changed OR if national_codes changed"""
|
|
52
52
|
|
|
53
53
|
if file_paths is None:
|
|
54
54
|
file_paths = [
|
|
@@ -56,43 +56,53 @@ def load_schema_if_any_file_changed(file_paths):
|
|
|
56
56
|
DEFAULT_CONTEXT_LOOKUP_TABLE_PATH,
|
|
57
57
|
]
|
|
58
58
|
|
|
59
|
-
#
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
# Check each file's modification time
|
|
59
|
+
# Include national_codes in cache key (including None case)
|
|
60
|
+
cache_key_parts = []
|
|
63
61
|
for file_path in file_paths:
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
file_path
|
|
69
|
-
or current_mtime != cached_file_mtimes[file_path]
|
|
70
|
-
):
|
|
71
|
-
print(f"File {file_path} changed, updating schema...")
|
|
72
|
-
schema_needs_update = True
|
|
73
|
-
cached_file_mtimes[
|
|
74
|
-
file_path
|
|
75
|
-
] = current_mtime # Update the modification time
|
|
76
|
-
|
|
77
|
-
# If any file has changed, update the schema
|
|
78
|
-
if schema_needs_update or cached_schema is None:
|
|
79
|
-
print("Creating or updating schema based on changed files...")
|
|
80
|
-
# You can combine the files as needed; here we assume one schema file
|
|
81
|
-
# If you want to handle multiple schema files differently, adjust this
|
|
82
|
-
|
|
83
|
-
# add checks on lookup inputs (i.e. a dataframe in type format: data_lookup_type)
|
|
84
|
-
combined_lookup_df: data_lookup_type = append_csvs_to_dataframe(
|
|
85
|
-
file_paths
|
|
86
|
-
) # concatonates input lookup files
|
|
87
|
-
|
|
88
|
-
cached_schema = create_schema_from_dataframe(
|
|
89
|
-
combined_lookup_df
|
|
90
|
-
) # create cached schema
|
|
62
|
+
if Path(file_path).exists():
|
|
63
|
+
mtime = Path(file_path).stat().st_mtime
|
|
64
|
+
cache_key_parts.append(f"{file_path}:{mtime}")
|
|
65
|
+
else:
|
|
66
|
+
cache_key_parts.append(f"{file_path}:missing")
|
|
91
67
|
|
|
92
|
-
|
|
93
|
-
|
|
68
|
+
# Always include national_codes in cache key (even if None)
|
|
69
|
+
national_codes_key = (
|
|
70
|
+
str(sorted(national_codes)) if national_codes else "no_countries"
|
|
71
|
+
)
|
|
72
|
+
cache_key_parts.append(f"national_codes:{national_codes_key}")
|
|
73
|
+
|
|
74
|
+
current_cache_key = "|".join(cache_key_parts)
|
|
75
|
+
|
|
76
|
+
# Check cache
|
|
77
|
+
if (
|
|
78
|
+
not hasattr(load_schema_if_any_file_changed, "_cached_schema")
|
|
79
|
+
or not hasattr(load_schema_if_any_file_changed, "_last_cache_key")
|
|
80
|
+
or load_schema_if_any_file_changed._last_cache_key != current_cache_key
|
|
81
|
+
):
|
|
82
|
+
|
|
83
|
+
print(f"Creating schema for national_codes: {national_codes}")
|
|
84
|
+
|
|
85
|
+
# Load and combine lookup files
|
|
86
|
+
combined_lookup_df = append_csvs_to_dataframe(file_paths)
|
|
87
|
+
|
|
88
|
+
# ALWAYS filter by national codes (even if None - this removes all country columns)
|
|
89
|
+
filtered_lookup_df = filter_lookup_by_country_codes(
|
|
90
|
+
lookup_df=combined_lookup_df,
|
|
91
|
+
filter_col="ISO2_code",
|
|
92
|
+
national_codes=national_codes,
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
# Create schema from filtered lookup
|
|
96
|
+
schema = create_schema_from_dataframe(filtered_lookup_df)
|
|
94
97
|
|
|
95
|
-
|
|
98
|
+
# Cache the results
|
|
99
|
+
load_schema_if_any_file_changed._cached_schema = schema
|
|
100
|
+
load_schema_if_any_file_changed._last_cache_key = current_cache_key
|
|
101
|
+
|
|
102
|
+
return schema
|
|
103
|
+
else:
|
|
104
|
+
print(f"Using cached schema for national_codes: {national_codes}")
|
|
105
|
+
return load_schema_if_any_file_changed._cached_schema
|
|
96
106
|
|
|
97
107
|
|
|
98
108
|
def validate_dataframe(
|
|
@@ -126,61 +136,6 @@ def validate_dataframe(
|
|
|
126
136
|
return validated_df
|
|
127
137
|
|
|
128
138
|
|
|
129
|
-
def load_schema_if_any_file_changed(file_paths):
|
|
130
|
-
"""Load schema only if any file in the list has changed."""
|
|
131
|
-
global cached_schema, cached_file_mtimes
|
|
132
|
-
|
|
133
|
-
if file_paths is None:
|
|
134
|
-
file_paths = [
|
|
135
|
-
DEFAULT_GEE_DATASETS_LOOKUP_TABLE_PATH,
|
|
136
|
-
DEFAULT_CONTEXT_LOOKUP_TABLE_PATH,
|
|
137
|
-
]
|
|
138
|
-
|
|
139
|
-
# Flag to indicate if any file has changed
|
|
140
|
-
schema_needs_update = False
|
|
141
|
-
|
|
142
|
-
# Check each file's modification time
|
|
143
|
-
for file_path in file_paths:
|
|
144
|
-
current_mtime = os.path.getmtime(file_path)
|
|
145
|
-
|
|
146
|
-
# If the file is new or has been modified, mark schema for update
|
|
147
|
-
if (
|
|
148
|
-
file_path not in cached_file_mtimes
|
|
149
|
-
or current_mtime != cached_file_mtimes[file_path]
|
|
150
|
-
):
|
|
151
|
-
print(f"File {file_path} changed, updating schema...")
|
|
152
|
-
schema_needs_update = True
|
|
153
|
-
cached_file_mtimes[
|
|
154
|
-
file_path
|
|
155
|
-
] = current_mtime # Update the modification time
|
|
156
|
-
|
|
157
|
-
# If any file has changed, update the schema
|
|
158
|
-
if schema_needs_update or cached_schema is None:
|
|
159
|
-
print("Creating or updating schema based on changed files...")
|
|
160
|
-
# You can combine the files as needed; here we assume one schema file
|
|
161
|
-
# If you want to handle multiple schema files differently, adjust this
|
|
162
|
-
|
|
163
|
-
# add checks on lookup inputs (i.e. a dataframe in type format: data_lookup_type)
|
|
164
|
-
combined_lookup_df: data_lookup_type = append_csvs_to_dataframe(
|
|
165
|
-
file_paths
|
|
166
|
-
) # concatonates input lookup files
|
|
167
|
-
|
|
168
|
-
cached_schema = create_schema_from_dataframe(
|
|
169
|
-
combined_lookup_df
|
|
170
|
-
) # create cached schema
|
|
171
|
-
|
|
172
|
-
else:
|
|
173
|
-
print("Using cached schema.")
|
|
174
|
-
|
|
175
|
-
return cached_schema
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
# example code to convert schema to JSON format if want to export (note pandera[io] required)
|
|
179
|
-
# cached_schema.to_yaml(output_file_path)
|
|
180
|
-
|
|
181
|
-
# loaded_schema = io.from_yaml(output_file_path)
|
|
182
|
-
|
|
183
|
-
|
|
184
139
|
def append_csvs_to_dataframe(csv_paths):
|
|
185
140
|
"""
|
|
186
141
|
Appends multiple CSV files into a single Pandas DataFrame.
|
|
@@ -344,3 +299,197 @@ def setup_logger(name):
|
|
|
344
299
|
logger.addHandler(file_handler)
|
|
345
300
|
|
|
346
301
|
return logger
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
# def filter_lookup_by_country_codes(
|
|
305
|
+
# lookup_df: pd.DataFrame, national_codes: list
|
|
306
|
+
# ) -> pd.DataFrame:
|
|
307
|
+
# """
|
|
308
|
+
# Filter lookup DataFrame to include only:
|
|
309
|
+
# 1. Global columns (prefixed with 'g_')
|
|
310
|
+
# 2. General columns (not country-specific)
|
|
311
|
+
# 3. Country-specific columns matching the provided ISO2 codes
|
|
312
|
+
|
|
313
|
+
# Args:
|
|
314
|
+
# lookup_df (pd.DataFrame): The lookup DataFrame used to create the schema
|
|
315
|
+
# national_codes (list): List of ISO2 country codes to include
|
|
316
|
+
|
|
317
|
+
# Returns:
|
|
318
|
+
# pd.DataFrame: Filtered lookup DataFrame
|
|
319
|
+
# """
|
|
320
|
+
# if not national_codes:
|
|
321
|
+
# return lookup_df
|
|
322
|
+
|
|
323
|
+
# # Normalize national_codes to lowercase for case-insensitive comparison
|
|
324
|
+
# normalized_codes = [
|
|
325
|
+
# code.lower() for code in national_codes if isinstance(code, str)
|
|
326
|
+
# ]
|
|
327
|
+
|
|
328
|
+
# # Keep track of rows to filter out
|
|
329
|
+
# rows_to_remove = []
|
|
330
|
+
|
|
331
|
+
# # Process each row in the lookup DataFrame
|
|
332
|
+
# for idx, row in lookup_df.iterrows():
|
|
333
|
+
# col_name = row["name"]
|
|
334
|
+
|
|
335
|
+
# # Skip if not a column name entry
|
|
336
|
+
# if pd.isna(col_name):
|
|
337
|
+
# continue
|
|
338
|
+
|
|
339
|
+
# # Always keep global columns (g_) and columns that aren't country-specific
|
|
340
|
+
# if col_name.startswith("g_"):
|
|
341
|
+
# continue
|
|
342
|
+
|
|
343
|
+
# # Check if this is a country-specific column (nXX_)
|
|
344
|
+
# is_country_column = False
|
|
345
|
+
# matched_country = False
|
|
346
|
+
|
|
347
|
+
# # Look for pattern nXX_ which would indicate a country-specific column
|
|
348
|
+
# for i in range(len(col_name) - 3):
|
|
349
|
+
# if (
|
|
350
|
+
# col_name[i : i + 1].lower() == "n"
|
|
351
|
+
# and len(col_name) > i + 3
|
|
352
|
+
# and col_name[i + 3 : i + 4] == "_"
|
|
353
|
+
# ):
|
|
354
|
+
# country_code = col_name[i + 1 : i + 3].lower()
|
|
355
|
+
# is_country_column = True
|
|
356
|
+
# if country_code in normalized_codes:
|
|
357
|
+
# matched_country = True
|
|
358
|
+
# break
|
|
359
|
+
|
|
360
|
+
# # If it's a country column but doesn't match our list, flag for removal
|
|
361
|
+
# if is_country_column and not matched_country:
|
|
362
|
+
# rows_to_remove.append(idx)
|
|
363
|
+
|
|
364
|
+
# # Filter out rows for countries not in our list
|
|
365
|
+
# if rows_to_remove:
|
|
366
|
+
# return lookup_df.drop(rows_to_remove)
|
|
367
|
+
|
|
368
|
+
# # return lookup_df
|
|
369
|
+
# def filter_lookup_by_country_codes(
|
|
370
|
+
# lookup_df: pd.DataFrame, national_codes: list = None
|
|
371
|
+
# ) -> pd.DataFrame:
|
|
372
|
+
# """
|
|
373
|
+
# Filter lookup DataFrame to include only:
|
|
374
|
+
# 1. Global columns (prefixed with 'g_')
|
|
375
|
+
# 2. General columns (not country-specific)
|
|
376
|
+
# 3. Country-specific columns matching the provided ISO2 codes (if national_codes provided)
|
|
377
|
+
|
|
378
|
+
# If no national_codes are provided, ALL country-specific columns are filtered out.
|
|
379
|
+
|
|
380
|
+
# Args:
|
|
381
|
+
# lookup_df (pd.DataFrame): The lookup DataFrame used to create the schema
|
|
382
|
+
# national_codes (list, optional): List of ISO2 country codes to include.
|
|
383
|
+
# If None, all country-specific columns are removed.
|
|
384
|
+
|
|
385
|
+
# Returns:
|
|
386
|
+
# pd.DataFrame: Filtered lookup DataFrame
|
|
387
|
+
# """
|
|
388
|
+
|
|
389
|
+
# # Normalize national_codes to lowercase for case-insensitive comparison
|
|
390
|
+
# if national_codes:
|
|
391
|
+
# normalized_codes = [
|
|
392
|
+
# code.lower() for code in national_codes if isinstance(code, str)
|
|
393
|
+
# ]
|
|
394
|
+
# else:
|
|
395
|
+
# normalized_codes = []
|
|
396
|
+
|
|
397
|
+
# # Keep track of rows to remove
|
|
398
|
+
# rows_to_remove = []
|
|
399
|
+
|
|
400
|
+
# # Process each row in the lookup DataFrame
|
|
401
|
+
# for idx, row in lookup_df.iterrows():
|
|
402
|
+
# col_name = row["name"]
|
|
403
|
+
|
|
404
|
+
# # Skip if not a column name entry
|
|
405
|
+
# if pd.isna(col_name):
|
|
406
|
+
# continue
|
|
407
|
+
|
|
408
|
+
# # Always keep global columns (g_) and general columns
|
|
409
|
+
# if col_name.startswith("g_"):
|
|
410
|
+
# continue
|
|
411
|
+
|
|
412
|
+
# # Check if this is a country-specific column (nXX_)
|
|
413
|
+
# is_country_column = False
|
|
414
|
+
# matched_country = False
|
|
415
|
+
|
|
416
|
+
# # Look for pattern nXX_ which indicates a country-specific column
|
|
417
|
+
# for i in range(len(col_name) - 3):
|
|
418
|
+
# if (
|
|
419
|
+
# col_name[i : i + 1].lower() == "n"
|
|
420
|
+
# and len(col_name) > i + 3
|
|
421
|
+
# and col_name[i + 3 : i + 4] == "_"
|
|
422
|
+
# ):
|
|
423
|
+
# country_code = col_name[i + 1 : i + 3].lower()
|
|
424
|
+
# is_country_column = True
|
|
425
|
+
|
|
426
|
+
# # Only match if we have national_codes AND this country is in the list
|
|
427
|
+
# if national_codes and country_code in normalized_codes:
|
|
428
|
+
# matched_country = True
|
|
429
|
+
# break
|
|
430
|
+
|
|
431
|
+
# # Remove country-specific columns that don't match our criteria:
|
|
432
|
+
# # - If no national_codes provided: remove ALL country columns
|
|
433
|
+
# # - If national_codes provided: remove country columns NOT in the list
|
|
434
|
+
# if is_country_column and not matched_country:
|
|
435
|
+
# rows_to_remove.append(idx)
|
|
436
|
+
|
|
437
|
+
# # Filter out flagged rows
|
|
438
|
+
# if rows_to_remove:
|
|
439
|
+
# print(f"Filtering out {(rows_to_remove)} country-specific row(s) not matching criteria")
|
|
440
|
+
# filtered_df = lookup_df.drop(rows_to_remove)
|
|
441
|
+
|
|
442
|
+
# # Filter out flagged rows
|
|
443
|
+
# if rows_to_remove:
|
|
444
|
+
# # Create detailed debug info
|
|
445
|
+
# removed_rows_info = []
|
|
446
|
+
# for idx in rows_to_remove:
|
|
447
|
+
# row_name = lookup_df.loc[idx, "name"]
|
|
448
|
+
# removed_rows_info.append({
|
|
449
|
+
# 'index': idx,
|
|
450
|
+
# 'name': row_name
|
|
451
|
+
# })
|
|
452
|
+
|
|
453
|
+
# # Extract just the column names for easy viewing
|
|
454
|
+
# removed_column_names = [info['name'] for info in removed_rows_info]
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
# print(f"Filtered out {len(rows_to_remove)} country-specific row(s) not matching criteria")
|
|
458
|
+
# print(f"Removed column names: {removed_column_names}")
|
|
459
|
+
# return filtered_df
|
|
460
|
+
|
|
461
|
+
# return lookup_df
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
def filter_lookup_by_country_codes(
|
|
465
|
+
lookup_df: pd.DataFrame, filter_col, national_codes: list = None
|
|
466
|
+
):
|
|
467
|
+
"""Filter by actual ISO2 column values instead of column name patterns"""
|
|
468
|
+
|
|
469
|
+
if not national_codes:
|
|
470
|
+
# Remove all rows with country codes
|
|
471
|
+
rows_with_country_codes = ~lookup_df[filter_col].isna()
|
|
472
|
+
removed_names = lookup_df[rows_with_country_codes]["name"].tolist()
|
|
473
|
+
logger.debug(
|
|
474
|
+
f"No national codes provided - removing {len(removed_names)} rows with country codes"
|
|
475
|
+
)
|
|
476
|
+
logger.debug(f"Removed column names: {removed_names}")
|
|
477
|
+
return lookup_df[lookup_df[filter_col].isna()]
|
|
478
|
+
|
|
479
|
+
logger.debug(f"Filtering for national codes: {national_codes}")
|
|
480
|
+
logger.debug(f"Total rows before filtering: {len(lookup_df)}")
|
|
481
|
+
|
|
482
|
+
# Keep rows with no country code (global) OR matching country codes
|
|
483
|
+
normalized_codes = [code.lower() for code in national_codes]
|
|
484
|
+
|
|
485
|
+
mask = lookup_df[filter_col].isna() | lookup_df[ # Global datasets
|
|
486
|
+
filter_col
|
|
487
|
+
].str.lower().isin(
|
|
488
|
+
normalized_codes
|
|
489
|
+
) # Matching countries
|
|
490
|
+
|
|
491
|
+
logger.debug(
|
|
492
|
+
f"Filtering lookup by country codes: {national_codes}, keeping {mask.sum()} rows"
|
|
493
|
+
)
|
|
494
|
+
|
|
495
|
+
return lookup_df[mask]
|