openforis-whisp 0.0.1__py3-none-any.whl → 0.1.0a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: openforis-whisp
3
- Version: 0.0.1
3
+ Version: 0.1.0a1
4
4
  Summary: Whisp (What is in that plot) is an open-source solution which helps to produce relevant forest monitoring information and support compliance with deforestation-related regulations.
5
5
  License: MIT
6
6
  Keywords: whisp,geospatial,data-processing
@@ -29,6 +29,10 @@ Requires-Dist: pydantic-core (>=2.14.0,<3.0.0)
29
29
  Requires-Dist: python-dotenv (>=1.0.1,<2.0.0)
30
30
  Requires-Dist: rsa (>=4.2,<5.0.0)
31
31
  Requires-Dist: shapely (>=2.0.2,<3.0.0)
32
+ Project-URL: Documentation, https://github.com/forestdatapartnership/whisp#readme
33
+ Project-URL: Development Branch, https://github.com/forestdatapartnership/whisp/tree/package-test-new-structure
34
+ Project-URL: Issues, https://github.com/forestdatapartnership/whisp/issues
35
+ Project-URL: Repository, https://github.com/forestdatapartnership/whisp
32
36
  Description-Content-Type: text/markdown
33
37
 
34
38
  whisp
@@ -38,7 +42,6 @@ whisp
38
42
  [![DOI](https://img.shields.io/badge/DOI-10.4060%2Fcd0957en-brightgreen.svg)](https://doi.org/10.4060/cd0957en)
39
43
 
40
44
 
41
-
42
45
  ![Whisp_OpenForis_Banner_Github](https://github.com/user-attachments/assets/84f002fe-1848-46a1-814d-3949c22728cb)
43
46
 
44
47
  ## Convergence of Evidence <a name="whisp_coe"></a>
@@ -67,13 +70,12 @@ The Forest Data Partnership promotes this approach for forest and commodities mo
67
70
  ***Whisp*** can currently be used directly or implemented in your own code through three different pathways:
68
71
 
69
72
 
70
- 1. The Whisp App with its simple interface can be used [right here](https://whisp.openforis.org/) or called from other software by [API](https://whisp.openforis.org/documentation/api-guide). The Whisp App currently supports the processing of up to 500 geometries per job. The original JS & Python code behind the Whisp App and API can be found [here](https://github.com/forestdatapartnership/whisp-app).
73
+ 1. The Whisp App with its simple interface can be used [right here](https://whisp.openforis.org/) or called from other software by [API](https://whisp.openforis.org/documentation/api-guide). The Whisp App currently supports the processing of up to 1000 geometries per job. The original JS & Python code behind the Whisp App and API can be found [here](https://github.com/forestdatapartnership/whisp-app).
71
74
 
72
75
  2. [Whisp in Earthmap](https://whisp.earthmap.org/?aoi=WHISP&boundary=plot1&layers=%7B%22CocoaETH%22%3A%7B%22opacity%22%3A1%7D%2C%22JRCForestMask%22%3A%7B%22opacity%22%3A1%7D%2C%22planet_rgb%22%3A%7B%22opacity%22%3A1%2C%22date%22%3A%222020-12%22%7D%7D&map=%7B%22center%22%3A%7B%22lat%22%3A7%2C%22lng%22%3A4%7D%2C%22zoom%22%3A3%2C%22mapType%22%3A%22satellite%22%7D&statisticsOpen=true) supports the visualization of geometries on actual maps with the possibility to toggle different relevant map products around tree cover, commodities and deforestation. It is practical for demonstration purposes and spot checks of single geometries but not recommended for larger datasets.
73
76
 
74
- 3. Datasets of any size, especially when holding more than 500 geometries, can be "whisped" through the [Jupyter Notebook](whisp_feature_collection.ipynb) in this repository. They can either be uploaded as GeoJSONs or accessed through GEE assets. For the detailed procedure please go to the section [Whisp notebooks](#whisp_notebooks).
77
+ 3. Datasets of any size, especially when holding more than 1000 geometries, can be "whisped" through the [python package on pip](https://pypi.org/project/openforis-whisp/). See example [Colab Notebook](https://github.com/forestdatapartnership/whisp/blob/package-test-new-structure/notebooks/Colab_whisp_geojson_to_csv.ipynb) for implementation with a geojson input. For the detailed procedure please go to the section [Whisp notebooks](#whisp_notebooks).
75
78
 
76
- <br>
77
79
 
78
80
  ## Whisp datasets <a name="whisp_datasets"></a>
79
81
  ***Whisp*** implements the convergence of evidence approach by providing a transparent and public processing flow using datasets covering the following categories:
@@ -108,143 +110,47 @@ However, under the same circumstances but with <u>no</u> disturbances reported a
108
110
 
109
111
  ![whisp convergence of proof](images/pol_story_agu.gif)
110
112
 
111
- # Requirements
112
-
113
- - A Google Earth Engine (GEE) account.
114
- - A registered cloud GEE project.
115
- - Some experience in Python or a similar language.
116
-
117
- # Setup
118
- Consider creating a virtual environment to keep your main python installation clean.
119
- This can be done through this command line
120
- ```
121
- python -m venv env
122
- ```
123
- More info on virtual environments here: https://docs.python.org/3/library/venv.html
124
-
125
-
126
- If installing from GitHUb
127
- Clone the Whisp repo and install the package:
128
- ```
129
- git clone https://github.com/forestdatapartnership/whisp.git
130
- cd whisp/
131
- pip install .
132
- ```
133
-
134
- Create a `.env` file with the required information for Earth Engine login (you may copy and edit the `.env.template`
135
- file found in the root directory). The file must contain the following environment variables:
136
- ```
137
- # Earth Engine project name
138
- PROJECT="my-ee-project"
139
- ```
140
- Where you must replace the GEE project name by your own.
141
-
142
- Note: this should be a registered cloud project. If unsure of this check pic here: https://developers.google.com/earth-engine/cloud/assets
143
-
144
-
145
- # Contributing
146
-
147
- Install the package in editable mode with the additional dependencies required for testing and running pre-commit hooks:
148
- ```
149
- git clone https://github.com/forestdatapartnership/whisp.git
150
- cd whisp/
151
- pip install -e .[dev]
152
- ```
153
-
154
- Setup the pre-commit hooks:
155
- ```
156
- pre-commit install
157
- ```
158
-
159
-
160
- You should be able to run the Pytest suite by simple running the `pytest` command from the repo's root folder.
161
113
 
162
- Please read the ![contributing guidelines](contributing_guidelines.md) for good practice recommendations.
114
+ ![whisp convergence of proof](images/pol_story_agu.gif)
163
115
 
116
+ ## Run Whisp package using Python Notebooks
164
117
 
165
- # whisp pathways
166
- ***whisp*** can be implemented through at least three pathways
118
+ For most users we suggest using the Whisp App to porcess their plots.
167
119
 
168
- 1. As an operationnal API in JS and Python
120
+ For bespoke analyses using or implemetation in a python workflow you can sue the python package directly.
169
121
 
170
- 2. Through mobile applications to enable smallholder in the field directly generate and own the monitoring data associated with their plots of land
122
+ See example [Colab Notebook](https://github.com/forestdatapartnership/whisp/blob/package-test-new-structure/notebooks/Colab_whisp_geojson_to_csv.ipynb)
171
123
 
172
- 3. Integrated through Graphical User Interfaces for demonstration and verification purposes
124
+ # Requirements
173
125
 
174
- 4. Python Notebook implementation.
126
+ - A Google Earth Engine (GEE) account.
127
+ - A registered cloud GEE project.
128
+ - Some experience in Python or a similar language.
175
129
 
176
130
  More info on Whisp can be found in [here](https://openknowledge.fao.org/items/e9284dc7-4b19-4f9c-b3e1-e6c142585865)
177
131
 
178
- ## How to Whisp Your Data Using the Python Notebook Pathway
179
-
180
- The Python notebooks are currently set up to run in Sepal and to focus on polygon data provided by the user or geo_ids that allow the notebooks to access polygons stored and registered in the Asset Registry. NB: We value your feedback in terms of what input data we should support.
181
-
182
- If your data is available as a feature collection and the GitHub repo is cloned, you are ready to start processing. We suggest first familiarizing yourself with running the notebooks using the default inputs in the notebook code. This will allow you to understand the expected outputs and the general functionality, as well as check if the setup worked successfully.
183
-
184
- ### Whisping a GeoJSON containing plot data
185
-
186
- 1. Open Jupyter Lab (see Apps).
187
- 2. Open the notebook `whisp_geojson.ipynb` from inside the "notebooks" folder.
188
- 3. To run the notebook cells, press the Play icon, or use the Shift + Enter shortcut. For more info on Jupyter and controlling notebooks, see [here](https://jupyter.org/try-jupyter/lab/).
189
- 4. Once you have initialised and agreed to the Google Earth Engine access requirements, you can process a geojson file containing plot informations.
190
- 5. The outputs from the notebook can be set to where you want to store them.
191
- 6. Outputs from the process include a CSV file `whisp_output_table.csv`.
192
- 7. NB If the processing job is large this may take some time. IF the outputs fail to process due to memory or time out errors, you can use the alternative function 'whisp_stats_geojson_to_drive', that sends a csv outpout to your Google drive. We are developing functionality to upload the csv automatically. In the meantime manually downloading from Google Drive and saving the csv is required. You can then import the csv as a pandas dataframe and use the 'validate_dataframe_using_lookups' function to get the Whisp output format (i.e., using a set schema for a standardised output, useful for showing in Power Bi etc).
193
-
194
- ### Adding risk indicators to your results
195
- 8. Finally, functions at the end of the notebook allow the user to add EUDR risk indicators to the table. NB: these risk indicators are still at the experimental stage.
196
-
197
- ### Output 1
198
-
199
- - A CSV called `whisp_output_table.csv` contains results from the whisp processing.
200
-
201
- ### Output 2
202
-
203
- - A CSV called `whisp_output_table_w_risk.csv` contains results from the whisp processing and risk indicators.
204
-
132
+ # Python package installation
205
133
 
206
- ## Other Files
134
+ ...
135
+ pip install openforis-whisp
207
136
 
208
- ### Parameters Folder
137
+ import openforis_whisp as whisp
138
+ ...
209
139
 
210
- A folder containing a series of Python scripts and a CSV. These files are used to define various parameters used in the analysis.
140
+ If running the package locally we recommend using a [virtual environment](https://docs.python.org/3/library/venv.html) to keep your main python installation clean.
211
141
 
212
- Key files include:
213
- - `lookup_gee_datasets.csv` contains the list of input datasets, the order they will be displayed, which ones are to be excluded from the current analysis, and which ones are shown as flags (i.e., shown as presence or absence instead of figures for area/percentage coverage of the plot).
214
- - `config_runtime.py` contains parameters such as default file and column names. **WARNING: USERS SHOULD NOT EDIT PACKAGE CONFIG ; IF THEY WANT TO, THEY SHOULD INSTALL THE PACKAGE IN EDITABLE MODE IN ORDER TO BE ABLE TO MODIFY CONFIGS WITHOUT HAVING TO RE-INSTALL THE PACKGE EVERY TIME**
215
142
 
216
- ### src code
217
-
218
- Various functions for the main Whisp analysis along with some for interacting with the AgStack Asset Registry.
219
-
220
- Key files:
221
- - `datasets.py` contains a series of functions related to the creation of a single multiband GEE image to be used in the Whisp summary statistics analysis.
222
- - `stats.py` contains functions to run the Whisp analysis for each of the various datasets and to provide results for coverage of each plot as a percentage (or as an area in hectares).
223
-
224
- ## Setting Up Your System
225
-
226
-
227
- ### Setting Up SEPAL
143
+ The package relies upon the earth engine api being setup correctly using a registered cloud project
228
144
 
229
- SEPAL is closely linked to Google Earth Engine (GEE), a Google-powered Earth-observation cloud-computing platform, as it builds in many of its functionalities. Currently, you will need to have connected SEPAL and GEE accounts. SEPAL provides a stable processing environment and allows you to link up with your Google account saving time with permissions. Currently, we are supporting the use within SEPAL, but you can run the scripts outside of SEPAL if required, although this will require extra code to account for the various dependencies SEPAL already has built in.
230
-
231
- 1. Login to SEPAL.
232
- 2. Start an instance (see Terminal info) to provide you with free processing power.
233
- 3. If you don’t have SEPAL set up:
234
- - To create a SEPAL account, please follow the registration steps described [here](https://docs.sepal.io/en/latest/setup/register.html) and then familiarize yourself with the tool by exploring its interface.
235
- - To create a Google Earth Engine (GEE) account, please follow these steps and don’t forget to initialize the home folder.
236
-
237
- ### Setting Up the Whisp GitHub Repository
145
+ # Earth Engine project name
146
+ gee_project_name="my-ee-project"
238
147
 
239
- 1. Make sure you have a GitHub account set up.
240
- 2. To run the Whisp notebooks in SEPAL, you need to copy the Whisp repository into your SEPAL files. The notebooks rely on functions and parameters that are stored in other files in this repository.
241
- 3. To clone (i.e., copy) the GitHub repository so that it is accessible in SEPAL, type into the SEPAL terminal:
148
+ Where you must replace the GEE project in the
149
+ ee.Initialize(project=gee_project_name)
242
150
 
243
- ```sh
244
- git clone https://github.com/forestdatapartnership/whisp.git
245
- ```
151
+ Note: this should be a registered cloud project. If unsure of this check pic here: https://developers.google.com/earth-engine/cloud/assets
246
152
 
247
- 4. If this works, on the left-hand pane you should now be able to view a Whisp folder containing Notebooks along with other supporting files and folders.
153
+ More info on Whisp can be found in [here](https://openknowledge.fao.org/items/e9284dc7-4b19-4f9c-b3e1-e6c142585865)
248
154
 
249
155
 
250
156
  ## How to add data layers to Whisp
@@ -252,12 +158,12 @@ SEPAL is closely linked to Google Earth Engine (GEE), a Google-powered Earth-obs
252
158
  There are two main approaches: to request a layer be incorporated into the core Whisp inputs, or to add in your own data directly to complement the core ones in Whisp
253
159
 
254
160
  ### Requesting a dataset addition
255
- If you think a particular dataset has wide applicability for Whisp users, you can request it be added to the main Whisp repository by logging as an issue in Github [here] (https://github.com/forestdatapartnership/whisp/issues/).
161
+ If you think a particular dataset has wide applicability for Whisp users, you can request it be added to the main Whisp repository by logging as an issue in Github [here] (https://github.com/forestdatapartnership/whisp/issues/). Before requesting consider: 1) is the resolution high enough for plot level analysis (e.g. 30m or 10m resolution), 2) is there an indication of data quality (e.g. accuracy assessment detailed in a scientific publication) and 3) is there relevant metadata available.
256
162
 
257
163
  ### Adding your own dataset for a bespoke Whisp analysis (using the Python Notebooks)
258
164
  Adding your To add other datasets, such as that are specific to your circumstances, or can’t be shared directly in GEE, follow the steps and guidance below.
259
165
 
260
- 1) Edit modules/datasets.py and add in a function to make a binary GEE image (i.e., where values are either 0 or 1*). Make sure the function name ends with "_prep", as only functions with this suffix are used.
166
+ 1) Edit the datasets.py and add in a function to make a binary GEE image (i.e., where values are either 0 or 1*). Make sure the function name ends with "_prep", as only functions with this suffix are used.
261
167
  2) Choose a name to represent the data layer in the final CSV output. Place in speech brackets in the .rename() section at the end of the function. See examples elsewhere in the functions in this script.
262
168
  3) Edit parameters/lookup_gee_datasets.csv to include the chosen dataset name in a new row. Make sure other relevant columns are filled in.
263
169
 
@@ -291,6 +197,34 @@ g. corresponding variable: the name of the function for creating the dataset in
291
197
  • A binary input image is expected, but non-integer values are allowed if they range between 0 and 1. This is most appropriate for datasets that have proportion of coverage in a pixel (e.g., a value of 0.5 would represent having half the pixel covered).
292
198
  • If you are adding timeseries data, when creating the function you can use loops/mapping to compile a multiband input and to name each band accordingly.
293
199
 
200
+ ## Key files
201
+
202
+ # Parameters:
203
+ - `lookup_gee_datasets.csv` contains the list of input datasets, the order they will be displayed, which ones are to be excluded from the current analysis, and which ones are shown as flags (i.e., shown as presence or absence instead of figures).
204
+
205
+ ### src code
206
+
207
+ Main Whisp analysis functions are found in the following files:
208
+ - `datasets.py` functions for compiling GEE datasets into a single multiband image ready for input into the whisp analysis
209
+ - `stats.py` functions to run Whisp analysis for each GEE dataset, providing results for coverage of each plot as an area in hectares
210
+ -`risk.py` functions for estimating risk of deforestation.
211
+
294
212
  ## Contributing to the Whisp code base
295
213
  Contributions to the Whisp code in GitHub are welcome. They can be made by forking the repository making and pushing the required changes, then making a pull request to the Whisp repository. After briefly reviewing the request, we can make a branch for which to make a new pull request to. If in doubt get in contact first or log as an issue [here] (https://github.com/forestdatapartnership/whisp/issues/).
296
214
 
215
+ Install the package in editable mode with the additional dependencies required for testing and running pre-commit hooks:
216
+ ```
217
+ git clone https://github.com/forestdatapartnership/whisp.git
218
+ cd whisp/
219
+ pip install -e .[dev]
220
+ ```
221
+
222
+ Setup the pre-commit hooks:
223
+ ```
224
+ pre-commit install
225
+ ```
226
+
227
+ You should be able to run the Pytest suite by simple running the `pytest` command from the repo's root folder.
228
+
229
+ Please read the ![contributing guidelines](contributing_guidelines.md) for good practice recommendations.
230
+
@@ -11,7 +11,7 @@ openforis_whisp/reformat.py,sha256=_ByLR5bu_gPecH6W4jxymkcIN5Hph3bRIuRfjZByNBU,1
11
11
  openforis_whisp/risk.py,sha256=qgrBnioYS_vMPWs_rXFR5k_TacxBACHbeYmPhBmqMrM,13367
12
12
  openforis_whisp/stats.py,sha256=Y-IfazrTA_O5wQ8YE0GypXQYopp1V-ym_jPLwtNCw4M,26405
13
13
  openforis_whisp/utils.py,sha256=hpeY9aA3BND2m9c15PZ6_nClemsfiVNUEzA4pQXfztA,5330
14
- openforis_whisp-0.0.1.dist-info/LICENSE,sha256=nqyqICO95iw_iwzP1t_IIAf7ZX3DPbL_M9WyQfh2q1k,1085
15
- openforis_whisp-0.0.1.dist-info/METADATA,sha256=jgTZka6wdCS20shNgJ9QFS2w-szv0o304cpRTZ217cQ,19759
16
- openforis_whisp-0.0.1.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
17
- openforis_whisp-0.0.1.dist-info/RECORD,,
14
+ openforis_whisp-0.1.0a1.dist-info/LICENSE,sha256=nqyqICO95iw_iwzP1t_IIAf7ZX3DPbL_M9WyQfh2q1k,1085
15
+ openforis_whisp-0.1.0a1.dist-info/METADATA,sha256=irr0deDjHjv6Dd1Z0LecKaR73dlfG8vnqe6kp5Zikg8,15647
16
+ openforis_whisp-0.1.0a1.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
17
+ openforis_whisp-0.1.0a1.dist-info/RECORD,,