openenergyid 0.1.31__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. openenergyid/__init__.py +8 -0
  2. openenergyid/abstractsim/__init__.py +5 -0
  3. openenergyid/abstractsim/abstract.py +102 -0
  4. openenergyid/baseload/__init__.py +15 -0
  5. openenergyid/baseload/analysis.py +190 -0
  6. openenergyid/baseload/exceptions.py +9 -0
  7. openenergyid/baseload/models.py +32 -0
  8. openenergyid/capacity/__init__.py +6 -0
  9. openenergyid/capacity/main.py +103 -0
  10. openenergyid/capacity/models.py +32 -0
  11. openenergyid/const.py +29 -0
  12. openenergyid/dyntar/__init__.py +20 -0
  13. openenergyid/dyntar/const.py +31 -0
  14. openenergyid/dyntar/main.py +313 -0
  15. openenergyid/dyntar/models.py +101 -0
  16. openenergyid/elia/__init__.py +4 -0
  17. openenergyid/elia/api.py +91 -0
  18. openenergyid/elia/const.py +18 -0
  19. openenergyid/energysharing/__init__.py +12 -0
  20. openenergyid/energysharing/const.py +8 -0
  21. openenergyid/energysharing/data_formatting.py +77 -0
  22. openenergyid/energysharing/main.py +122 -0
  23. openenergyid/energysharing/models.py +80 -0
  24. openenergyid/enums.py +16 -0
  25. openenergyid/models.py +174 -0
  26. openenergyid/mvlr/__init__.py +19 -0
  27. openenergyid/mvlr/helpers.py +30 -0
  28. openenergyid/mvlr/main.py +34 -0
  29. openenergyid/mvlr/models.py +227 -0
  30. openenergyid/mvlr/mvlr.py +450 -0
  31. openenergyid/pvsim/__init__.py +8 -0
  32. openenergyid/pvsim/abstract.py +60 -0
  33. openenergyid/pvsim/elia/__init__.py +3 -0
  34. openenergyid/pvsim/elia/main.py +89 -0
  35. openenergyid/pvsim/main.py +49 -0
  36. openenergyid/pvsim/pvlib/__init__.py +11 -0
  37. openenergyid/pvsim/pvlib/main.py +115 -0
  38. openenergyid/pvsim/pvlib/models.py +235 -0
  39. openenergyid/pvsim/pvlib/quickscan.py +99 -0
  40. openenergyid/pvsim/pvlib/weather.py +91 -0
  41. openenergyid/sim/__init__.py +5 -0
  42. openenergyid/sim/main.py +67 -0
  43. openenergyid/simeval/__init__.py +6 -0
  44. openenergyid/simeval/main.py +148 -0
  45. openenergyid/simeval/models.py +162 -0
  46. openenergyid-0.1.31.dist-info/METADATA +32 -0
  47. openenergyid-0.1.31.dist-info/RECORD +50 -0
  48. openenergyid-0.1.31.dist-info/WHEEL +5 -0
  49. openenergyid-0.1.31.dist-info/licenses/LICENSE +21 -0
  50. openenergyid-0.1.31.dist-info/top_level.txt +1 -0
@@ -0,0 +1,8 @@
1
+ """Open Energy ID Python SDK."""
2
+
3
+ __version__ = "0.1.30"
4
+
5
+ from .enums import Granularity
6
+ from .models import TimeDataFrame, TimeSeries
7
+
8
+ __all__ = ["Granularity", "TimeDataFrame", "TimeSeries"]
@@ -0,0 +1,5 @@
1
+ """Module with abstract definitions that ALL SIMULATIONS should adhere to."""
2
+
3
+ from .abstract import SimulationInputAbstract, SimulationSummary, Simulator
4
+
5
+ __all__ = ["SimulationInputAbstract", "SimulationSummary", "Simulator"]
@@ -0,0 +1,102 @@
1
+ from abc import ABC, abstractmethod
2
+ from typing import Annotated, Self
3
+
4
+ import pandas as pd
5
+ from aiohttp import ClientSession
6
+ from pydantic import BaseModel, Field
7
+
8
+ from ..simeval.models import ComparisonPayload, EvalPayload, EvaluationOutput
9
+
10
+
11
+ class SimulationInputAbstract(BaseModel):
12
+ """Abstract input parameters for any Simulation"""
13
+
14
+ type: str
15
+
16
+
17
+ class SimulationSummary(BaseModel):
18
+ """Summary of a simulation including ex-ante, simulation results, ex-post, and comparisons."""
19
+
20
+ ex_ante: Annotated[EvalPayload, Field(description="Ex-ante evaluation results.")]
21
+ simulation_result: Annotated[EvalPayload, Field(description="Simulation results.")]
22
+ ex_post: Annotated[EvalPayload, Field(description="Ex-post evaluation results.")]
23
+ comparison: Annotated[
24
+ ComparisonPayload, Field(description="Comparison between ex-ante and ex-post results.")
25
+ ]
26
+
27
+ @classmethod
28
+ def from_simulation(
29
+ cls,
30
+ ex_ante: dict[str, pd.DataFrame | pd.Series],
31
+ simulation_result: dict[str, pd.DataFrame | pd.Series],
32
+ ex_post: dict[str, pd.DataFrame | pd.Series],
33
+ comparison: dict[str, dict[str, pd.DataFrame | pd.Series]],
34
+ ) -> Self:
35
+ """Create a SimulationSummary from simulation data."""
36
+ ea = {
37
+ k: EvaluationOutput.from_pandas(v) if isinstance(v, pd.DataFrame) else v.to_dict()
38
+ for k, v in ex_ante.items()
39
+ }
40
+ sr = {
41
+ k: EvaluationOutput.from_pandas(v) if isinstance(v, pd.DataFrame) else v.to_dict()
42
+ for k, v in simulation_result.items()
43
+ }
44
+ ep = {
45
+ k: EvaluationOutput.from_pandas(v) if isinstance(v, pd.DataFrame) else v.to_dict()
46
+ for k, v in ex_post.items()
47
+ }
48
+ c = {
49
+ k: {
50
+ kk: EvaluationOutput.from_pandas(vv)
51
+ if isinstance(vv, pd.DataFrame)
52
+ else vv.to_dict()
53
+ for kk, vv in v.items()
54
+ }
55
+ for k, v in comparison.items()
56
+ }
57
+ return cls(
58
+ ex_ante=ea, # type: ignore
59
+ simulation_result=sr, # type: ignore
60
+ ex_post=ep, # type: ignore
61
+ comparison=c, # type: ignore
62
+ )
63
+
64
+
65
+ class Simulator(ABC):
66
+ """
67
+ An abstract base class simulators.
68
+ """
69
+
70
+ @property
71
+ @abstractmethod
72
+ def simulation_results(self):
73
+ """The results of the simulation."""
74
+ raise NotImplementedError()
75
+
76
+ @abstractmethod
77
+ def simulate(self, **kwargs):
78
+ """
79
+ Run the simulation and return the results.
80
+ """
81
+ raise NotImplementedError()
82
+
83
+ @abstractmethod
84
+ def result_as_frame(self) -> pd.DataFrame:
85
+ """
86
+ Convert the simulation results to a DataFrame.
87
+ """
88
+ raise NotImplementedError()
89
+
90
+ @classmethod
91
+ def from_pydantic(cls, input_: SimulationInputAbstract) -> Self:
92
+ """
93
+ Create an instance of the simulator from Pydantic input data.
94
+ """
95
+ return cls(**input_.model_dump())
96
+
97
+ @abstractmethod
98
+ async def load_resources(self, session: ClientSession) -> None:
99
+ """
100
+ Asynchronously load any required resources using the provided session.
101
+ """
102
+ raise NotImplementedError()
@@ -0,0 +1,15 @@
1
+ """Baseload analysis package for power consumption data."""
2
+
3
+ from .analysis import BaseloadAnalyzer
4
+ from .exceptions import InsufficientDataError, InvalidDataError
5
+ from .models import BaseloadResultSchema, PowerReadingSchema, PowerSeriesSchema
6
+
7
+ __version__ = "0.1.0"
8
+ __all__ = [
9
+ "BaseloadAnalyzer",
10
+ "InsufficientDataError",
11
+ "InvalidDataError",
12
+ "PowerReadingSchema",
13
+ "PowerSeriesSchema",
14
+ "BaseloadResultSchema",
15
+ ]
@@ -0,0 +1,190 @@
1
+ """Baseload Power Consumption Analysis Module
2
+
3
+ This module provides tools for analyzing electrical power consumption patterns to identify
4
+ and quantify baseload - the continuous background power usage in electrical systems.
5
+ It uses sophisticated time-series analysis to detect consistent minimum power draws
6
+ that represent always-on devices and systems.
7
+ """
8
+
9
+ import polars as pl
10
+
11
+
12
+ class BaseloadAnalyzer:
13
+ """Analyzes power consumption data to determine baseload characteristics.
14
+
15
+ The BaseloadAnalyzer helps identify the minimum continuous power consumption in
16
+ an electrical system by analyzing regular energy readings. It uses a statistical
17
+ approach to determine baseload, which represents power used by devices that run
18
+ continuously (like refrigerators, standby electronics, or network equipment).
19
+
20
+ The analyzer works by:
21
+ 1. Converting 15-minute energy readings to instantaneous power values
22
+ 2. Analyzing daily patterns to identify consistent minimum usage
23
+ 3. Aggregating results into configurable time periods
24
+
25
+ Parameters
26
+ ----------
27
+ quantile : float, default=0.05
28
+ Defines what portion of lowest daily readings to consider as baseload.
29
+ The default 0.05 (5%) corresponds to roughly 72 minutes of lowest
30
+ consumption per day, which helps filter out brief power dips while
31
+ capturing true baseload patterns.
32
+
33
+ timezone : str
34
+ Timezone for analysis. All timestamps will be converted to this timezone
35
+ to ensure correct daily boundaries and consistent reporting periods.
36
+
37
+ Example Usage
38
+ ------------
39
+ >>> analyzer = BaseloadAnalyzer(quantile=0.05)
40
+ >>> power_data = analyzer.prepare_power_seriespolars(energy_readings)
41
+ >>> hourly_analysis = analyzer.analyze(power_data, "1h")
42
+ >>> monthly_analysis = analyzer.analyze(power_data, "1mo")
43
+ """
44
+
45
+ def __init__(self, timezone: str, quantile: float = 0.05):
46
+ self.quantile = quantile
47
+ self.timezone = timezone
48
+
49
+ def prepare_power_seriespolars(self, energy_lf: pl.LazyFrame) -> pl.LazyFrame:
50
+ """Converts energy readings into a power consumption time series.
51
+
52
+ Transforms 15-minute energy readings (kilowatt-hours) into instantaneous
53
+ power readings (watts) while handling timezone conversion.
54
+
55
+ Parameters
56
+ ----------
57
+ energy_lf : pl.LazyFrame
58
+ Input energy data with columns:
59
+ - timestamp: Datetime with timezone (e.g. "2023-01-01T00:00:00+01:00")
60
+ - total: Energy readings in kilowatt-hours (kWh)
61
+
62
+ Returns
63
+ -------
64
+ pl.LazyFrame
65
+ Power series with columns:
66
+ - timestamp: Timezone-adjusted timestamps
67
+ - power: Power readings in watts
68
+
69
+ Notes
70
+ -----
71
+ The conversion from kWh/15min to watts uses the formula:
72
+ watts = kWh * 4000
73
+ where:
74
+ - Multiply by 4 to convert from 15-minute to hourly rate
75
+ - Multiply by 1000 to convert from kilowatts to watts
76
+ """
77
+ return (
78
+ energy_lf.with_columns(
79
+ [
80
+ # Convert timezone
81
+ pl.col("timestamp")
82
+ .dt.replace_time_zone("UTC")
83
+ .dt.convert_time_zone(self.timezone)
84
+ .alias("timestamp"),
85
+ # Convert to watts and clip negative values
86
+ (pl.col("total") * 4000).clip(0).alias("power"),
87
+ ]
88
+ )
89
+ .drop("total")
90
+ .sort("timestamp")
91
+ )
92
+
93
+ def analyze(
94
+ self, power_lf: pl.LazyFrame, reporting_granularity: str = "1h"
95
+ ) -> tuple[pl.LazyFrame, float]:
96
+ """
97
+ Analyze power consumption data to calculate baseload and total energy metrics.
98
+
99
+ Takes power readings (in watts) with 15-minute intervals and calculates:
100
+ - Daily baseload power using a percentile threshold
101
+ - Energy consumption from baseload vs total consumption
102
+ - Average power metrics
103
+ - Global median baseload value for the entire period
104
+
105
+ The analysis happens in three steps:
106
+ 1. Calculate the daily baseload power level using the configured percentile
107
+ 2. Join this daily baseload with the original power readings
108
+ 3. Aggregate the combined data into the requested reporting periods
109
+
110
+ Parameters
111
+ ----------
112
+ power_lf : pl.LazyFrame
113
+ Power consumption data with columns:
114
+ - timestamp: Datetime in configured timezone
115
+ - power: Power readings in watts
116
+
117
+ reporting_granularity : str, default="1h"
118
+ Time period for aggregating results. Must be a valid Polars interval string
119
+ like "1h", "1d", "1mo" etc.
120
+
121
+ Returns
122
+ -------
123
+ tuple[pl.LazyFrame, float]
124
+ - Analysis results (pl.LazyFrame) with metrics per reporting period:
125
+ - timestamp: Start of reporting period
126
+ - consumption_due_to_baseload_in_kilowatthour: Baseload energy
127
+ - total_consumption_in_kilowatthour: Total energy
128
+ - consumption_not_due_to_baseload_in_kilowatthour: Non-baseload energy
129
+ - average_daily_baseload_in_watt: Average baseload power level
130
+ - average_power_in_watt: Average total power
131
+ - baseload_ratio: Fraction of energy from baseload
132
+ - consumption_due_to_median_baseload_in_kilowatthour: Idealized consumption using global median baseload
133
+ - global_median_baseload (float): The global median baseload value in watts for the entire period
134
+ """
135
+ # Step 1: Calculate the daily baseload level
136
+ # Group power readings by day and find the threshold power level that represents baseload
137
+ daily_baseload = power_lf.group_by_dynamic("timestamp", every="1d").agg(
138
+ pl.col("power").quantile(self.quantile).alias("daily_baseload")
139
+ )
140
+ # calculate median
141
+ global_median_baseload = (
142
+ daily_baseload.select(pl.col("daily_baseload").median()).collect().item()
143
+ )
144
+
145
+ # Join the daily baseload level with original power readings
146
+ results = (
147
+ # Using asof join since baseload changes daily but readings are every 15min
148
+ power_lf.join_asof(daily_baseload, on="timestamp")
149
+ # Group into requested reporting periods
150
+ .group_by_dynamic("timestamp", every=reporting_granularity)
151
+ .agg(
152
+ [
153
+ # Energy calculations:
154
+ # Each 15min power reading (watts) represents 0.25 hours
155
+ # Convert to kWh: watts * 0.25h * (1kW/1000W)
156
+ (pl.col("daily_baseload").sum() * 0.25 / 1000).alias(
157
+ "consumption_due_to_baseload_in_kilowatthour"
158
+ ),
159
+ (pl.col("power").sum() * 0.25 / 1000).alias(
160
+ "total_consumption_in_kilowatthour"
161
+ ),
162
+ # Average power levels during the period
163
+ pl.col("daily_baseload").mean().alias("average_daily_baseload_in_watt"),
164
+ pl.col("power").mean().alias("average_power_in_watt"),
165
+ # median baseload kWh
166
+ (pl.len() * 0.25 * global_median_baseload / 1000).alias(
167
+ "consumption_due_to_median_baseload_in_kilowatthour"
168
+ ),
169
+ ]
170
+ )
171
+ # Calculate derived metrics
172
+ .with_columns(
173
+ [
174
+ # Energy consumed above baseload level
175
+ (
176
+ pl.col("total_consumption_in_kilowatthour")
177
+ - pl.col("consumption_due_to_baseload_in_kilowatthour")
178
+ ).alias("consumption_not_due_to_baseload_in_kilowatthour"),
179
+ pl.when(pl.col("total_consumption_in_kilowatthour") != 0)
180
+ .then(
181
+ pl.col("consumption_due_to_baseload_in_kilowatthour")
182
+ / pl.col("total_consumption_in_kilowatthour")
183
+ )
184
+ .otherwise(None)
185
+ .alias("baseload_ratio"),
186
+ ]
187
+ )
188
+ )
189
+ # Step 2 & 3: Join baseload data and aggregate metrics
190
+ return results, global_median_baseload
@@ -0,0 +1,9 @@
1
+ """Custom exceptions for baseload analysis."""
2
+
3
+
4
+ class InsufficientDataError(Exception):
5
+ """Raised when input data doesn't meet minimum requirements."""
6
+
7
+
8
+ class InvalidDataError(Exception):
9
+ """Raised when input data is invalid or corrupt."""
@@ -0,0 +1,32 @@
1
+ import pandera.polars as pa
2
+ from pandera.engines.polars_engine import DateTime
3
+
4
+
5
+ class PowerReadingSchema(pa.DataFrameModel):
6
+ """Validates input energy readings"""
7
+
8
+ timestamp: DateTime = pa.Field()
9
+ total: float = pa.Field(ge=0)
10
+
11
+ class Config:
12
+ coerce = True
13
+
14
+
15
+ class PowerSeriesSchema(pa.DataFrameModel):
16
+ """Validates converted power series"""
17
+
18
+ timestamp: DateTime = pa.Field()
19
+ power: float = pa.Field(ge=0)
20
+
21
+
22
+ class BaseloadResultSchema(pa.DataFrameModel):
23
+ """Validates analysis results"""
24
+
25
+ timestamp: DateTime = pa.Field()
26
+ consumption_due_to_baseload_in_kilowatthour: float = pa.Field(ge=0)
27
+ total_consumption_in_kilowatthour: float = pa.Field(ge=0)
28
+ average_daily_baseload_in_watt: float = pa.Field(ge=0)
29
+ average_power_in_watt: float = pa.Field(ge=0)
30
+ consumption_not_due_to_baseload_in_kilowatthour: float
31
+ baseload_ratio: float = pa.Field(ge=0, le=2)
32
+ consumption_due_to_median_baseload_in_kilowatthour: float = pa.Field(ge=0)
@@ -0,0 +1,6 @@
1
+ """Power Offtake peak analysis module."""
2
+
3
+ from .main import CapacityAnalysis
4
+ from .models import CapacityInput, CapacityOutput, PeakDetail
5
+
6
+ __all__ = ["CapacityInput", "CapacityAnalysis", "CapacityOutput", "PeakDetail"]
@@ -0,0 +1,103 @@
1
+ """Main module for capacity analysis."""
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ import pandas as pd
7
+ import pandera.typing as pdt
8
+
9
+
10
+ class CapacityAnalysis:
11
+ """
12
+ A class for performing capacity analysis on a given dataset.
13
+
14
+ Attributes:
15
+ data (CapacityInput): The input data for capacity analysis.
16
+ threshold (float): The value above which a peak is considered significant.
17
+ window (str): The window size for grouping data before finding peaks. Defaults to "MS" (month start).
18
+ x_padding (int): The padding to apply on the x-axis for visualization purposes.
19
+
20
+ Methods:
21
+ find_peaks(): Identifies peaks in the data based on the specified threshold and window.
22
+ find_peaks_with_surroundings(num_peaks=10): Finds peaks along with their surrounding data points.
23
+ """
24
+
25
+ def __init__(
26
+ self,
27
+ data: pdt.Series,
28
+ threshold: float = 2.5,
29
+ window: str = "MS", # Default to month start
30
+ x_padding: int = 4,
31
+ ):
32
+ """
33
+ Constructs all the necessary attributes for the CapacityAnalysis object.
34
+
35
+ Parameters:
36
+ data (CapacityInput): Localized Pandas Series containing power measurements.
37
+ threshold (float): The value above which a peak is considered significant. Defaults to 2.5.
38
+ window (str): The window size for grouping data before finding peaks. Defaults to "MS" (month start).
39
+ x_padding (int): The padding to apply on the x-axis for visualization purposes. Defaults to 4.
40
+ """
41
+
42
+ self.data = data
43
+ self.threshold = threshold
44
+ self.window = window
45
+ self.x_padding = x_padding
46
+
47
+ def find_peaks(self) -> pd.Series:
48
+ """
49
+ Identifies peaks in the data based on the specified threshold and window.
50
+
51
+ Returns:
52
+ pd.Series: A Pandas Series containing the peaks
53
+ """
54
+ # Group by the specified window (default is month start)
55
+ grouped = self.data.groupby(pd.Grouper(freq=self.window))
56
+
57
+ # Find the index (timestamp) of the maximum value in each group
58
+ peak_indices = grouped.idxmax()
59
+
60
+ # Get the corresponding peak values
61
+ peaks = self.data.loc[peak_indices][self.data > self.threshold]
62
+ return peaks
63
+
64
+ def find_peaks_with_surroundings(
65
+ self, num_peaks: int = 10
66
+ ) -> list[tuple[dt.datetime, float, pd.Series]]:
67
+ """
68
+ Finds peaks along with their surrounding data points.
69
+
70
+ Parameters:
71
+ num_peaks (int): The number of peaks to find. Defaults to 10.
72
+
73
+ Returns:
74
+ List[tuple[dt.datetime,float,pd.Series]]: A list of tuples containing peak time, peak value, and surrounding data.
75
+ """
76
+ peaks = self.data.nlargest(num_peaks * 2)
77
+ peaks = peaks[peaks > self.threshold]
78
+ if peaks.empty:
79
+ return []
80
+
81
+ result = []
82
+ window_size = dt.timedelta(minutes=15 * (2 * self.x_padding + 1))
83
+
84
+ for peak_time, peak_value in peaks.items():
85
+ peak_time = typing.cast(pd.Timestamp, peak_time)
86
+
87
+ if any(abs(peak_time - prev_peak[0]) < window_size for prev_peak in result):
88
+ continue
89
+
90
+ start_time = peak_time - dt.timedelta(minutes=15 * self.x_padding)
91
+ end_time = peak_time + dt.timedelta(minutes=15 * (self.x_padding + 1))
92
+ surrounding_data = self.data[start_time:end_time]
93
+
94
+ result.append(
95
+ [
96
+ peak_time,
97
+ peak_value,
98
+ surrounding_data,
99
+ ]
100
+ )
101
+ if len(result) == num_peaks:
102
+ break
103
+ return result
@@ -0,0 +1,32 @@
1
+ """Model for Capacity Analysis."""
2
+
3
+ import datetime as dt
4
+
5
+ from pydantic import BaseModel, ConfigDict, Field
6
+
7
+ from openenergyid.models import TimeSeries
8
+
9
+
10
+ class CapacityInput(BaseModel):
11
+ """Model for capacity input"""
12
+
13
+ timezone: str = Field(alias="timeZone")
14
+ series: TimeSeries
15
+ threshold: float = Field(default=2.5, ge=0)
16
+
17
+
18
+ class PeakDetail(BaseModel):
19
+ """Model for peak detail"""
20
+
21
+ peak_time: dt.datetime = Field(alias="peakTime")
22
+ peak_value: float = Field(alias="peakValue")
23
+ surrounding_data: TimeSeries = Field(alias="surroundingData")
24
+ model_config = ConfigDict(populate_by_name=True)
25
+
26
+
27
+ class CapacityOutput(BaseModel):
28
+ """Model for capacity output"""
29
+
30
+ peaks: TimeSeries
31
+ peak_details: list[PeakDetail] = Field(alias="peakDetails")
32
+ model_config = ConfigDict(populate_by_name=True)
openenergyid/const.py ADDED
@@ -0,0 +1,29 @@
1
+ """Constants for the Open Energy ID package."""
2
+
3
+ from typing import Literal
4
+
5
+ # METRICS
6
+
7
+ ELECTRICITY_DELIVERED: Literal["electricity_delivered"] = "electricity_delivered"
8
+ ELECTRICITY_EXPORTED: Literal["electricity_exported"] = "electricity_exported"
9
+ ELECTRICITY_PRODUCED: Literal["electricity_produced"] = "electricity_produced"
10
+ ELECTRICITY_CONSUMED: Literal["electricity_consumed"] = "electricity_consumed"
11
+ ELECTRICITY_SELF_CONSUMED: Literal["electricity_self_consumed"] = "electricity_self_consumed"
12
+
13
+ PRICE_DAY_AHEAD: Literal["price_day_ahead"] = "price_day_ahead"
14
+ PRICE_IMBALANCE_UPWARD: Literal["price_imbalance_upward"] = "price_imbalance_upward"
15
+ PRICE_IMBALANCE_DOWNWARD: Literal["price_imbalance_downward"] = "price_imbalance_downward"
16
+ PRICE_ELECTRICITY_DELIVERED: Literal["price_electricity_delivered"] = "price_electricity_delivered"
17
+ PRICE_ELECTRICITY_EXPORTED: Literal["price_electricity_exported"] = "price_electricity_exported"
18
+
19
+ RLP: Literal["RLP"] = "RLP"
20
+ SPP: Literal["SPP"] = "SPP"
21
+
22
+ COST_ELECTRICITY_DELIVERED: Literal["cost_electricity_delivered"] = "cost_electricity_delivered"
23
+ EARNINGS_ELECTRICITY_EXPORTED: Literal["earnings_electricity_exported"] = (
24
+ "earnings_electricity_exported"
25
+ )
26
+ COST_ELECTRICITY_NET: Literal["cost_electricity_net"] = "cost_electricity_net"
27
+
28
+ RATIO_SELF_CONSUMPTION: Literal["ratio_self_consumption"] = "ratio_self_consumption"
29
+ RATIO_SELF_SUFFICIENCY: Literal["ratio_self_sufficiency"] = "ratio_self_sufficiency"
@@ -0,0 +1,20 @@
1
+ """Dynamic Tariff Analysis module."""
2
+
3
+ from .main import calculate_dyntar_columns, summarize_result
4
+ from .models import (
5
+ DynamicTariffAnalysisInput,
6
+ DynamicTariffAnalysisOutput,
7
+ DynamicTariffAnalysisOutputSummary,
8
+ OutputColumns,
9
+ RequiredColumns,
10
+ )
11
+
12
+ __all__ = [
13
+ "calculate_dyntar_columns",
14
+ "DynamicTariffAnalysisInput",
15
+ "DynamicTariffAnalysisOutput",
16
+ "DynamicTariffAnalysisOutputSummary",
17
+ "OutputColumns",
18
+ "RequiredColumns",
19
+ "summarize_result",
20
+ ]
@@ -0,0 +1,31 @@
1
+ """Constants for the dyntar analysis."""
2
+
3
+ from enum import Enum
4
+
5
+ ELECTRICITY_DELIVERED_SMR3 = "electricity_delivered_smr3"
6
+ ELECTRICITY_EXPORTED_SMR3 = "electricity_exported_smr3"
7
+ ELECTRICITY_DELIVERED_SMR2 = "electricity_delivered_smr2"
8
+ ELECTRICITY_EXPORTED_SMR2 = "electricity_exported_smr2"
9
+
10
+ COST_ELECTRICITY_DELIVERED_SMR2 = "cost_electricity_delivered_smr2"
11
+ COST_ELECTRICITY_EXPORTED_SMR2 = "cost_electricity_exported_smr2"
12
+ COST_ELECTRICITY_DELIVERED_SMR3 = "cost_electricity_delivered_smr3"
13
+ COST_ELECTRICITY_EXPORTED_SMR3 = "cost_electricity_exported_smr3"
14
+
15
+ RLP_WEIGHTED_PRICE_DELIVERED = "rlp_weighted_price_delivered"
16
+ SPP_WEIGHTED_PRICE_EXPORTED = "spp_weighted_price_exported"
17
+
18
+ HEATMAP_DELIVERED = "heatmap_delivered"
19
+ HEATMAP_EXPORTED = "heatmap_exported"
20
+ HEATMAP_TOTAL = "heatmap_total"
21
+
22
+ HEATMAP_DELIVERED_DESCRIPTION = "heatmap_delivered_description"
23
+ HEATMAP_EXPORTED_DESCRIPTION = "heatmap_exported_description"
24
+ HEATMAP_TOTAL_DESCRIPTION = "heatmap_total_description"
25
+
26
+
27
+ class Register(Enum):
28
+ """Register for dynamic tariff analysis."""
29
+
30
+ DELIVERY = "delivery"
31
+ EXPORT = "export"