opencv-python-headless 4.11.0.86__cp37-abi3-win32.whl → 4.13.0.90__cp37-abi3-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cv2/LICENSE-3RD-PARTY.txt +423 -0
- cv2/__init__.pyi +279 -102
- cv2/aruco/__init__.pyi +19 -1
- cv2/barcode/__init__.pyi +2 -1
- cv2/config.py +1 -1
- cv2/cuda/__init__.pyi +2 -0
- cv2/cv2.pyd +0 -0
- cv2/dnn/__init__.pyi +38 -23
- cv2/fisheye/__init__.pyi +7 -2
- cv2/flann/__init__.pyi +4 -3
- cv2/gapi/wip/__init__.pyi +2 -0
- cv2/instr/__init__.pyi +24 -0
- cv2/load_config_py3.py +1 -1
- cv2/ml/__init__.pyi +11 -10
- cv2/{opencv_videoio_ffmpeg4110.dll → opencv_videoio_ffmpeg4130.dll} +0 -0
- cv2/typing/__init__.py +5 -5
- cv2/utils/__init__.pyi +1 -0
- cv2/utils/logging/__init__.pyi +22 -0
- cv2/version.py +1 -1
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/LICENSE-3RD-PARTY.txt +423 -0
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/METADATA +5 -11
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/RECORD +25 -23
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/LICENSE.txt +0 -0
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/WHEEL +0 -0
- {opencv_python_headless-4.11.0.86.dist-info → opencv_python_headless-4.13.0.90.dist-info}/top_level.txt +0 -0
cv2/aruco/__init__.pyi
CHANGED
|
@@ -170,22 +170,39 @@ class RefineParameters:
|
|
|
170
170
|
|
|
171
171
|
class ArucoDetector(cv2.Algorithm):
|
|
172
172
|
# Functions
|
|
173
|
+
@_typing.overload
|
|
173
174
|
def __init__(self, dictionary: Dictionary = ..., detectorParams: DetectorParameters = ..., refineParams: RefineParameters = ...) -> None: ...
|
|
175
|
+
@_typing.overload
|
|
176
|
+
def __init__(self, dictionaries: _typing.Sequence[Dictionary], detectorParams: DetectorParameters = ..., refineParams: RefineParameters = ...) -> None: ...
|
|
174
177
|
|
|
175
178
|
@_typing.overload
|
|
176
179
|
def detectMarkers(self, image: cv2.typing.MatLike, corners: _typing.Sequence[cv2.typing.MatLike] | None = ..., ids: cv2.typing.MatLike | None = ..., rejectedImgPoints: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike]]: ...
|
|
177
180
|
@_typing.overload
|
|
178
181
|
def detectMarkers(self, image: cv2.UMat, corners: _typing.Sequence[cv2.UMat] | None = ..., ids: cv2.UMat | None = ..., rejectedImgPoints: _typing.Sequence[cv2.UMat] | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, _typing.Sequence[cv2.UMat]]: ...
|
|
179
182
|
|
|
183
|
+
@_typing.overload
|
|
184
|
+
def detectMarkersWithConfidence(self, image: cv2.typing.MatLike, corners: _typing.Sequence[cv2.typing.MatLike] | None = ..., ids: cv2.typing.MatLike | None = ..., markersConfidence: cv2.typing.MatLike | None = ..., rejectedImgPoints: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike]]: ...
|
|
185
|
+
@_typing.overload
|
|
186
|
+
def detectMarkersWithConfidence(self, image: cv2.UMat, corners: _typing.Sequence[cv2.UMat] | None = ..., ids: cv2.UMat | None = ..., markersConfidence: cv2.UMat | None = ..., rejectedImgPoints: _typing.Sequence[cv2.UMat] | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, cv2.UMat, _typing.Sequence[cv2.UMat]]: ...
|
|
187
|
+
|
|
180
188
|
@_typing.overload
|
|
181
189
|
def refineDetectedMarkers(self, image: cv2.typing.MatLike, board: Board, detectedCorners: _typing.Sequence[cv2.typing.MatLike], detectedIds: cv2.typing.MatLike, rejectedCorners: _typing.Sequence[cv2.typing.MatLike], cameraMatrix: cv2.typing.MatLike | None = ..., distCoeffs: cv2.typing.MatLike | None = ..., recoveredIdxs: cv2.typing.MatLike | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike]: ...
|
|
182
190
|
@_typing.overload
|
|
183
191
|
def refineDetectedMarkers(self, image: cv2.UMat, board: Board, detectedCorners: _typing.Sequence[cv2.UMat], detectedIds: cv2.UMat, rejectedCorners: _typing.Sequence[cv2.UMat], cameraMatrix: cv2.UMat | None = ..., distCoeffs: cv2.UMat | None = ..., recoveredIdxs: cv2.UMat | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, _typing.Sequence[cv2.UMat], cv2.UMat]: ...
|
|
184
192
|
|
|
193
|
+
@_typing.overload
|
|
194
|
+
def detectMarkersMultiDict(self, image: cv2.typing.MatLike, corners: _typing.Sequence[cv2.typing.MatLike] | None = ..., ids: cv2.typing.MatLike | None = ..., rejectedImgPoints: _typing.Sequence[cv2.typing.MatLike] | None = ..., dictIndices: cv2.typing.MatLike | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike]: ...
|
|
195
|
+
@_typing.overload
|
|
196
|
+
def detectMarkersMultiDict(self, image: cv2.UMat, corners: _typing.Sequence[cv2.UMat] | None = ..., ids: cv2.UMat | None = ..., rejectedImgPoints: _typing.Sequence[cv2.UMat] | None = ..., dictIndices: cv2.UMat | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, _typing.Sequence[cv2.UMat], cv2.UMat]: ...
|
|
197
|
+
|
|
185
198
|
def getDictionary(self) -> Dictionary: ...
|
|
186
199
|
|
|
187
200
|
def setDictionary(self, dictionary: Dictionary) -> None: ...
|
|
188
201
|
|
|
202
|
+
def getDictionaries(self) -> _typing.Sequence[Dictionary]: ...
|
|
203
|
+
|
|
204
|
+
def setDictionaries(self, dictionaries: _typing.Sequence[Dictionary]) -> None: ...
|
|
205
|
+
|
|
189
206
|
def getDetectorParameters(self) -> DetectorParameters: ...
|
|
190
207
|
|
|
191
208
|
def setDetectorParameters(self, detectorParameters: DetectorParameters) -> None: ...
|
|
@@ -230,7 +247,7 @@ class Dictionary:
|
|
|
230
247
|
def getByteListFromBits(bits: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
|
231
248
|
|
|
232
249
|
@staticmethod
|
|
233
|
-
def getBitsFromByteList(byteList: cv2.typing.MatLike, markerSize: int) -> cv2.typing.MatLike: ...
|
|
250
|
+
def getBitsFromByteList(byteList: cv2.typing.MatLike, markerSize: int, rotationId: int = ...) -> cv2.typing.MatLike: ...
|
|
234
251
|
|
|
235
252
|
|
|
236
253
|
class CharucoParameters:
|
|
@@ -238,6 +255,7 @@ class CharucoParameters:
|
|
|
238
255
|
distCoeffs: cv2.typing.MatLike
|
|
239
256
|
minMarkers: int
|
|
240
257
|
tryRefineMarkers: bool
|
|
258
|
+
checkMarkers: bool
|
|
241
259
|
|
|
242
260
|
# Functions
|
|
243
261
|
def __init__(self) -> None: ...
|
cv2/barcode/__init__.pyi
CHANGED
|
@@ -2,6 +2,7 @@ __all__: list[str] = []
|
|
|
2
2
|
|
|
3
3
|
import cv2
|
|
4
4
|
import cv2.typing
|
|
5
|
+
import os
|
|
5
6
|
import typing as _typing
|
|
6
7
|
|
|
7
8
|
|
|
@@ -11,7 +12,7 @@ class BarcodeDetector(cv2.GraphicalCodeDetector):
|
|
|
11
12
|
@_typing.overload
|
|
12
13
|
def __init__(self) -> None: ...
|
|
13
14
|
@_typing.overload
|
|
14
|
-
def __init__(self, prototxt_path: str, model_path: str) -> None: ...
|
|
15
|
+
def __init__(self, prototxt_path: str | os.PathLike[str], model_path: str | os.PathLike[str]) -> None: ...
|
|
15
16
|
|
|
16
17
|
@_typing.overload
|
|
17
18
|
def decodeWithType(self, img: cv2.typing.MatLike, points: cv2.typing.MatLike) -> tuple[bool, _typing.Sequence[str], _typing.Sequence[str]]: ...
|
cv2/config.py
CHANGED
cv2/cuda/__init__.pyi
CHANGED
|
@@ -163,6 +163,8 @@ class GpuMat:
|
|
|
163
163
|
@_typing.overload
|
|
164
164
|
def setTo(self, s: cv2.typing.Scalar, mask: cv2.UMat, stream: Stream) -> GpuMat: ...
|
|
165
165
|
|
|
166
|
+
@_typing.overload
|
|
167
|
+
def convertTo(self, rtype: int, dst: GpuMat | None = ...) -> GpuMat: ...
|
|
166
168
|
@_typing.overload
|
|
167
169
|
def convertTo(self, rtype: int, stream: Stream, dst: GpuMat | None = ...) -> GpuMat: ...
|
|
168
170
|
@_typing.overload
|
cv2/cv2.pyd
CHANGED
|
Binary file
|
cv2/dnn/__init__.pyi
CHANGED
|
@@ -3,6 +3,7 @@ __all__: list[str] = []
|
|
|
3
3
|
import cv2
|
|
4
4
|
import cv2.typing
|
|
5
5
|
import numpy
|
|
6
|
+
import os
|
|
6
7
|
import sys
|
|
7
8
|
import typing as _typing
|
|
8
9
|
if sys.version_info >= (3, 8):
|
|
@@ -112,7 +113,7 @@ class Net:
|
|
|
112
113
|
|
|
113
114
|
@classmethod
|
|
114
115
|
@_typing.overload
|
|
115
|
-
def readFromModelOptimizer(cls, xml: str, bin: str) -> Net: ...
|
|
116
|
+
def readFromModelOptimizer(cls, xml: str | os.PathLike[str], bin: str | os.PathLike[str]) -> Net: ...
|
|
116
117
|
@classmethod
|
|
117
118
|
@_typing.overload
|
|
118
119
|
def readFromModelOptimizer(cls, bufferModelConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
|
|
@@ -121,9 +122,9 @@ class Net:
|
|
|
121
122
|
|
|
122
123
|
def dump(self) -> str: ...
|
|
123
124
|
|
|
124
|
-
def dumpToFile(self, path: str) -> None: ...
|
|
125
|
+
def dumpToFile(self, path: str | os.PathLike[str]) -> None: ...
|
|
125
126
|
|
|
126
|
-
def dumpToPbtxt(self, path: str) -> None: ...
|
|
127
|
+
def dumpToPbtxt(self, path: str | os.PathLike[str]) -> None: ...
|
|
127
128
|
|
|
128
129
|
def addLayer(self, name: str, type: str, dtype: int, params: cv2.typing.LayerParams) -> int: ...
|
|
129
130
|
|
|
@@ -142,6 +143,8 @@ class Net:
|
|
|
142
143
|
|
|
143
144
|
def connect(self, outPin: str, inpPin: str) -> None: ...
|
|
144
145
|
|
|
146
|
+
def registerOutput(self, outputName: str, layerId: int, outputPort: int) -> int: ...
|
|
147
|
+
|
|
145
148
|
def setInputsNames(self, inputBlobNames: _typing.Sequence[str]) -> None: ...
|
|
146
149
|
|
|
147
150
|
def setInputShape(self, inputName: str, shape: cv2.typing.MatShape) -> None: ...
|
|
@@ -251,7 +254,7 @@ class Image2BlobParams:
|
|
|
251
254
|
class Model:
|
|
252
255
|
# Functions
|
|
253
256
|
@_typing.overload
|
|
254
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
257
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
255
258
|
@_typing.overload
|
|
256
259
|
def __init__(self, network: Net) -> None: ...
|
|
257
260
|
|
|
@@ -287,7 +290,7 @@ class Model:
|
|
|
287
290
|
class ClassificationModel(Model):
|
|
288
291
|
# Functions
|
|
289
292
|
@_typing.overload
|
|
290
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
293
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
291
294
|
@_typing.overload
|
|
292
295
|
def __init__(self, network: Net) -> None: ...
|
|
293
296
|
|
|
@@ -304,7 +307,7 @@ class ClassificationModel(Model):
|
|
|
304
307
|
class KeypointsModel(Model):
|
|
305
308
|
# Functions
|
|
306
309
|
@_typing.overload
|
|
307
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
310
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
308
311
|
@_typing.overload
|
|
309
312
|
def __init__(self, network: Net) -> None: ...
|
|
310
313
|
|
|
@@ -317,7 +320,7 @@ class KeypointsModel(Model):
|
|
|
317
320
|
class SegmentationModel(Model):
|
|
318
321
|
# Functions
|
|
319
322
|
@_typing.overload
|
|
320
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
323
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
321
324
|
@_typing.overload
|
|
322
325
|
def __init__(self, network: Net) -> None: ...
|
|
323
326
|
|
|
@@ -330,7 +333,7 @@ class SegmentationModel(Model):
|
|
|
330
333
|
class DetectionModel(Model):
|
|
331
334
|
# Functions
|
|
332
335
|
@_typing.overload
|
|
333
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
336
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
334
337
|
@_typing.overload
|
|
335
338
|
def __init__(self, network: Net) -> None: ...
|
|
336
339
|
|
|
@@ -349,7 +352,7 @@ class TextRecognitionModel(Model):
|
|
|
349
352
|
@_typing.overload
|
|
350
353
|
def __init__(self, network: Net) -> None: ...
|
|
351
354
|
@_typing.overload
|
|
352
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
355
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
353
356
|
|
|
354
357
|
def setDecodeType(self, decodeType: str) -> TextRecognitionModel: ...
|
|
355
358
|
|
|
@@ -397,7 +400,7 @@ class TextDetectionModel_EAST(TextDetectionModel):
|
|
|
397
400
|
@_typing.overload
|
|
398
401
|
def __init__(self, network: Net) -> None: ...
|
|
399
402
|
@_typing.overload
|
|
400
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
403
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
401
404
|
|
|
402
405
|
def setConfidenceThreshold(self, confThreshold: float) -> TextDetectionModel_EAST: ...
|
|
403
406
|
|
|
@@ -413,7 +416,7 @@ class TextDetectionModel_DB(TextDetectionModel):
|
|
|
413
416
|
@_typing.overload
|
|
414
417
|
def __init__(self, network: Net) -> None: ...
|
|
415
418
|
@_typing.overload
|
|
416
|
-
def __init__(self, model: str, config: str = ...) -> None: ...
|
|
419
|
+
def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
|
|
417
420
|
|
|
418
421
|
def setBinaryThreshold(self, binaryThreshold: float) -> TextDetectionModel_DB: ...
|
|
419
422
|
|
|
@@ -479,56 +482,68 @@ def blobFromImagesWithParams(images: _typing.Sequence[cv2.UMat], blob: cv2.UMat
|
|
|
479
482
|
|
|
480
483
|
def getAvailableTargets(be: Backend) -> _typing.Sequence[Target]: ...
|
|
481
484
|
|
|
485
|
+
def getInferenceEngineBackendType() -> str: ...
|
|
486
|
+
|
|
487
|
+
def getInferenceEngineCPUType() -> str: ...
|
|
488
|
+
|
|
489
|
+
def getInferenceEngineVPUType() -> str: ...
|
|
490
|
+
|
|
482
491
|
@_typing.overload
|
|
483
492
|
def imagesFromBlob(blob_: cv2.typing.MatLike, images_: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
|
|
484
493
|
@_typing.overload
|
|
485
494
|
def imagesFromBlob(blob_: cv2.typing.MatLike, images_: _typing.Sequence[cv2.UMat] | None = ...) -> _typing.Sequence[cv2.UMat]: ...
|
|
486
495
|
|
|
487
496
|
@_typing.overload
|
|
488
|
-
def readNet(model: str, config: str = ..., framework: str = ...) -> Net: ...
|
|
497
|
+
def readNet(model: str | os.PathLike[str], config: str | os.PathLike[str] = ..., framework: str = ...) -> Net: ...
|
|
489
498
|
@_typing.overload
|
|
490
499
|
def readNet(framework: str, bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
|
|
491
500
|
|
|
492
501
|
@_typing.overload
|
|
493
|
-
def readNetFromCaffe(prototxt: str, caffeModel: str = ...) -> Net: ...
|
|
502
|
+
def readNetFromCaffe(prototxt: str | os.PathLike[str], caffeModel: str | os.PathLike[str] = ...) -> Net: ...
|
|
494
503
|
@_typing.overload
|
|
495
504
|
def readNetFromCaffe(bufferProto: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
|
|
496
505
|
|
|
497
506
|
@_typing.overload
|
|
498
|
-
def readNetFromDarknet(cfgFile: str, darknetModel: str = ...) -> Net: ...
|
|
507
|
+
def readNetFromDarknet(cfgFile: str | os.PathLike[str], darknetModel: str | os.PathLike[str] = ...) -> Net: ...
|
|
499
508
|
@_typing.overload
|
|
500
509
|
def readNetFromDarknet(bufferCfg: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
|
|
501
510
|
|
|
502
511
|
@_typing.overload
|
|
503
|
-
def readNetFromModelOptimizer(xml: str, bin: str = ...) -> Net: ...
|
|
512
|
+
def readNetFromModelOptimizer(xml: str | os.PathLike[str], bin: str | os.PathLike[str] = ...) -> Net: ...
|
|
504
513
|
@_typing.overload
|
|
505
514
|
def readNetFromModelOptimizer(bufferModelConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
|
|
506
515
|
|
|
507
516
|
@_typing.overload
|
|
508
|
-
def readNetFromONNX(onnxFile: str) -> Net: ...
|
|
517
|
+
def readNetFromONNX(onnxFile: str | os.PathLike[str]) -> Net: ...
|
|
509
518
|
@_typing.overload
|
|
510
519
|
def readNetFromONNX(buffer: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
|
|
511
520
|
|
|
512
521
|
@_typing.overload
|
|
513
|
-
def readNetFromTFLite(model: str) -> Net: ...
|
|
522
|
+
def readNetFromTFLite(model: str | os.PathLike[str]) -> Net: ...
|
|
514
523
|
@_typing.overload
|
|
515
524
|
def readNetFromTFLite(bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
|
|
516
525
|
|
|
517
526
|
@_typing.overload
|
|
518
|
-
def readNetFromTensorflow(model: str, config: str = ...) -> Net: ...
|
|
527
|
+
def readNetFromTensorflow(model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> Net: ...
|
|
519
528
|
@_typing.overload
|
|
520
529
|
def readNetFromTensorflow(bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
|
|
521
530
|
|
|
522
|
-
def readNetFromTorch(model: str, isBinary: bool = ..., evaluate: bool = ...) -> Net: ...
|
|
531
|
+
def readNetFromTorch(model: str | os.PathLike[str], isBinary: bool = ..., evaluate: bool = ...) -> Net: ...
|
|
532
|
+
|
|
533
|
+
def readTensorFromONNX(path: str | os.PathLike[str]) -> cv2.typing.MatLike: ...
|
|
534
|
+
|
|
535
|
+
def readTorchBlob(filename: str | os.PathLike[str], isBinary: bool = ...) -> cv2.typing.MatLike: ...
|
|
536
|
+
|
|
537
|
+
def releaseHDDLPlugin() -> None: ...
|
|
523
538
|
|
|
524
|
-
def
|
|
539
|
+
def resetMyriadDevice() -> None: ...
|
|
525
540
|
|
|
526
|
-
def
|
|
541
|
+
def setInferenceEngineBackendType(newBackendType: str) -> str: ...
|
|
527
542
|
|
|
528
|
-
def shrinkCaffeModel(src: str, dst: str, layersTypes: _typing.Sequence[str] = ...) -> None: ...
|
|
543
|
+
def shrinkCaffeModel(src: str | os.PathLike[str], dst: str | os.PathLike[str], layersTypes: _typing.Sequence[str] = ...) -> None: ...
|
|
529
544
|
|
|
530
545
|
def softNMSBoxes(bboxes: _typing.Sequence[cv2.typing.Rect], scores: _typing.Sequence[float], score_threshold: float, nms_threshold: float, top_k: int = ..., sigma: float = ..., method: SoftNMSMethod = ...) -> tuple[_typing.Sequence[float], _typing.Sequence[int]]: ...
|
|
531
546
|
|
|
532
|
-
def writeTextGraph(model: str, output: str) -> None: ...
|
|
547
|
+
def writeTextGraph(model: str | os.PathLike[str], output: str | os.PathLike[str]) -> None: ...
|
|
533
548
|
|
|
534
549
|
|
cv2/fisheye/__init__.pyi
CHANGED
|
@@ -42,9 +42,9 @@ def estimateNewCameraMatrixForUndistortRectify(K: cv2.typing.MatLike, D: cv2.typ
|
|
|
42
42
|
def estimateNewCameraMatrixForUndistortRectify(K: cv2.UMat, D: cv2.UMat, image_size: cv2.typing.Size, R: cv2.UMat, P: cv2.UMat | None = ..., balance: float = ..., new_size: cv2.typing.Size = ..., fov_scale: float = ...) -> cv2.UMat: ...
|
|
43
43
|
|
|
44
44
|
@_typing.overload
|
|
45
|
-
def initUndistortRectifyMap(K: cv2.typing.MatLike, D: cv2.typing.MatLike, R: cv2.typing.MatLike, P: cv2.typing.MatLike, size: cv2.typing.Size, m1type: int, map1: cv2.typing.MatLike | None = ..., map2: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
45
|
+
def initUndistortRectifyMap(K: cv2.typing.MatLike, D: cv2.typing.MatLike | None, R: cv2.typing.MatLike, P: cv2.typing.MatLike, size: cv2.typing.Size, m1type: int, map1: cv2.typing.MatLike | None = ..., map2: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
46
46
|
@_typing.overload
|
|
47
|
-
def initUndistortRectifyMap(K: cv2.UMat, D: cv2.UMat, R: cv2.UMat, P: cv2.UMat, size: cv2.typing.Size, m1type: int, map1: cv2.UMat | None = ..., map2: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
|
|
47
|
+
def initUndistortRectifyMap(K: cv2.UMat, D: cv2.UMat | None, R: cv2.UMat, P: cv2.UMat, size: cv2.typing.Size, m1type: int, map1: cv2.UMat | None = ..., map2: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
|
|
48
48
|
|
|
49
49
|
@_typing.overload
|
|
50
50
|
def projectPoints(objectPoints: cv2.typing.MatLike, rvec: cv2.typing.MatLike, tvec: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, imagePoints: cv2.typing.MatLike | None = ..., alpha: float = ..., jacobian: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
@@ -56,6 +56,11 @@ def solvePnP(objectPoints: cv2.typing.MatLike, imagePoints: cv2.typing.MatLike,
|
|
|
56
56
|
@_typing.overload
|
|
57
57
|
def solvePnP(objectPoints: cv2.UMat, imagePoints: cv2.UMat, cameraMatrix: cv2.UMat, distCoeffs: cv2.UMat, rvec: cv2.UMat | None = ..., tvec: cv2.UMat | None = ..., useExtrinsicGuess: bool = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[bool, cv2.UMat, cv2.UMat]: ...
|
|
58
58
|
|
|
59
|
+
@_typing.overload
|
|
60
|
+
def solvePnPRansac(objectPoints: cv2.typing.MatLike, imagePoints: cv2.typing.MatLike, cameraMatrix: cv2.typing.MatLike, distCoeffs: cv2.typing.MatLike, rvec: cv2.typing.MatLike | None = ..., tvec: cv2.typing.MatLike | None = ..., useExtrinsicGuess: bool = ..., iterationsCount: int = ..., reprojectionError: float = ..., confidence: float = ..., inliers: cv2.typing.MatLike | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
61
|
+
@_typing.overload
|
|
62
|
+
def solvePnPRansac(objectPoints: cv2.UMat, imagePoints: cv2.UMat, cameraMatrix: cv2.UMat, distCoeffs: cv2.UMat, rvec: cv2.UMat | None = ..., tvec: cv2.UMat | None = ..., useExtrinsicGuess: bool = ..., iterationsCount: int = ..., reprojectionError: float = ..., confidence: float = ..., inliers: cv2.UMat | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
63
|
+
|
|
59
64
|
@_typing.overload
|
|
60
65
|
def stereoCalibrate(objectPoints: _typing.Sequence[cv2.typing.MatLike], imagePoints1: _typing.Sequence[cv2.typing.MatLike], imagePoints2: _typing.Sequence[cv2.typing.MatLike], K1: cv2.typing.MatLike, D1: cv2.typing.MatLike, K2: cv2.typing.MatLike, D2: cv2.typing.MatLike, imageSize: cv2.typing.Size, R: cv2.typing.MatLike | None = ..., T: cv2.typing.MatLike | None = ..., rvecs: _typing.Sequence[cv2.typing.MatLike] | None = ..., tvecs: _typing.Sequence[cv2.typing.MatLike] | None = ..., flags: int = ..., criteria: cv2.typing.TermCriteria = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike], _typing.Sequence[cv2.typing.MatLike]]: ...
|
|
61
66
|
@_typing.overload
|
cv2/flann/__init__.pyi
CHANGED
|
@@ -2,6 +2,7 @@ __all__: list[str] = []
|
|
|
2
2
|
|
|
3
3
|
import cv2
|
|
4
4
|
import cv2.typing
|
|
5
|
+
import os
|
|
5
6
|
import typing as _typing
|
|
6
7
|
|
|
7
8
|
|
|
@@ -47,12 +48,12 @@ class Index:
|
|
|
47
48
|
@_typing.overload
|
|
48
49
|
def radiusSearch(self, query: cv2.UMat, radius: float, maxResults: int, indices: cv2.UMat | None = ..., dists: cv2.UMat | None = ..., params: cv2.typing.SearchParams = ...) -> tuple[int, cv2.UMat, cv2.UMat]: ...
|
|
49
50
|
|
|
50
|
-
def save(self, filename: str) -> None: ...
|
|
51
|
+
def save(self, filename: str | os.PathLike[str]) -> None: ...
|
|
51
52
|
|
|
52
53
|
@_typing.overload
|
|
53
|
-
def load(self, features: cv2.typing.MatLike, filename: str) -> bool: ...
|
|
54
|
+
def load(self, features: cv2.typing.MatLike, filename: str | os.PathLike[str]) -> bool: ...
|
|
54
55
|
@_typing.overload
|
|
55
|
-
def load(self, features: cv2.UMat, filename: str) -> bool: ...
|
|
56
|
+
def load(self, features: cv2.UMat, filename: str | os.PathLike[str]) -> bool: ...
|
|
56
57
|
|
|
57
58
|
def release(self) -> None: ...
|
|
58
59
|
|
cv2/gapi/wip/__init__.pyi
CHANGED
|
@@ -38,4 +38,6 @@ def make_capture_src(id: int, properties: cv2.typing.map_int_and_double = ...) -
|
|
|
38
38
|
|
|
39
39
|
def make_gst_src(pipeline: str, outputType: cv2.gapi.wip.gst.GStreamerSource_OutputType = ...) -> IStreamSource: ...
|
|
40
40
|
|
|
41
|
+
def make_py_src(src: IStreamSource) -> IStreamSource: ...
|
|
42
|
+
|
|
41
43
|
|
cv2/instr/__init__.pyi
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
__all__: list[str] = []
|
|
2
|
+
|
|
3
|
+
# Enumerations
|
|
4
|
+
TYPE_GENERAL: int
|
|
5
|
+
TYPE_MARKER: int
|
|
6
|
+
TYPE_WRAPPER: int
|
|
7
|
+
TYPE_FUN: int
|
|
8
|
+
TYPE = int
|
|
9
|
+
"""One of [TYPE_GENERAL, TYPE_MARKER, TYPE_WRAPPER, TYPE_FUN]"""
|
|
10
|
+
|
|
11
|
+
IMPL_PLAIN: int
|
|
12
|
+
IMPL_IPP: int
|
|
13
|
+
IMPL_OPENCL: int
|
|
14
|
+
IMPL = int
|
|
15
|
+
"""One of [IMPL_PLAIN, IMPL_IPP, IMPL_OPENCL]"""
|
|
16
|
+
|
|
17
|
+
FLAGS_NONE: int
|
|
18
|
+
FLAGS_MAPPING: int
|
|
19
|
+
FLAGS_EXPAND_SAME_NAMES: int
|
|
20
|
+
FLAGS = int
|
|
21
|
+
"""One of [FLAGS_NONE, FLAGS_MAPPING, FLAGS_EXPAND_SAME_NAMES]"""
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
|
cv2/load_config_py3.py
CHANGED
cv2/ml/__init__.pyi
CHANGED
|
@@ -2,6 +2,7 @@ __all__: list[str] = []
|
|
|
2
2
|
|
|
3
3
|
import cv2
|
|
4
4
|
import cv2.typing
|
|
5
|
+
import os
|
|
5
6
|
import typing as _typing
|
|
6
7
|
|
|
7
8
|
|
|
@@ -294,7 +295,7 @@ class NormalBayesClassifier(StatModel):
|
|
|
294
295
|
def create(cls) -> NormalBayesClassifier: ...
|
|
295
296
|
|
|
296
297
|
@classmethod
|
|
297
|
-
def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
|
|
298
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> NormalBayesClassifier: ...
|
|
298
299
|
|
|
299
300
|
|
|
300
301
|
class KNearest(StatModel):
|
|
@@ -324,7 +325,7 @@ class KNearest(StatModel):
|
|
|
324
325
|
def create(cls) -> KNearest: ...
|
|
325
326
|
|
|
326
327
|
@classmethod
|
|
327
|
-
def load(cls, filepath: str) -> KNearest: ...
|
|
328
|
+
def load(cls, filepath: str | os.PathLike[str]) -> KNearest: ...
|
|
328
329
|
|
|
329
330
|
|
|
330
331
|
class SVM(StatModel):
|
|
@@ -390,7 +391,7 @@ class SVM(StatModel):
|
|
|
390
391
|
def create(cls) -> SVM: ...
|
|
391
392
|
|
|
392
393
|
@classmethod
|
|
393
|
-
def load(cls, filepath: str) -> SVM: ...
|
|
394
|
+
def load(cls, filepath: str | os.PathLike[str]) -> SVM: ...
|
|
394
395
|
|
|
395
396
|
|
|
396
397
|
class EM(StatModel):
|
|
@@ -442,7 +443,7 @@ class EM(StatModel):
|
|
|
442
443
|
def create(cls) -> EM: ...
|
|
443
444
|
|
|
444
445
|
@classmethod
|
|
445
|
-
def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
|
|
446
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> EM: ...
|
|
446
447
|
|
|
447
448
|
|
|
448
449
|
class DTrees(StatModel):
|
|
@@ -487,7 +488,7 @@ class DTrees(StatModel):
|
|
|
487
488
|
def create(cls) -> DTrees: ...
|
|
488
489
|
|
|
489
490
|
@classmethod
|
|
490
|
-
def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
|
|
491
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> DTrees: ...
|
|
491
492
|
|
|
492
493
|
|
|
493
494
|
class RTrees(DTrees):
|
|
@@ -517,7 +518,7 @@ class RTrees(DTrees):
|
|
|
517
518
|
def create(cls) -> RTrees: ...
|
|
518
519
|
|
|
519
520
|
@classmethod
|
|
520
|
-
def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
|
|
521
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> RTrees: ...
|
|
521
522
|
|
|
522
523
|
|
|
523
524
|
class Boost(DTrees):
|
|
@@ -538,7 +539,7 @@ class Boost(DTrees):
|
|
|
538
539
|
def create(cls) -> Boost: ...
|
|
539
540
|
|
|
540
541
|
@classmethod
|
|
541
|
-
def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
|
|
542
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> Boost: ...
|
|
542
543
|
|
|
543
544
|
|
|
544
545
|
class ANN_MLP(StatModel):
|
|
@@ -610,7 +611,7 @@ class ANN_MLP(StatModel):
|
|
|
610
611
|
def create(cls) -> ANN_MLP: ...
|
|
611
612
|
|
|
612
613
|
@classmethod
|
|
613
|
-
def load(cls, filepath: str) -> ANN_MLP: ...
|
|
614
|
+
def load(cls, filepath: str | os.PathLike[str]) -> ANN_MLP: ...
|
|
614
615
|
|
|
615
616
|
|
|
616
617
|
class LogisticRegression(StatModel):
|
|
@@ -650,7 +651,7 @@ class LogisticRegression(StatModel):
|
|
|
650
651
|
def create(cls) -> LogisticRegression: ...
|
|
651
652
|
|
|
652
653
|
@classmethod
|
|
653
|
-
def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
|
|
654
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> LogisticRegression: ...
|
|
654
655
|
|
|
655
656
|
|
|
656
657
|
class SVMSGD(StatModel):
|
|
@@ -663,7 +664,7 @@ class SVMSGD(StatModel):
|
|
|
663
664
|
def create(cls) -> SVMSGD: ...
|
|
664
665
|
|
|
665
666
|
@classmethod
|
|
666
|
-
def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
|
|
667
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> SVMSGD: ...
|
|
667
668
|
|
|
668
669
|
def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
|
|
669
670
|
|
|
Binary file
|
cv2/typing/__init__.py
CHANGED
|
@@ -58,12 +58,12 @@ __all__ = [
|
|
|
58
58
|
"ExtractMetaCallback",
|
|
59
59
|
]
|
|
60
60
|
|
|
61
|
+
import numpy
|
|
62
|
+
import typing as _typing
|
|
61
63
|
import cv2.dnn
|
|
64
|
+
import cv2
|
|
62
65
|
import cv2.gapi.wip.draw
|
|
63
|
-
import typing as _typing
|
|
64
66
|
import cv2.mat_wrapper
|
|
65
|
-
import numpy
|
|
66
|
-
import cv2
|
|
67
67
|
|
|
68
68
|
|
|
69
69
|
if _typing.TYPE_CHECKING:
|
|
@@ -98,8 +98,8 @@ Size = _typing.Sequence[int]
|
|
|
98
98
|
"""Required length is 2"""
|
|
99
99
|
Size2f = _typing.Sequence[float]
|
|
100
100
|
"""Required length is 2"""
|
|
101
|
-
Scalar = _typing.Sequence[float]
|
|
102
|
-
"""
|
|
101
|
+
Scalar = _typing.Union[_typing.Sequence[float], float]
|
|
102
|
+
"""Max sequence length is at most 4"""
|
|
103
103
|
Point = _typing.Sequence[int]
|
|
104
104
|
"""Required length is 2"""
|
|
105
105
|
Point2i = Point
|
cv2/utils/__init__.pyi
CHANGED
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
__all__: list[str] = []
|
|
2
|
+
|
|
3
|
+
# Enumerations
|
|
4
|
+
LOG_LEVEL_SILENT: int
|
|
5
|
+
LOG_LEVEL_FATAL: int
|
|
6
|
+
LOG_LEVEL_ERROR: int
|
|
7
|
+
LOG_LEVEL_WARNING: int
|
|
8
|
+
LOG_LEVEL_INFO: int
|
|
9
|
+
LOG_LEVEL_DEBUG: int
|
|
10
|
+
LOG_LEVEL_VERBOSE: int
|
|
11
|
+
ENUM_LOG_LEVEL_FORCE_INT: int
|
|
12
|
+
LogLevel = int
|
|
13
|
+
"""One of [LOG_LEVEL_SILENT, LOG_LEVEL_FATAL, LOG_LEVEL_ERROR, LOG_LEVEL_WARNING, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_VERBOSE, ENUM_LOG_LEVEL_FORCE_INT]"""
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
# Functions
|
|
18
|
+
def getLogLevel() -> LogLevel: ...
|
|
19
|
+
|
|
20
|
+
def setLogLevel(logLevel: LogLevel) -> LogLevel: ...
|
|
21
|
+
|
|
22
|
+
|
cv2/version.py
CHANGED