opencv-contrib-python 4.13.0.90__cp37-abi3-macosx_14_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. cv2/.dylibs/libaom.3.13.1.dylib +0 -0
  2. cv2/.dylibs/libavif.16.3.0.dylib +0 -0
  3. cv2/.dylibs/libdav1d.7.dylib +0 -0
  4. cv2/.dylibs/libvmaf.3.dylib +0 -0
  5. cv2/Error/__init__.pyi +118 -0
  6. cv2/LICENSE-3RD-PARTY.txt +3513 -0
  7. cv2/LICENSE.txt +21 -0
  8. cv2/__init__.py +181 -0
  9. cv2/__init__.pyi +6858 -0
  10. cv2/aruco/__init__.pyi +410 -0
  11. cv2/barcode/__init__.pyi +40 -0
  12. cv2/bgsegm/__init__.pyi +202 -0
  13. cv2/bioinspired/__init__.pyi +121 -0
  14. cv2/ccm/__init__.pyi +167 -0
  15. cv2/colored_kinfu/__init__.pyi +96 -0
  16. cv2/config-3.py +24 -0
  17. cv2/config.py +5 -0
  18. cv2/cuda/__init__.pyi +553 -0
  19. cv2/cv2.abi3.so +0 -0
  20. cv2/data/__init__.py +3 -0
  21. cv2/data/haarcascade_eye.xml +12213 -0
  22. cv2/data/haarcascade_eye_tree_eyeglasses.xml +22619 -0
  23. cv2/data/haarcascade_frontalcatface.xml +14382 -0
  24. cv2/data/haarcascade_frontalcatface_extended.xml +13394 -0
  25. cv2/data/haarcascade_frontalface_alt.xml +24350 -0
  26. cv2/data/haarcascade_frontalface_alt2.xml +20719 -0
  27. cv2/data/haarcascade_frontalface_alt_tree.xml +96484 -0
  28. cv2/data/haarcascade_frontalface_default.xml +33314 -0
  29. cv2/data/haarcascade_fullbody.xml +17030 -0
  30. cv2/data/haarcascade_lefteye_2splits.xml +7390 -0
  31. cv2/data/haarcascade_license_plate_rus_16stages.xml +1404 -0
  32. cv2/data/haarcascade_lowerbody.xml +14056 -0
  33. cv2/data/haarcascade_profileface.xml +29690 -0
  34. cv2/data/haarcascade_righteye_2splits.xml +7407 -0
  35. cv2/data/haarcascade_russian_plate_number.xml +2656 -0
  36. cv2/data/haarcascade_smile.xml +6729 -0
  37. cv2/data/haarcascade_upperbody.xml +28134 -0
  38. cv2/datasets/__init__.pyi +80 -0
  39. cv2/detail/__init__.pyi +627 -0
  40. cv2/dnn/__init__.pyi +549 -0
  41. cv2/dnn_superres/__init__.pyi +37 -0
  42. cv2/dpm/__init__.pyi +10 -0
  43. cv2/dynafu/__init__.pyi +43 -0
  44. cv2/face/__init__.pyi +220 -0
  45. cv2/fisheye/__init__.pyi +88 -0
  46. cv2/flann/__init__.pyi +65 -0
  47. cv2/ft/__init__.pyi +98 -0
  48. cv2/gapi/__init__.py +323 -0
  49. cv2/gapi/__init__.pyi +349 -0
  50. cv2/gapi/core/__init__.pyi +7 -0
  51. cv2/gapi/core/cpu/__init__.pyi +9 -0
  52. cv2/gapi/core/fluid/__init__.pyi +9 -0
  53. cv2/gapi/core/ocl/__init__.pyi +9 -0
  54. cv2/gapi/ie/__init__.pyi +51 -0
  55. cv2/gapi/ie/detail/__init__.pyi +12 -0
  56. cv2/gapi/imgproc/__init__.pyi +5 -0
  57. cv2/gapi/imgproc/fluid/__init__.pyi +9 -0
  58. cv2/gapi/oak/__init__.pyi +37 -0
  59. cv2/gapi/onnx/__init__.pyi +55 -0
  60. cv2/gapi/onnx/ep/__init__.pyi +63 -0
  61. cv2/gapi/ot/__init__.pyi +32 -0
  62. cv2/gapi/ot/cpu/__init__.pyi +9 -0
  63. cv2/gapi/ov/__init__.pyi +74 -0
  64. cv2/gapi/own/__init__.pyi +5 -0
  65. cv2/gapi/own/detail/__init__.pyi +10 -0
  66. cv2/gapi/render/__init__.pyi +5 -0
  67. cv2/gapi/render/ocv/__init__.pyi +9 -0
  68. cv2/gapi/streaming/__init__.pyi +42 -0
  69. cv2/gapi/video/__init__.pyi +10 -0
  70. cv2/gapi/wip/__init__.pyi +43 -0
  71. cv2/gapi/wip/draw/__init__.pyi +119 -0
  72. cv2/gapi/wip/gst/__init__.pyi +17 -0
  73. cv2/gapi/wip/onevpl/__init__.pyi +16 -0
  74. cv2/hfs/__init__.pyi +53 -0
  75. cv2/img_hash/__init__.pyi +116 -0
  76. cv2/instr/__init__.pyi +24 -0
  77. cv2/intensity_transform/__init__.pyi +27 -0
  78. cv2/ipp/__init__.pyi +14 -0
  79. cv2/kinfu/__init__.pyi +133 -0
  80. cv2/kinfu/detail/__init__.pyi +7 -0
  81. cv2/large_kinfu/__init__.pyi +73 -0
  82. cv2/legacy/__init__.pyi +93 -0
  83. cv2/line_descriptor/__init__.pyi +112 -0
  84. cv2/linemod/__init__.pyi +151 -0
  85. cv2/load_config_py2.py +6 -0
  86. cv2/load_config_py3.py +9 -0
  87. cv2/mat_wrapper/__init__.py +40 -0
  88. cv2/mcc/__init__.pyi +109 -0
  89. cv2/misc/__init__.py +1 -0
  90. cv2/misc/version.py +5 -0
  91. cv2/ml/__init__.pyi +696 -0
  92. cv2/motempl/__init__.pyi +29 -0
  93. cv2/multicalib/__init__.pyi +10 -0
  94. cv2/ocl/__init__.pyi +252 -0
  95. cv2/ogl/__init__.pyi +51 -0
  96. cv2/omnidir/__init__.pyi +68 -0
  97. cv2/optflow/__init__.pyi +286 -0
  98. cv2/parallel/__init__.pyi +6 -0
  99. cv2/phase_unwrapping/__init__.pyi +41 -0
  100. cv2/plot/__init__.pyi +64 -0
  101. cv2/ppf_match_3d/__init__.pyi +91 -0
  102. cv2/py.typed +0 -0
  103. cv2/quality/__init__.pyi +149 -0
  104. cv2/rapid/__init__.pyi +91 -0
  105. cv2/reg/__init__.pyi +210 -0
  106. cv2/rgbd/__init__.pyi +449 -0
  107. cv2/saliency/__init__.pyi +117 -0
  108. cv2/samples/__init__.pyi +12 -0
  109. cv2/segmentation/__init__.pyi +39 -0
  110. cv2/signal/__init__.pyi +14 -0
  111. cv2/stereo/__init__.pyi +88 -0
  112. cv2/structured_light/__init__.pyi +94 -0
  113. cv2/text/__init__.pyi +204 -0
  114. cv2/typing/__init__.py +180 -0
  115. cv2/utils/__init__.py +14 -0
  116. cv2/utils/__init__.pyi +110 -0
  117. cv2/utils/fs/__init__.pyi +6 -0
  118. cv2/utils/logging/__init__.pyi +22 -0
  119. cv2/utils/nested/__init__.pyi +31 -0
  120. cv2/version.py +5 -0
  121. cv2/videoio_registry/__init__.pyi +31 -0
  122. cv2/videostab/__init__.pyi +16 -0
  123. cv2/wechat_qrcode/__init__.pyi +23 -0
  124. cv2/xfeatures2d/__init__.pyi +537 -0
  125. cv2/ximgproc/__init__.pyi +746 -0
  126. cv2/ximgproc/segmentation/__init__.pyi +116 -0
  127. cv2/xphoto/__init__.pyi +142 -0
  128. opencv_contrib_python-4.13.0.90.dist-info/LICENSE-3RD-PARTY.txt +3513 -0
  129. opencv_contrib_python-4.13.0.90.dist-info/LICENSE.txt +21 -0
  130. opencv_contrib_python-4.13.0.90.dist-info/METADATA +300 -0
  131. opencv_contrib_python-4.13.0.90.dist-info/RECORD +133 -0
  132. opencv_contrib_python-4.13.0.90.dist-info/WHEEL +6 -0
  133. opencv_contrib_python-4.13.0.90.dist-info/top_level.txt +1 -0
cv2/ml/__init__.pyi ADDED
@@ -0,0 +1,696 @@
1
+ __all__: list[str] = []
2
+
3
+ import cv2
4
+ import cv2.typing
5
+ import os
6
+ import typing as _typing
7
+
8
+
9
+ # Enumerations
10
+ VAR_NUMERICAL: int
11
+ VAR_ORDERED: int
12
+ VAR_CATEGORICAL: int
13
+ VariableTypes = int
14
+ """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
15
+
16
+ TEST_ERROR: int
17
+ TRAIN_ERROR: int
18
+ ErrorTypes = int
19
+ """One of [TEST_ERROR, TRAIN_ERROR]"""
20
+
21
+ ROW_SAMPLE: int
22
+ COL_SAMPLE: int
23
+ SampleTypes = int
24
+ """One of [ROW_SAMPLE, COL_SAMPLE]"""
25
+
26
+
27
+ StatModel_UPDATE_MODEL: int
28
+ STAT_MODEL_UPDATE_MODEL: int
29
+ StatModel_RAW_OUTPUT: int
30
+ STAT_MODEL_RAW_OUTPUT: int
31
+ StatModel_COMPRESSED_INPUT: int
32
+ STAT_MODEL_COMPRESSED_INPUT: int
33
+ StatModel_PREPROCESSED_INPUT: int
34
+ STAT_MODEL_PREPROCESSED_INPUT: int
35
+ StatModel_Flags = int
36
+ """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
37
+
38
+ KNearest_BRUTE_FORCE: int
39
+ KNEAREST_BRUTE_FORCE: int
40
+ KNearest_KDTREE: int
41
+ KNEAREST_KDTREE: int
42
+ KNearest_Types = int
43
+ """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
44
+
45
+ SVM_C_SVC: int
46
+ SVM_NU_SVC: int
47
+ SVM_ONE_CLASS: int
48
+ SVM_EPS_SVR: int
49
+ SVM_NU_SVR: int
50
+ SVM_Types = int
51
+ """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
52
+
53
+ SVM_CUSTOM: int
54
+ SVM_LINEAR: int
55
+ SVM_POLY: int
56
+ SVM_RBF: int
57
+ SVM_SIGMOID: int
58
+ SVM_CHI2: int
59
+ SVM_INTER: int
60
+ SVM_KernelTypes = int
61
+ """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
62
+
63
+ SVM_C: int
64
+ SVM_GAMMA: int
65
+ SVM_P: int
66
+ SVM_NU: int
67
+ SVM_COEF: int
68
+ SVM_DEGREE: int
69
+ SVM_ParamTypes = int
70
+ """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
71
+
72
+ EM_COV_MAT_SPHERICAL: int
73
+ EM_COV_MAT_DIAGONAL: int
74
+ EM_COV_MAT_GENERIC: int
75
+ EM_COV_MAT_DEFAULT: int
76
+ EM_Types = int
77
+ """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
78
+
79
+ EM_DEFAULT_NCLUSTERS: int
80
+ EM_DEFAULT_MAX_ITERS: int
81
+ EM_START_E_STEP: int
82
+ EM_START_M_STEP: int
83
+ EM_START_AUTO_STEP: int
84
+
85
+ DTrees_PREDICT_AUTO: int
86
+ DTREES_PREDICT_AUTO: int
87
+ DTrees_PREDICT_SUM: int
88
+ DTREES_PREDICT_SUM: int
89
+ DTrees_PREDICT_MAX_VOTE: int
90
+ DTREES_PREDICT_MAX_VOTE: int
91
+ DTrees_PREDICT_MASK: int
92
+ DTREES_PREDICT_MASK: int
93
+ DTrees_Flags = int
94
+ """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
95
+
96
+ Boost_DISCRETE: int
97
+ BOOST_DISCRETE: int
98
+ Boost_REAL: int
99
+ BOOST_REAL: int
100
+ Boost_LOGIT: int
101
+ BOOST_LOGIT: int
102
+ Boost_GENTLE: int
103
+ BOOST_GENTLE: int
104
+ Boost_Types = int
105
+ """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
106
+
107
+ ANN_MLP_BACKPROP: int
108
+ ANN_MLP_RPROP: int
109
+ ANN_MLP_ANNEAL: int
110
+ ANN_MLP_TrainingMethods = int
111
+ """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
112
+
113
+ ANN_MLP_IDENTITY: int
114
+ ANN_MLP_SIGMOID_SYM: int
115
+ ANN_MLP_GAUSSIAN: int
116
+ ANN_MLP_RELU: int
117
+ ANN_MLP_LEAKYRELU: int
118
+ ANN_MLP_ActivationFunctions = int
119
+ """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
120
+
121
+ ANN_MLP_UPDATE_WEIGHTS: int
122
+ ANN_MLP_NO_INPUT_SCALE: int
123
+ ANN_MLP_NO_OUTPUT_SCALE: int
124
+ ANN_MLP_TrainFlags = int
125
+ """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
126
+
127
+ LogisticRegression_REG_DISABLE: int
128
+ LOGISTIC_REGRESSION_REG_DISABLE: int
129
+ LogisticRegression_REG_L1: int
130
+ LOGISTIC_REGRESSION_REG_L1: int
131
+ LogisticRegression_REG_L2: int
132
+ LOGISTIC_REGRESSION_REG_L2: int
133
+ LogisticRegression_RegKinds = int
134
+ """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
135
+
136
+ LogisticRegression_BATCH: int
137
+ LOGISTIC_REGRESSION_BATCH: int
138
+ LogisticRegression_MINI_BATCH: int
139
+ LOGISTIC_REGRESSION_MINI_BATCH: int
140
+ LogisticRegression_Methods = int
141
+ """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
142
+
143
+ SVMSGD_SGD: int
144
+ SVMSGD_ASGD: int
145
+ SVMSGD_SvmsgdType = int
146
+ """One of [SVMSGD_SGD, SVMSGD_ASGD]"""
147
+
148
+ SVMSGD_SOFT_MARGIN: int
149
+ SVMSGD_HARD_MARGIN: int
150
+ SVMSGD_MarginType = int
151
+ """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
152
+
153
+
154
+ # Classes
155
+ class ParamGrid:
156
+ minVal: float
157
+ maxVal: float
158
+ logStep: float
159
+
160
+ # Functions
161
+ @classmethod
162
+ def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
163
+
164
+
165
+ class TrainData:
166
+ # Functions
167
+ def getLayout(self) -> int: ...
168
+
169
+ def getNTrainSamples(self) -> int: ...
170
+
171
+ def getNTestSamples(self) -> int: ...
172
+
173
+ def getNSamples(self) -> int: ...
174
+
175
+ def getNVars(self) -> int: ...
176
+
177
+ def getNAllVars(self) -> int: ...
178
+
179
+ @_typing.overload
180
+ def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
181
+ @_typing.overload
182
+ def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
183
+
184
+ def getSamples(self) -> cv2.typing.MatLike: ...
185
+
186
+ def getMissing(self) -> cv2.typing.MatLike: ...
187
+
188
+ def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
189
+
190
+ def getTrainResponses(self) -> cv2.typing.MatLike: ...
191
+
192
+ def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
193
+
194
+ def getTestResponses(self) -> cv2.typing.MatLike: ...
195
+
196
+ def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
197
+
198
+ def getResponses(self) -> cv2.typing.MatLike: ...
199
+
200
+ def getNormCatResponses(self) -> cv2.typing.MatLike: ...
201
+
202
+ def getSampleWeights(self) -> cv2.typing.MatLike: ...
203
+
204
+ def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
205
+
206
+ def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
207
+
208
+ def getVarIdx(self) -> cv2.typing.MatLike: ...
209
+
210
+ def getVarType(self) -> cv2.typing.MatLike: ...
211
+
212
+ def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
213
+
214
+ def getResponseType(self) -> int: ...
215
+
216
+ def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
217
+
218
+ def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
219
+
220
+ @_typing.overload
221
+ def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
222
+ @_typing.overload
223
+ def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
224
+
225
+ def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
226
+
227
+ def getCatCount(self, vi: int) -> int: ...
228
+
229
+ def getClassLabels(self) -> cv2.typing.MatLike: ...
230
+
231
+ def getCatOfs(self) -> cv2.typing.MatLike: ...
232
+
233
+ def getCatMap(self) -> cv2.typing.MatLike: ...
234
+
235
+ def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
236
+
237
+ def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
238
+
239
+ def shuffleTrainTest(self) -> None: ...
240
+
241
+ def getTestSamples(self) -> cv2.typing.MatLike: ...
242
+
243
+ def getNames(self, names: _typing.Sequence[str]) -> None: ...
244
+
245
+ @staticmethod
246
+ def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
247
+
248
+ @staticmethod
249
+ def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
250
+
251
+ @classmethod
252
+ @_typing.overload
253
+ def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
254
+ @classmethod
255
+ @_typing.overload
256
+ def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
257
+
258
+
259
+ class StatModel(cv2.Algorithm):
260
+ # Functions
261
+ def getVarCount(self) -> int: ...
262
+
263
+ def empty(self) -> bool: ...
264
+
265
+ def isTrained(self) -> bool: ...
266
+
267
+ def isClassifier(self) -> bool: ...
268
+
269
+ @_typing.overload
270
+ def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
271
+ @_typing.overload
272
+ def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
273
+ @_typing.overload
274
+ def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
275
+
276
+ @_typing.overload
277
+ def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
278
+ @_typing.overload
279
+ def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
280
+
281
+ @_typing.overload
282
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
283
+ @_typing.overload
284
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
285
+
286
+
287
+ class NormalBayesClassifier(StatModel):
288
+ # Functions
289
+ @_typing.overload
290
+ def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
291
+ @_typing.overload
292
+ def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
293
+
294
+ @classmethod
295
+ def create(cls) -> NormalBayesClassifier: ...
296
+
297
+ @classmethod
298
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> NormalBayesClassifier: ...
299
+
300
+
301
+ class KNearest(StatModel):
302
+ # Functions
303
+ def getDefaultK(self) -> int: ...
304
+
305
+ def setDefaultK(self, val: int) -> None: ...
306
+
307
+ def getIsClassifier(self) -> bool: ...
308
+
309
+ def setIsClassifier(self, val: bool) -> None: ...
310
+
311
+ def getEmax(self) -> int: ...
312
+
313
+ def setEmax(self, val: int) -> None: ...
314
+
315
+ def getAlgorithmType(self) -> int: ...
316
+
317
+ def setAlgorithmType(self, val: int) -> None: ...
318
+
319
+ @_typing.overload
320
+ def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
321
+ @_typing.overload
322
+ def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
323
+
324
+ @classmethod
325
+ def create(cls) -> KNearest: ...
326
+
327
+ @classmethod
328
+ def load(cls, filepath: str | os.PathLike[str]) -> KNearest: ...
329
+
330
+
331
+ class SVM(StatModel):
332
+ # Functions
333
+ def getType(self) -> int: ...
334
+
335
+ def setType(self, val: int) -> None: ...
336
+
337
+ def getGamma(self) -> float: ...
338
+
339
+ def setGamma(self, val: float) -> None: ...
340
+
341
+ def getCoef0(self) -> float: ...
342
+
343
+ def setCoef0(self, val: float) -> None: ...
344
+
345
+ def getDegree(self) -> float: ...
346
+
347
+ def setDegree(self, val: float) -> None: ...
348
+
349
+ def getC(self) -> float: ...
350
+
351
+ def setC(self, val: float) -> None: ...
352
+
353
+ def getNu(self) -> float: ...
354
+
355
+ def setNu(self, val: float) -> None: ...
356
+
357
+ def getP(self) -> float: ...
358
+
359
+ def setP(self, val: float) -> None: ...
360
+
361
+ def getClassWeights(self) -> cv2.typing.MatLike: ...
362
+
363
+ def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
364
+
365
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
366
+
367
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
368
+
369
+ def getKernelType(self) -> int: ...
370
+
371
+ def setKernel(self, kernelType: int) -> None: ...
372
+
373
+ @_typing.overload
374
+ def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
375
+ @_typing.overload
376
+ def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
377
+
378
+ def getSupportVectors(self) -> cv2.typing.MatLike: ...
379
+
380
+ def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
381
+
382
+ @_typing.overload
383
+ def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
384
+ @_typing.overload
385
+ def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
386
+
387
+ @staticmethod
388
+ def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
389
+
390
+ @classmethod
391
+ def create(cls) -> SVM: ...
392
+
393
+ @classmethod
394
+ def load(cls, filepath: str | os.PathLike[str]) -> SVM: ...
395
+
396
+
397
+ class EM(StatModel):
398
+ # Functions
399
+ def getClustersNumber(self) -> int: ...
400
+
401
+ def setClustersNumber(self, val: int) -> None: ...
402
+
403
+ def getCovarianceMatrixType(self) -> int: ...
404
+
405
+ def setCovarianceMatrixType(self, val: int) -> None: ...
406
+
407
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
408
+
409
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
410
+
411
+ def getWeights(self) -> cv2.typing.MatLike: ...
412
+
413
+ def getMeans(self) -> cv2.typing.MatLike: ...
414
+
415
+ def getCovs(self, covs: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
416
+
417
+ @_typing.overload
418
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
419
+ @_typing.overload
420
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
421
+
422
+ @_typing.overload
423
+ def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
424
+ @_typing.overload
425
+ def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
426
+
427
+ @_typing.overload
428
+ def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
429
+ @_typing.overload
430
+ def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
431
+
432
+ @_typing.overload
433
+ def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
434
+ @_typing.overload
435
+ def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
436
+
437
+ @_typing.overload
438
+ def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
439
+ @_typing.overload
440
+ def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
441
+
442
+ @classmethod
443
+ def create(cls) -> EM: ...
444
+
445
+ @classmethod
446
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> EM: ...
447
+
448
+
449
+ class DTrees(StatModel):
450
+ # Functions
451
+ def getMaxCategories(self) -> int: ...
452
+
453
+ def setMaxCategories(self, val: int) -> None: ...
454
+
455
+ def getMaxDepth(self) -> int: ...
456
+
457
+ def setMaxDepth(self, val: int) -> None: ...
458
+
459
+ def getMinSampleCount(self) -> int: ...
460
+
461
+ def setMinSampleCount(self, val: int) -> None: ...
462
+
463
+ def getCVFolds(self) -> int: ...
464
+
465
+ def setCVFolds(self, val: int) -> None: ...
466
+
467
+ def getUseSurrogates(self) -> bool: ...
468
+
469
+ def setUseSurrogates(self, val: bool) -> None: ...
470
+
471
+ def getUse1SERule(self) -> bool: ...
472
+
473
+ def setUse1SERule(self, val: bool) -> None: ...
474
+
475
+ def getTruncatePrunedTree(self) -> bool: ...
476
+
477
+ def setTruncatePrunedTree(self, val: bool) -> None: ...
478
+
479
+ def getRegressionAccuracy(self) -> float: ...
480
+
481
+ def setRegressionAccuracy(self, val: float) -> None: ...
482
+
483
+ def getPriors(self) -> cv2.typing.MatLike: ...
484
+
485
+ def setPriors(self, val: cv2.typing.MatLike) -> None: ...
486
+
487
+ @classmethod
488
+ def create(cls) -> DTrees: ...
489
+
490
+ @classmethod
491
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> DTrees: ...
492
+
493
+
494
+ class RTrees(DTrees):
495
+ # Functions
496
+ def getCalculateVarImportance(self) -> bool: ...
497
+
498
+ def setCalculateVarImportance(self, val: bool) -> None: ...
499
+
500
+ def getActiveVarCount(self) -> int: ...
501
+
502
+ def setActiveVarCount(self, val: int) -> None: ...
503
+
504
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
505
+
506
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
507
+
508
+ def getVarImportance(self) -> cv2.typing.MatLike: ...
509
+
510
+ @_typing.overload
511
+ def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
512
+ @_typing.overload
513
+ def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
514
+
515
+ def getOOBError(self) -> float: ...
516
+
517
+ @classmethod
518
+ def create(cls) -> RTrees: ...
519
+
520
+ @classmethod
521
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> RTrees: ...
522
+
523
+
524
+ class Boost(DTrees):
525
+ # Functions
526
+ def getBoostType(self) -> int: ...
527
+
528
+ def setBoostType(self, val: int) -> None: ...
529
+
530
+ def getWeakCount(self) -> int: ...
531
+
532
+ def setWeakCount(self, val: int) -> None: ...
533
+
534
+ def getWeightTrimRate(self) -> float: ...
535
+
536
+ def setWeightTrimRate(self, val: float) -> None: ...
537
+
538
+ @classmethod
539
+ def create(cls) -> Boost: ...
540
+
541
+ @classmethod
542
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> Boost: ...
543
+
544
+
545
+ class ANN_MLP(StatModel):
546
+ # Functions
547
+ def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
548
+
549
+ def getTrainMethod(self) -> int: ...
550
+
551
+ def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
552
+
553
+ @_typing.overload
554
+ def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
555
+ @_typing.overload
556
+ def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
557
+
558
+ def getLayerSizes(self) -> cv2.typing.MatLike: ...
559
+
560
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
561
+
562
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
563
+
564
+ def getBackpropWeightScale(self) -> float: ...
565
+
566
+ def setBackpropWeightScale(self, val: float) -> None: ...
567
+
568
+ def getBackpropMomentumScale(self) -> float: ...
569
+
570
+ def setBackpropMomentumScale(self, val: float) -> None: ...
571
+
572
+ def getRpropDW0(self) -> float: ...
573
+
574
+ def setRpropDW0(self, val: float) -> None: ...
575
+
576
+ def getRpropDWPlus(self) -> float: ...
577
+
578
+ def setRpropDWPlus(self, val: float) -> None: ...
579
+
580
+ def getRpropDWMinus(self) -> float: ...
581
+
582
+ def setRpropDWMinus(self, val: float) -> None: ...
583
+
584
+ def getRpropDWMin(self) -> float: ...
585
+
586
+ def setRpropDWMin(self, val: float) -> None: ...
587
+
588
+ def getRpropDWMax(self) -> float: ...
589
+
590
+ def setRpropDWMax(self, val: float) -> None: ...
591
+
592
+ def getAnnealInitialT(self) -> float: ...
593
+
594
+ def setAnnealInitialT(self, val: float) -> None: ...
595
+
596
+ def getAnnealFinalT(self) -> float: ...
597
+
598
+ def setAnnealFinalT(self, val: float) -> None: ...
599
+
600
+ def getAnnealCoolingRatio(self) -> float: ...
601
+
602
+ def setAnnealCoolingRatio(self, val: float) -> None: ...
603
+
604
+ def getAnnealItePerStep(self) -> int: ...
605
+
606
+ def setAnnealItePerStep(self, val: int) -> None: ...
607
+
608
+ def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
609
+
610
+ @classmethod
611
+ def create(cls) -> ANN_MLP: ...
612
+
613
+ @classmethod
614
+ def load(cls, filepath: str | os.PathLike[str]) -> ANN_MLP: ...
615
+
616
+
617
+ class LogisticRegression(StatModel):
618
+ # Functions
619
+ def getLearningRate(self) -> float: ...
620
+
621
+ def setLearningRate(self, val: float) -> None: ...
622
+
623
+ def getIterations(self) -> int: ...
624
+
625
+ def setIterations(self, val: int) -> None: ...
626
+
627
+ def getRegularization(self) -> int: ...
628
+
629
+ def setRegularization(self, val: int) -> None: ...
630
+
631
+ def getTrainMethod(self) -> int: ...
632
+
633
+ def setTrainMethod(self, val: int) -> None: ...
634
+
635
+ def getMiniBatchSize(self) -> int: ...
636
+
637
+ def setMiniBatchSize(self, val: int) -> None: ...
638
+
639
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
640
+
641
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
642
+
643
+ @_typing.overload
644
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
645
+ @_typing.overload
646
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
647
+
648
+ def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
649
+
650
+ @classmethod
651
+ def create(cls) -> LogisticRegression: ...
652
+
653
+ @classmethod
654
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> LogisticRegression: ...
655
+
656
+
657
+ class SVMSGD(StatModel):
658
+ # Functions
659
+ def getWeights(self) -> cv2.typing.MatLike: ...
660
+
661
+ def getShift(self) -> float: ...
662
+
663
+ @classmethod
664
+ def create(cls) -> SVMSGD: ...
665
+
666
+ @classmethod
667
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> SVMSGD: ...
668
+
669
+ def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
670
+
671
+ def getSvmsgdType(self) -> int: ...
672
+
673
+ def setSvmsgdType(self, svmsgdType: int) -> None: ...
674
+
675
+ def getMarginType(self) -> int: ...
676
+
677
+ def setMarginType(self, marginType: int) -> None: ...
678
+
679
+ def getMarginRegularization(self) -> float: ...
680
+
681
+ def setMarginRegularization(self, marginRegularization: float) -> None: ...
682
+
683
+ def getInitialStepSize(self) -> float: ...
684
+
685
+ def setInitialStepSize(self, InitialStepSize: float) -> None: ...
686
+
687
+ def getStepDecreasingPower(self) -> float: ...
688
+
689
+ def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
690
+
691
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
692
+
693
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
694
+
695
+
696
+