opencv-contrib-python 4.12.0.88__cp37-abi3-win32.whl → 4.13.0.92__cp37-abi3-win32.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
cv2/aruco/__init__.pyi CHANGED
@@ -185,6 +185,11 @@ class ArucoDetector(cv2.Algorithm):
185
185
  @_typing.overload
186
186
  def detectMarkers(self, image: cv2.UMat, corners: _typing.Sequence[cv2.UMat] | None = ..., ids: cv2.UMat | None = ..., rejectedImgPoints: _typing.Sequence[cv2.UMat] | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, _typing.Sequence[cv2.UMat]]: ...
187
187
 
188
+ @_typing.overload
189
+ def detectMarkersWithConfidence(self, image: cv2.typing.MatLike, corners: _typing.Sequence[cv2.typing.MatLike] | None = ..., ids: cv2.typing.MatLike | None = ..., markersConfidence: cv2.typing.MatLike | None = ..., rejectedImgPoints: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike]]: ...
190
+ @_typing.overload
191
+ def detectMarkersWithConfidence(self, image: cv2.UMat, corners: _typing.Sequence[cv2.UMat] | None = ..., ids: cv2.UMat | None = ..., markersConfidence: cv2.UMat | None = ..., rejectedImgPoints: _typing.Sequence[cv2.UMat] | None = ...) -> tuple[_typing.Sequence[cv2.UMat], cv2.UMat, cv2.UMat, _typing.Sequence[cv2.UMat]]: ...
192
+
188
193
  @_typing.overload
189
194
  def refineDetectedMarkers(self, image: cv2.typing.MatLike, board: Board, detectedCorners: _typing.Sequence[cv2.typing.MatLike], detectedIds: cv2.typing.MatLike, rejectedCorners: _typing.Sequence[cv2.typing.MatLike], cameraMatrix: cv2.typing.MatLike | None = ..., distCoeffs: cv2.typing.MatLike | None = ..., recoveredIdxs: cv2.typing.MatLike | None = ...) -> tuple[_typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike, _typing.Sequence[cv2.typing.MatLike], cv2.typing.MatLike]: ...
190
195
  @_typing.overload
@@ -247,7 +252,7 @@ class Dictionary:
247
252
  def getByteListFromBits(bits: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
248
253
 
249
254
  @staticmethod
250
- def getBitsFromByteList(byteList: cv2.typing.MatLike, markerSize: int) -> cv2.typing.MatLike: ...
255
+ def getBitsFromByteList(byteList: cv2.typing.MatLike, markerSize: int, rotationId: int = ...) -> cv2.typing.MatLike: ...
251
256
 
252
257
 
253
258
  class CharucoParameters:
cv2/barcode/__init__.pyi CHANGED
@@ -2,6 +2,7 @@ __all__: list[str] = []
2
2
 
3
3
  import cv2
4
4
  import cv2.typing
5
+ import os
5
6
  import typing as _typing
6
7
 
7
8
 
@@ -11,7 +12,7 @@ class BarcodeDetector(cv2.GraphicalCodeDetector):
11
12
  @_typing.overload
12
13
  def __init__(self) -> None: ...
13
14
  @_typing.overload
14
- def __init__(self, prototxt_path: str, model_path: str) -> None: ...
15
+ def __init__(self, prototxt_path: str | os.PathLike[str], model_path: str | os.PathLike[str]) -> None: ...
15
16
 
16
17
  @_typing.overload
17
18
  def decodeWithType(self, img: cv2.typing.MatLike, points: cv2.typing.MatLike) -> tuple[bool, _typing.Sequence[str], _typing.Sequence[str]]: ...
cv2/bgsegm/__init__.pyi CHANGED
@@ -16,6 +16,15 @@ LSBPCameraMotionCompensation = int
16
16
  # Classes
17
17
  class BackgroundSubtractorMOG(cv2.BackgroundSubtractor):
18
18
  # Functions
19
+ @_typing.overload
20
+ def apply(self, image: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
21
+ @_typing.overload
22
+ def apply(self, image: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
23
+ @_typing.overload
24
+ def apply(self, image: cv2.typing.MatLike, knownForegroundMask: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
25
+ @_typing.overload
26
+ def apply(self, image: cv2.UMat, knownForegroundMask: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
27
+
19
28
  def getHistory(self) -> int: ...
20
29
 
21
30
  def setHistory(self, nframes: int) -> None: ...
@@ -39,6 +48,10 @@ class BackgroundSubtractorGMG(cv2.BackgroundSubtractor):
39
48
  def apply(self, image: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
40
49
  @_typing.overload
41
50
  def apply(self, image: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
51
+ @_typing.overload
52
+ def apply(self, image: cv2.typing.MatLike, knownForegroundMask: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
53
+ @_typing.overload
54
+ def apply(self, image: cv2.UMat, knownForegroundMask: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
42
55
 
43
56
  @_typing.overload
44
57
  def getBackgroundImage(self, backgroundImage: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@@ -92,6 +105,10 @@ class BackgroundSubtractorCNT(cv2.BackgroundSubtractor):
92
105
  def apply(self, image: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
93
106
  @_typing.overload
94
107
  def apply(self, image: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
108
+ @_typing.overload
109
+ def apply(self, image: cv2.typing.MatLike, knownForegroundMask: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
110
+ @_typing.overload
111
+ def apply(self, image: cv2.UMat, knownForegroundMask: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
95
112
 
96
113
  @_typing.overload
97
114
  def getBackgroundImage(self, backgroundImage: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@@ -121,6 +138,10 @@ class BackgroundSubtractorGSOC(cv2.BackgroundSubtractor):
121
138
  def apply(self, image: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
122
139
  @_typing.overload
123
140
  def apply(self, image: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
141
+ @_typing.overload
142
+ def apply(self, image: cv2.typing.MatLike, knownForegroundMask: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
143
+ @_typing.overload
144
+ def apply(self, image: cv2.UMat, knownForegroundMask: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
124
145
 
125
146
  @_typing.overload
126
147
  def getBackgroundImage(self, backgroundImage: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@@ -134,6 +155,10 @@ class BackgroundSubtractorLSBP(cv2.BackgroundSubtractor):
134
155
  def apply(self, image: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
135
156
  @_typing.overload
136
157
  def apply(self, image: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
158
+ @_typing.overload
159
+ def apply(self, image: cv2.typing.MatLike, knownForegroundMask: cv2.typing.MatLike, fgmask: cv2.typing.MatLike | None = ..., learningRate: float = ...) -> cv2.typing.MatLike: ...
160
+ @_typing.overload
161
+ def apply(self, image: cv2.UMat, knownForegroundMask: cv2.UMat, fgmask: cv2.UMat | None = ..., learningRate: float = ...) -> cv2.UMat: ...
137
162
 
138
163
  @_typing.overload
139
164
  def getBackgroundImage(self, backgroundImage: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
cv2/cv2.pyd CHANGED
Binary file
cv2/dnn/__init__.pyi CHANGED
@@ -3,6 +3,7 @@ __all__: list[str] = []
3
3
  import cv2
4
4
  import cv2.typing
5
5
  import numpy
6
+ import os
6
7
  import sys
7
8
  import typing as _typing
8
9
  if sys.version_info >= (3, 8):
@@ -112,7 +113,7 @@ class Net:
112
113
 
113
114
  @classmethod
114
115
  @_typing.overload
115
- def readFromModelOptimizer(cls, xml: str, bin: str) -> Net: ...
116
+ def readFromModelOptimizer(cls, xml: str | os.PathLike[str], bin: str | os.PathLike[str]) -> Net: ...
116
117
  @classmethod
117
118
  @_typing.overload
118
119
  def readFromModelOptimizer(cls, bufferModelConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
@@ -121,9 +122,9 @@ class Net:
121
122
 
122
123
  def dump(self) -> str: ...
123
124
 
124
- def dumpToFile(self, path: str) -> None: ...
125
+ def dumpToFile(self, path: str | os.PathLike[str]) -> None: ...
125
126
 
126
- def dumpToPbtxt(self, path: str) -> None: ...
127
+ def dumpToPbtxt(self, path: str | os.PathLike[str]) -> None: ...
127
128
 
128
129
  def addLayer(self, name: str, type: str, dtype: int, params: cv2.typing.LayerParams) -> int: ...
129
130
 
@@ -253,7 +254,7 @@ class Image2BlobParams:
253
254
  class Model:
254
255
  # Functions
255
256
  @_typing.overload
256
- def __init__(self, model: str, config: str = ...) -> None: ...
257
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
257
258
  @_typing.overload
258
259
  def __init__(self, network: Net) -> None: ...
259
260
 
@@ -289,7 +290,7 @@ class Model:
289
290
  class ClassificationModel(Model):
290
291
  # Functions
291
292
  @_typing.overload
292
- def __init__(self, model: str, config: str = ...) -> None: ...
293
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
293
294
  @_typing.overload
294
295
  def __init__(self, network: Net) -> None: ...
295
296
 
@@ -306,7 +307,7 @@ class ClassificationModel(Model):
306
307
  class KeypointsModel(Model):
307
308
  # Functions
308
309
  @_typing.overload
309
- def __init__(self, model: str, config: str = ...) -> None: ...
310
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
310
311
  @_typing.overload
311
312
  def __init__(self, network: Net) -> None: ...
312
313
 
@@ -319,7 +320,7 @@ class KeypointsModel(Model):
319
320
  class SegmentationModel(Model):
320
321
  # Functions
321
322
  @_typing.overload
322
- def __init__(self, model: str, config: str = ...) -> None: ...
323
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
323
324
  @_typing.overload
324
325
  def __init__(self, network: Net) -> None: ...
325
326
 
@@ -332,7 +333,7 @@ class SegmentationModel(Model):
332
333
  class DetectionModel(Model):
333
334
  # Functions
334
335
  @_typing.overload
335
- def __init__(self, model: str, config: str = ...) -> None: ...
336
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
336
337
  @_typing.overload
337
338
  def __init__(self, network: Net) -> None: ...
338
339
 
@@ -351,7 +352,7 @@ class TextRecognitionModel(Model):
351
352
  @_typing.overload
352
353
  def __init__(self, network: Net) -> None: ...
353
354
  @_typing.overload
354
- def __init__(self, model: str, config: str = ...) -> None: ...
355
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
355
356
 
356
357
  def setDecodeType(self, decodeType: str) -> TextRecognitionModel: ...
357
358
 
@@ -399,7 +400,7 @@ class TextDetectionModel_EAST(TextDetectionModel):
399
400
  @_typing.overload
400
401
  def __init__(self, network: Net) -> None: ...
401
402
  @_typing.overload
402
- def __init__(self, model: str, config: str = ...) -> None: ...
403
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
403
404
 
404
405
  def setConfidenceThreshold(self, confThreshold: float) -> TextDetectionModel_EAST: ...
405
406
 
@@ -415,7 +416,7 @@ class TextDetectionModel_DB(TextDetectionModel):
415
416
  @_typing.overload
416
417
  def __init__(self, network: Net) -> None: ...
417
418
  @_typing.overload
418
- def __init__(self, model: str, config: str = ...) -> None: ...
419
+ def __init__(self, model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> None: ...
419
420
 
420
421
  def setBinaryThreshold(self, binaryThreshold: float) -> TextDetectionModel_DB: ...
421
422
 
@@ -481,56 +482,68 @@ def blobFromImagesWithParams(images: _typing.Sequence[cv2.UMat], blob: cv2.UMat
481
482
 
482
483
  def getAvailableTargets(be: Backend) -> _typing.Sequence[Target]: ...
483
484
 
485
+ def getInferenceEngineBackendType() -> str: ...
486
+
487
+ def getInferenceEngineCPUType() -> str: ...
488
+
489
+ def getInferenceEngineVPUType() -> str: ...
490
+
484
491
  @_typing.overload
485
492
  def imagesFromBlob(blob_: cv2.typing.MatLike, images_: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
486
493
  @_typing.overload
487
494
  def imagesFromBlob(blob_: cv2.typing.MatLike, images_: _typing.Sequence[cv2.UMat] | None = ...) -> _typing.Sequence[cv2.UMat]: ...
488
495
 
489
496
  @_typing.overload
490
- def readNet(model: str, config: str = ..., framework: str = ...) -> Net: ...
497
+ def readNet(model: str | os.PathLike[str], config: str | os.PathLike[str] = ..., framework: str = ...) -> Net: ...
491
498
  @_typing.overload
492
499
  def readNet(framework: str, bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
493
500
 
494
501
  @_typing.overload
495
- def readNetFromCaffe(prototxt: str, caffeModel: str = ...) -> Net: ...
502
+ def readNetFromCaffe(prototxt: str | os.PathLike[str], caffeModel: str | os.PathLike[str] = ...) -> Net: ...
496
503
  @_typing.overload
497
504
  def readNetFromCaffe(bufferProto: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
498
505
 
499
506
  @_typing.overload
500
- def readNetFromDarknet(cfgFile: str, darknetModel: str = ...) -> Net: ...
507
+ def readNetFromDarknet(cfgFile: str | os.PathLike[str], darknetModel: str | os.PathLike[str] = ...) -> Net: ...
501
508
  @_typing.overload
502
509
  def readNetFromDarknet(bufferCfg: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
503
510
 
504
511
  @_typing.overload
505
- def readNetFromModelOptimizer(xml: str, bin: str = ...) -> Net: ...
512
+ def readNetFromModelOptimizer(xml: str | os.PathLike[str], bin: str | os.PathLike[str] = ...) -> Net: ...
506
513
  @_typing.overload
507
514
  def readNetFromModelOptimizer(bufferModelConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferWeights: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
508
515
 
509
516
  @_typing.overload
510
- def readNetFromONNX(onnxFile: str) -> Net: ...
517
+ def readNetFromONNX(onnxFile: str | os.PathLike[str]) -> Net: ...
511
518
  @_typing.overload
512
519
  def readNetFromONNX(buffer: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
513
520
 
514
521
  @_typing.overload
515
- def readNetFromTFLite(model: str) -> Net: ...
522
+ def readNetFromTFLite(model: str | os.PathLike[str]) -> Net: ...
516
523
  @_typing.overload
517
524
  def readNetFromTFLite(bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]]) -> Net: ...
518
525
 
519
526
  @_typing.overload
520
- def readNetFromTensorflow(model: str, config: str = ...) -> Net: ...
527
+ def readNetFromTensorflow(model: str | os.PathLike[str], config: str | os.PathLike[str] = ...) -> Net: ...
521
528
  @_typing.overload
522
529
  def readNetFromTensorflow(bufferModel: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]], bufferConfig: numpy.ndarray[_typing.Any, numpy.dtype[numpy.uint8]] = ...) -> Net: ...
523
530
 
524
- def readNetFromTorch(model: str, isBinary: bool = ..., evaluate: bool = ...) -> Net: ...
531
+ def readNetFromTorch(model: str | os.PathLike[str], isBinary: bool = ..., evaluate: bool = ...) -> Net: ...
532
+
533
+ def readTensorFromONNX(path: str | os.PathLike[str]) -> cv2.typing.MatLike: ...
534
+
535
+ def readTorchBlob(filename: str | os.PathLike[str], isBinary: bool = ...) -> cv2.typing.MatLike: ...
536
+
537
+ def releaseHDDLPlugin() -> None: ...
525
538
 
526
- def readTensorFromONNX(path: str) -> cv2.typing.MatLike: ...
539
+ def resetMyriadDevice() -> None: ...
527
540
 
528
- def readTorchBlob(filename: str, isBinary: bool = ...) -> cv2.typing.MatLike: ...
541
+ def setInferenceEngineBackendType(newBackendType: str) -> str: ...
529
542
 
530
- def shrinkCaffeModel(src: str, dst: str, layersTypes: _typing.Sequence[str] = ...) -> None: ...
543
+ def shrinkCaffeModel(src: str | os.PathLike[str], dst: str | os.PathLike[str], layersTypes: _typing.Sequence[str] = ...) -> None: ...
531
544
 
532
545
  def softNMSBoxes(bboxes: _typing.Sequence[cv2.typing.Rect], scores: _typing.Sequence[float], score_threshold: float, nms_threshold: float, top_k: int = ..., sigma: float = ..., method: SoftNMSMethod = ...) -> tuple[_typing.Sequence[float], _typing.Sequence[int]]: ...
533
546
 
534
- def writeTextGraph(model: str, output: str) -> None: ...
547
+ def writeTextGraph(model: str | os.PathLike[str], output: str | os.PathLike[str]) -> None: ...
535
548
 
536
549
 
cv2/face/__init__.pyi CHANGED
@@ -2,6 +2,7 @@ __all__: list[str] = []
2
2
 
3
3
  import cv2
4
4
  import cv2.typing
5
+ import os
5
6
  import typing as _typing
6
7
 
7
8
 
@@ -33,9 +34,9 @@ class FaceRecognizer(cv2.Algorithm):
33
34
  @_typing.overload
34
35
  def predict_collect(self, src: cv2.UMat, collector: PredictCollector) -> None: ...
35
36
 
36
- def write(self, filename: str) -> None: ...
37
+ def write(self, filename: str | os.PathLike[str]) -> None: ...
37
38
 
38
- def read(self, filename: str) -> None: ...
39
+ def read(self, filename: str | os.PathLike[str]) -> None: ...
39
40
 
40
41
  def setLabelInfo(self, label: int, strInfo: str) -> None: ...
41
42
 
@@ -159,7 +160,7 @@ class MACE(cv2.Algorithm):
159
160
  def same(self, query: cv2.UMat) -> bool: ...
160
161
 
161
162
  @classmethod
162
- def load(cls, filename: str, objname: str = ...) -> MACE: ...
163
+ def load(cls, filename: str | os.PathLike[str], objname: str = ...) -> MACE: ...
163
164
 
164
165
  @classmethod
165
166
  def create(cls, IMGSIZE: int = ...) -> MACE: ...
@@ -201,14 +202,14 @@ def getFacesHAAR(image: cv2.UMat, face_cascade_name: str, faces: cv2.UMat | None
201
202
  def loadDatasetList(imageList: str, annotationList: str, images: _typing.Sequence[str], annotations: _typing.Sequence[str]) -> bool: ...
202
203
 
203
204
  @_typing.overload
204
- def loadFacePoints(filename: str, points: cv2.typing.MatLike | None = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ...
205
+ def loadFacePoints(filename: str | os.PathLike[str], points: cv2.typing.MatLike | None = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ...
205
206
  @_typing.overload
206
- def loadFacePoints(filename: str, points: cv2.UMat | None = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ...
207
+ def loadFacePoints(filename: str | os.PathLike[str], points: cv2.UMat | None = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ...
207
208
 
208
209
  @_typing.overload
209
- def loadTrainingData(filename: str, images: _typing.Sequence[str], facePoints: cv2.typing.MatLike | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ...
210
+ def loadTrainingData(filename: str | os.PathLike[str], images: _typing.Sequence[str], facePoints: cv2.typing.MatLike | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ...
210
211
  @_typing.overload
211
- def loadTrainingData(filename: str, images: _typing.Sequence[str], facePoints: cv2.UMat | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ...
212
+ def loadTrainingData(filename: str | os.PathLike[str], images: _typing.Sequence[str], facePoints: cv2.UMat | None = ..., delim: str = ..., offset: float = ...) -> tuple[bool, cv2.UMat]: ...
212
213
  @_typing.overload
213
214
  def loadTrainingData(imageList: str, groundTruth: str, images: _typing.Sequence[str], facePoints: cv2.typing.MatLike | None = ..., offset: float = ...) -> tuple[bool, cv2.typing.MatLike]: ...
214
215
  @_typing.overload
cv2/fisheye/__init__.pyi CHANGED
@@ -42,9 +42,9 @@ def estimateNewCameraMatrixForUndistortRectify(K: cv2.typing.MatLike, D: cv2.typ
42
42
  def estimateNewCameraMatrixForUndistortRectify(K: cv2.UMat, D: cv2.UMat, image_size: cv2.typing.Size, R: cv2.UMat, P: cv2.UMat | None = ..., balance: float = ..., new_size: cv2.typing.Size = ..., fov_scale: float = ...) -> cv2.UMat: ...
43
43
 
44
44
  @_typing.overload
45
- def initUndistortRectifyMap(K: cv2.typing.MatLike, D: cv2.typing.MatLike, R: cv2.typing.MatLike, P: cv2.typing.MatLike, size: cv2.typing.Size, m1type: int, map1: cv2.typing.MatLike | None = ..., map2: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
45
+ def initUndistortRectifyMap(K: cv2.typing.MatLike, D: cv2.typing.MatLike | None, R: cv2.typing.MatLike, P: cv2.typing.MatLike, size: cv2.typing.Size, m1type: int, map1: cv2.typing.MatLike | None = ..., map2: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
46
46
  @_typing.overload
47
- def initUndistortRectifyMap(K: cv2.UMat, D: cv2.UMat, R: cv2.UMat, P: cv2.UMat, size: cv2.typing.Size, m1type: int, map1: cv2.UMat | None = ..., map2: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
47
+ def initUndistortRectifyMap(K: cv2.UMat, D: cv2.UMat | None, R: cv2.UMat, P: cv2.UMat, size: cv2.typing.Size, m1type: int, map1: cv2.UMat | None = ..., map2: cv2.UMat | None = ...) -> tuple[cv2.UMat, cv2.UMat]: ...
48
48
 
49
49
  @_typing.overload
50
50
  def projectPoints(objectPoints: cv2.typing.MatLike, rvec: cv2.typing.MatLike, tvec: cv2.typing.MatLike, K: cv2.typing.MatLike, D: cv2.typing.MatLike, imagePoints: cv2.typing.MatLike | None = ..., alpha: float = ..., jacobian: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
cv2/flann/__init__.pyi CHANGED
@@ -2,6 +2,7 @@ __all__: list[str] = []
2
2
 
3
3
  import cv2
4
4
  import cv2.typing
5
+ import os
5
6
  import typing as _typing
6
7
 
7
8
 
@@ -47,12 +48,12 @@ class Index:
47
48
  @_typing.overload
48
49
  def radiusSearch(self, query: cv2.UMat, radius: float, maxResults: int, indices: cv2.UMat | None = ..., dists: cv2.UMat | None = ..., params: cv2.typing.SearchParams = ...) -> tuple[int, cv2.UMat, cv2.UMat]: ...
49
50
 
50
- def save(self, filename: str) -> None: ...
51
+ def save(self, filename: str | os.PathLike[str]) -> None: ...
51
52
 
52
53
  @_typing.overload
53
- def load(self, features: cv2.typing.MatLike, filename: str) -> bool: ...
54
+ def load(self, features: cv2.typing.MatLike, filename: str | os.PathLike[str]) -> bool: ...
54
55
  @_typing.overload
55
- def load(self, features: cv2.UMat, filename: str) -> bool: ...
56
+ def load(self, features: cv2.UMat, filename: str | os.PathLike[str]) -> bool: ...
56
57
 
57
58
  def release(self) -> None: ...
58
59
 
cv2/gapi/wip/__init__.pyi CHANGED
@@ -38,4 +38,6 @@ def make_capture_src(id: int, properties: cv2.typing.map_int_and_double = ...) -
38
38
 
39
39
  def make_gst_src(pipeline: str, outputType: cv2.gapi.wip.gst.GStreamerSource_OutputType = ...) -> IStreamSource: ...
40
40
 
41
+ def make_py_src(src: IStreamSource) -> IStreamSource: ...
42
+
41
43
 
cv2/instr/__init__.pyi ADDED
@@ -0,0 +1,24 @@
1
+ __all__: list[str] = []
2
+
3
+ # Enumerations
4
+ TYPE_GENERAL: int
5
+ TYPE_MARKER: int
6
+ TYPE_WRAPPER: int
7
+ TYPE_FUN: int
8
+ TYPE = int
9
+ """One of [TYPE_GENERAL, TYPE_MARKER, TYPE_WRAPPER, TYPE_FUN]"""
10
+
11
+ IMPL_PLAIN: int
12
+ IMPL_IPP: int
13
+ IMPL_OPENCL: int
14
+ IMPL = int
15
+ """One of [IMPL_PLAIN, IMPL_IPP, IMPL_OPENCL]"""
16
+
17
+ FLAGS_NONE: int
18
+ FLAGS_MAPPING: int
19
+ FLAGS_EXPAND_SAME_NAMES: int
20
+ FLAGS = int
21
+ """One of [FLAGS_NONE, FLAGS_MAPPING, FLAGS_EXPAND_SAME_NAMES]"""
22
+
23
+
24
+
cv2/load_config_py3.py CHANGED
@@ -5,5 +5,5 @@ import sys
5
5
  if sys.version_info[:2] >= (3, 0):
6
6
  def exec_file_wrapper(fpath, g_vars, l_vars):
7
7
  with open(fpath) as f:
8
- code = compile(f.read(), os.path.basename(fpath), 'exec')
8
+ code = compile(f.read(), fpath, 'exec')
9
9
  exec(code, g_vars, l_vars)
cv2/ml/__init__.pyi CHANGED
@@ -2,6 +2,7 @@ __all__: list[str] = []
2
2
 
3
3
  import cv2
4
4
  import cv2.typing
5
+ import os
5
6
  import typing as _typing
6
7
 
7
8
 
@@ -294,7 +295,7 @@ class NormalBayesClassifier(StatModel):
294
295
  def create(cls) -> NormalBayesClassifier: ...
295
296
 
296
297
  @classmethod
297
- def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
298
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> NormalBayesClassifier: ...
298
299
 
299
300
 
300
301
  class KNearest(StatModel):
@@ -324,7 +325,7 @@ class KNearest(StatModel):
324
325
  def create(cls) -> KNearest: ...
325
326
 
326
327
  @classmethod
327
- def load(cls, filepath: str) -> KNearest: ...
328
+ def load(cls, filepath: str | os.PathLike[str]) -> KNearest: ...
328
329
 
329
330
 
330
331
  class SVM(StatModel):
@@ -390,7 +391,7 @@ class SVM(StatModel):
390
391
  def create(cls) -> SVM: ...
391
392
 
392
393
  @classmethod
393
- def load(cls, filepath: str) -> SVM: ...
394
+ def load(cls, filepath: str | os.PathLike[str]) -> SVM: ...
394
395
 
395
396
 
396
397
  class EM(StatModel):
@@ -442,7 +443,7 @@ class EM(StatModel):
442
443
  def create(cls) -> EM: ...
443
444
 
444
445
  @classmethod
445
- def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
446
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> EM: ...
446
447
 
447
448
 
448
449
  class DTrees(StatModel):
@@ -487,7 +488,7 @@ class DTrees(StatModel):
487
488
  def create(cls) -> DTrees: ...
488
489
 
489
490
  @classmethod
490
- def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
491
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> DTrees: ...
491
492
 
492
493
 
493
494
  class RTrees(DTrees):
@@ -517,7 +518,7 @@ class RTrees(DTrees):
517
518
  def create(cls) -> RTrees: ...
518
519
 
519
520
  @classmethod
520
- def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
521
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> RTrees: ...
521
522
 
522
523
 
523
524
  class Boost(DTrees):
@@ -538,7 +539,7 @@ class Boost(DTrees):
538
539
  def create(cls) -> Boost: ...
539
540
 
540
541
  @classmethod
541
- def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
542
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> Boost: ...
542
543
 
543
544
 
544
545
  class ANN_MLP(StatModel):
@@ -610,7 +611,7 @@ class ANN_MLP(StatModel):
610
611
  def create(cls) -> ANN_MLP: ...
611
612
 
612
613
  @classmethod
613
- def load(cls, filepath: str) -> ANN_MLP: ...
614
+ def load(cls, filepath: str | os.PathLike[str]) -> ANN_MLP: ...
614
615
 
615
616
 
616
617
  class LogisticRegression(StatModel):
@@ -650,7 +651,7 @@ class LogisticRegression(StatModel):
650
651
  def create(cls) -> LogisticRegression: ...
651
652
 
652
653
  @classmethod
653
- def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
654
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> LogisticRegression: ...
654
655
 
655
656
 
656
657
  class SVMSGD(StatModel):
@@ -663,7 +664,7 @@ class SVMSGD(StatModel):
663
664
  def create(cls) -> SVMSGD: ...
664
665
 
665
666
  @classmethod
666
- def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
667
+ def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> SVMSGD: ...
667
668
 
668
669
  def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
669
670
 
@@ -1,6 +1,7 @@
1
1
  __all__: list[str] = []
2
2
 
3
3
  import cv2.typing
4
+ import os
4
5
  import typing as _typing
5
6
 
6
7
 
@@ -77,14 +78,14 @@ def computeNormalsPC3d(PC: cv2.typing.MatLike, NumNeighbors: int, FlipViewpoint:
77
78
 
78
79
  def getRandomPose(Pose: cv2.typing.Matx44d) -> None: ...
79
80
 
80
- def loadPLYSimple(fileName: str, withNormals: int = ...) -> cv2.typing.MatLike: ...
81
+ def loadPLYSimple(fileName: str | os.PathLike[str], withNormals: int = ...) -> cv2.typing.MatLike: ...
81
82
 
82
83
  def samplePCByQuantization(pc: cv2.typing.MatLike, xrange: cv2.typing.Vec2f, yrange: cv2.typing.Vec2f, zrange: cv2.typing.Vec2f, sample_step_relative: float, weightByCenter: int = ...) -> cv2.typing.MatLike: ...
83
84
 
84
85
  def transformPCPose(pc: cv2.typing.MatLike, Pose: cv2.typing.Matx44d) -> cv2.typing.MatLike: ...
85
86
 
86
- def writePLY(PC: cv2.typing.MatLike, fileName: str) -> None: ...
87
+ def writePLY(PC: cv2.typing.MatLike, fileName: str | os.PathLike[str]) -> None: ...
87
88
 
88
- def writePLYVisibleNormals(PC: cv2.typing.MatLike, fileName: str) -> None: ...
89
+ def writePLYVisibleNormals(PC: cv2.typing.MatLike, fileName: str | os.PathLike[str]) -> None: ...
89
90
 
90
91
 
cv2/quality/__init__.pyi CHANGED
@@ -10,9 +10,9 @@ import typing as _typing
10
10
  class QualityBase(cv2.Algorithm):
11
11
  # Functions
12
12
  @_typing.overload
13
- def compute(self, img: cv2.typing.MatLike) -> cv2.typing.Scalar: ...
13
+ def compute(self, img: cv2.typing.MatLike) -> tuple[float, float, float, float]: ...
14
14
  @_typing.overload
15
- def compute(self, img: cv2.UMat) -> cv2.typing.Scalar: ...
15
+ def compute(self, img: cv2.UMat) -> tuple[float, float, float, float]: ...
16
16
 
17
17
  @_typing.overload
18
18
  def getQualityMap(self, dst: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
@@ -27,13 +27,13 @@ class QualityBase(cv2.Algorithm):
27
27
  class QualityBRISQUE(QualityBase):
28
28
  # Functions
29
29
  @_typing.overload
30
- def compute(self, img: cv2.typing.MatLike) -> cv2.typing.Scalar: ...
30
+ def compute(self, img: cv2.typing.MatLike) -> tuple[float, float, float, float]: ...
31
31
  @_typing.overload
32
- def compute(self, img: cv2.UMat) -> cv2.typing.Scalar: ...
32
+ def compute(self, img: cv2.UMat) -> tuple[float, float, float, float]: ...
33
33
  @_typing.overload
34
- def compute(self, img: cv2.typing.MatLike, model_file_path: str, range_file_path: str) -> cv2.typing.Scalar: ...
34
+ def compute(self, img: cv2.typing.MatLike, model_file_path: str, range_file_path: str) -> tuple[float, float, float, float]: ...
35
35
  @_typing.overload
36
- def compute(self, img: cv2.UMat, model_file_path: str, range_file_path: str) -> cv2.typing.Scalar: ...
36
+ def compute(self, img: cv2.UMat, model_file_path: str, range_file_path: str) -> tuple[float, float, float, float]: ...
37
37
 
38
38
  @classmethod
39
39
  @_typing.overload
@@ -53,9 +53,9 @@ class QualityBRISQUE(QualityBase):
53
53
  class QualityGMSD(QualityBase):
54
54
  # Functions
55
55
  @_typing.overload
56
- def compute(self, cmp: cv2.typing.MatLike) -> cv2.typing.Scalar: ...
56
+ def compute(self, cmp: cv2.typing.MatLike) -> tuple[float, float, float, float]: ...
57
57
  @_typing.overload
58
- def compute(self, cmp: cv2.UMat) -> cv2.typing.Scalar: ...
58
+ def compute(self, cmp: cv2.UMat) -> tuple[float, float, float, float]: ...
59
59
  @_typing.overload
60
60
  def compute(self, ref: cv2.typing.MatLike, cmp: cv2.typing.MatLike, qualityMap: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Scalar, cv2.typing.MatLike]: ...
61
61
  @_typing.overload
@@ -76,9 +76,9 @@ class QualityGMSD(QualityBase):
76
76
  class QualityMSE(QualityBase):
77
77
  # Functions
78
78
  @_typing.overload
79
- def compute(self, cmpImgs: _typing.Sequence[cv2.typing.MatLike]) -> cv2.typing.Scalar: ...
79
+ def compute(self, cmpImgs: _typing.Sequence[cv2.typing.MatLike]) -> tuple[float, float, float, float]: ...
80
80
  @_typing.overload
81
- def compute(self, cmpImgs: _typing.Sequence[cv2.UMat]) -> cv2.typing.Scalar: ...
81
+ def compute(self, cmpImgs: _typing.Sequence[cv2.UMat]) -> tuple[float, float, float, float]: ...
82
82
  @_typing.overload
83
83
  def compute(self, ref: cv2.typing.MatLike, cmp: cv2.typing.MatLike, qualityMap: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Scalar, cv2.typing.MatLike]: ...
84
84
  @_typing.overload
@@ -106,9 +106,9 @@ class QualityPSNR(QualityBase):
106
106
  def create(cls, ref: cv2.UMat, maxPixelValue: float = ...) -> QualityPSNR: ...
107
107
 
108
108
  @_typing.overload
109
- def compute(self, cmp: cv2.typing.MatLike) -> cv2.typing.Scalar: ...
109
+ def compute(self, cmp: cv2.typing.MatLike) -> tuple[float, float, float, float]: ...
110
110
  @_typing.overload
111
- def compute(self, cmp: cv2.UMat) -> cv2.typing.Scalar: ...
111
+ def compute(self, cmp: cv2.UMat) -> tuple[float, float, float, float]: ...
112
112
  @_typing.overload
113
113
  def compute(self, ref: cv2.typing.MatLike, cmp: cv2.typing.MatLike, qualityMap: cv2.typing.MatLike | None = ..., maxPixelValue: float = ...) -> tuple[cv2.typing.Scalar, cv2.typing.MatLike]: ...
114
114
  @_typing.overload
@@ -126,9 +126,9 @@ class QualityPSNR(QualityBase):
126
126
  class QualitySSIM(QualityBase):
127
127
  # Functions
128
128
  @_typing.overload
129
- def compute(self, cmp: cv2.typing.MatLike) -> cv2.typing.Scalar: ...
129
+ def compute(self, cmp: cv2.typing.MatLike) -> tuple[float, float, float, float]: ...
130
130
  @_typing.overload
131
- def compute(self, cmp: cv2.UMat) -> cv2.typing.Scalar: ...
131
+ def compute(self, cmp: cv2.UMat) -> tuple[float, float, float, float]: ...
132
132
  @_typing.overload
133
133
  def compute(self, ref: cv2.typing.MatLike, cmp: cv2.typing.MatLike, qualityMap: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Scalar, cv2.typing.MatLike]: ...
134
134
  @_typing.overload
cv2/saliency/__init__.pyi CHANGED
@@ -40,6 +40,8 @@ class StaticSaliencySpectralResidual(StaticSaliency):
40
40
 
41
41
  def read(self, fn: cv2.FileNode) -> None: ...
42
42
 
43
+ def write(self, fs: cv2.FileStorage) -> None: ...
44
+
43
45
  def getImageWidth(self) -> int: ...
44
46
 
45
47
  def setImageWidth(self, val: int) -> None: ...
@@ -93,10 +95,6 @@ class ObjectnessBING(Objectness):
93
95
  @_typing.overload
94
96
  def computeSaliency(self, image: cv2.UMat, saliencyMap: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat]: ...
95
97
 
96
- def read(self) -> None: ...
97
-
98
- def write(self) -> None: ...
99
-
100
98
  def getobjectnessValues(self) -> _typing.Sequence[float]: ...
101
99
 
102
100
  def setTrainingPath(self, trainingPath: str) -> None: ...
cv2/stereo/__init__.pyi CHANGED
@@ -1,6 +1,7 @@
1
1
  __all__: list[str] = []
2
2
 
3
3
  import cv2.typing
4
+ import os
4
5
 
5
6
 
6
7
  # Enumerations
@@ -66,9 +67,9 @@ class QuasiDenseStereo:
66
67
  Param: PropagationParameters
67
68
 
68
69
  # Functions
69
- def loadParameters(self, filepath: str) -> int: ...
70
+ def loadParameters(self, filepath: str | os.PathLike[str]) -> int: ...
70
71
 
71
- def saveParameters(self, filepath: str) -> int: ...
72
+ def saveParameters(self, filepath: str | os.PathLike[str]) -> int: ...
72
73
 
73
74
  def getSparseMatches(self) -> _typing.Sequence[MatchQuasiDense]: ...
74
75