opencv-contrib-python 4.12.0.88__cp37-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. cv2/Error/__init__.pyi +118 -0
  2. cv2/LICENSE-3RD-PARTY.txt +3513 -0
  3. cv2/LICENSE.txt +21 -0
  4. cv2/__init__.py +181 -0
  5. cv2/__init__.pyi +6789 -0
  6. cv2/aruco/__init__.pyi +405 -0
  7. cv2/barcode/__init__.pyi +39 -0
  8. cv2/bgsegm/__init__.pyi +177 -0
  9. cv2/bioinspired/__init__.pyi +121 -0
  10. cv2/ccm/__init__.pyi +167 -0
  11. cv2/colored_kinfu/__init__.pyi +96 -0
  12. cv2/config-3.py +24 -0
  13. cv2/config.py +5 -0
  14. cv2/cuda/__init__.pyi +553 -0
  15. cv2/cv2.abi3.so +0 -0
  16. cv2/data/__init__.py +3 -0
  17. cv2/data/haarcascade_eye.xml +12213 -0
  18. cv2/data/haarcascade_eye_tree_eyeglasses.xml +22619 -0
  19. cv2/data/haarcascade_frontalcatface.xml +14382 -0
  20. cv2/data/haarcascade_frontalcatface_extended.xml +13394 -0
  21. cv2/data/haarcascade_frontalface_alt.xml +24350 -0
  22. cv2/data/haarcascade_frontalface_alt2.xml +20719 -0
  23. cv2/data/haarcascade_frontalface_alt_tree.xml +96484 -0
  24. cv2/data/haarcascade_frontalface_default.xml +33314 -0
  25. cv2/data/haarcascade_fullbody.xml +17030 -0
  26. cv2/data/haarcascade_lefteye_2splits.xml +7390 -0
  27. cv2/data/haarcascade_license_plate_rus_16stages.xml +1404 -0
  28. cv2/data/haarcascade_lowerbody.xml +14056 -0
  29. cv2/data/haarcascade_profileface.xml +29690 -0
  30. cv2/data/haarcascade_righteye_2splits.xml +7407 -0
  31. cv2/data/haarcascade_russian_plate_number.xml +2656 -0
  32. cv2/data/haarcascade_smile.xml +6729 -0
  33. cv2/data/haarcascade_upperbody.xml +28134 -0
  34. cv2/datasets/__init__.pyi +80 -0
  35. cv2/detail/__init__.pyi +627 -0
  36. cv2/dnn/__init__.pyi +536 -0
  37. cv2/dnn_superres/__init__.pyi +37 -0
  38. cv2/dpm/__init__.pyi +10 -0
  39. cv2/dynafu/__init__.pyi +43 -0
  40. cv2/face/__init__.pyi +219 -0
  41. cv2/fisheye/__init__.pyi +88 -0
  42. cv2/flann/__init__.pyi +64 -0
  43. cv2/ft/__init__.pyi +98 -0
  44. cv2/gapi/__init__.py +323 -0
  45. cv2/gapi/__init__.pyi +349 -0
  46. cv2/gapi/core/__init__.pyi +7 -0
  47. cv2/gapi/core/cpu/__init__.pyi +9 -0
  48. cv2/gapi/core/fluid/__init__.pyi +9 -0
  49. cv2/gapi/core/ocl/__init__.pyi +9 -0
  50. cv2/gapi/ie/__init__.pyi +51 -0
  51. cv2/gapi/ie/detail/__init__.pyi +12 -0
  52. cv2/gapi/imgproc/__init__.pyi +5 -0
  53. cv2/gapi/imgproc/fluid/__init__.pyi +9 -0
  54. cv2/gapi/oak/__init__.pyi +37 -0
  55. cv2/gapi/onnx/__init__.pyi +55 -0
  56. cv2/gapi/onnx/ep/__init__.pyi +63 -0
  57. cv2/gapi/ot/__init__.pyi +32 -0
  58. cv2/gapi/ot/cpu/__init__.pyi +9 -0
  59. cv2/gapi/ov/__init__.pyi +74 -0
  60. cv2/gapi/own/__init__.pyi +5 -0
  61. cv2/gapi/own/detail/__init__.pyi +10 -0
  62. cv2/gapi/render/__init__.pyi +5 -0
  63. cv2/gapi/render/ocv/__init__.pyi +9 -0
  64. cv2/gapi/streaming/__init__.pyi +42 -0
  65. cv2/gapi/video/__init__.pyi +10 -0
  66. cv2/gapi/wip/__init__.pyi +41 -0
  67. cv2/gapi/wip/draw/__init__.pyi +119 -0
  68. cv2/gapi/wip/gst/__init__.pyi +17 -0
  69. cv2/gapi/wip/onevpl/__init__.pyi +16 -0
  70. cv2/hfs/__init__.pyi +53 -0
  71. cv2/img_hash/__init__.pyi +116 -0
  72. cv2/intensity_transform/__init__.pyi +27 -0
  73. cv2/ipp/__init__.pyi +14 -0
  74. cv2/kinfu/__init__.pyi +133 -0
  75. cv2/kinfu/detail/__init__.pyi +7 -0
  76. cv2/large_kinfu/__init__.pyi +73 -0
  77. cv2/legacy/__init__.pyi +93 -0
  78. cv2/line_descriptor/__init__.pyi +112 -0
  79. cv2/linemod/__init__.pyi +151 -0
  80. cv2/load_config_py2.py +6 -0
  81. cv2/load_config_py3.py +9 -0
  82. cv2/mat_wrapper/__init__.py +40 -0
  83. cv2/mcc/__init__.pyi +109 -0
  84. cv2/misc/__init__.py +1 -0
  85. cv2/misc/version.py +5 -0
  86. cv2/ml/__init__.pyi +695 -0
  87. cv2/motempl/__init__.pyi +29 -0
  88. cv2/multicalib/__init__.pyi +10 -0
  89. cv2/ocl/__init__.pyi +252 -0
  90. cv2/ogl/__init__.pyi +51 -0
  91. cv2/omnidir/__init__.pyi +68 -0
  92. cv2/optflow/__init__.pyi +286 -0
  93. cv2/parallel/__init__.pyi +6 -0
  94. cv2/phase_unwrapping/__init__.pyi +41 -0
  95. cv2/plot/__init__.pyi +64 -0
  96. cv2/ppf_match_3d/__init__.pyi +90 -0
  97. cv2/py.typed +0 -0
  98. cv2/qt/fonts/DejaVuSans-Bold.ttf +0 -0
  99. cv2/qt/fonts/DejaVuSans-BoldOblique.ttf +0 -0
  100. cv2/qt/fonts/DejaVuSans-ExtraLight.ttf +0 -0
  101. cv2/qt/fonts/DejaVuSans-Oblique.ttf +0 -0
  102. cv2/qt/fonts/DejaVuSans.ttf +0 -0
  103. cv2/qt/fonts/DejaVuSansCondensed-Bold.ttf +0 -0
  104. cv2/qt/fonts/DejaVuSansCondensed-BoldOblique.ttf +0 -0
  105. cv2/qt/fonts/DejaVuSansCondensed-Oblique.ttf +0 -0
  106. cv2/qt/fonts/DejaVuSansCondensed.ttf +0 -0
  107. cv2/qt/plugins/platforms/libqxcb.so +0 -0
  108. cv2/quality/__init__.pyi +149 -0
  109. cv2/rapid/__init__.pyi +91 -0
  110. cv2/reg/__init__.pyi +210 -0
  111. cv2/rgbd/__init__.pyi +449 -0
  112. cv2/saliency/__init__.pyi +119 -0
  113. cv2/samples/__init__.pyi +12 -0
  114. cv2/segmentation/__init__.pyi +39 -0
  115. cv2/signal/__init__.pyi +14 -0
  116. cv2/stereo/__init__.pyi +87 -0
  117. cv2/structured_light/__init__.pyi +94 -0
  118. cv2/text/__init__.pyi +203 -0
  119. cv2/typing/__init__.py +180 -0
  120. cv2/utils/__init__.py +14 -0
  121. cv2/utils/__init__.pyi +109 -0
  122. cv2/utils/fs/__init__.pyi +6 -0
  123. cv2/utils/nested/__init__.pyi +31 -0
  124. cv2/version.py +5 -0
  125. cv2/videoio_registry/__init__.pyi +31 -0
  126. cv2/videostab/__init__.pyi +16 -0
  127. cv2/wechat_qrcode/__init__.pyi +23 -0
  128. cv2/xfeatures2d/__init__.pyi +537 -0
  129. cv2/ximgproc/__init__.pyi +746 -0
  130. cv2/ximgproc/segmentation/__init__.pyi +116 -0
  131. cv2/xphoto/__init__.pyi +142 -0
  132. opencv_contrib_python-4.12.0.88.dist-info/LICENSE-3RD-PARTY.txt +3513 -0
  133. opencv_contrib_python-4.12.0.88.dist-info/LICENSE.txt +21 -0
  134. opencv_contrib_python-4.12.0.88.dist-info/METADATA +299 -0
  135. opencv_contrib_python-4.12.0.88.dist-info/RECORD +172 -0
  136. opencv_contrib_python-4.12.0.88.dist-info/WHEEL +6 -0
  137. opencv_contrib_python-4.12.0.88.dist-info/top_level.txt +1 -0
  138. opencv_contrib_python.libs/libQt5Core-104e39d9.so.5.15.16 +0 -0
  139. opencv_contrib_python.libs/libQt5Gui-b4c09495.so.5.15.16 +0 -0
  140. opencv_contrib_python.libs/libQt5Test-9a114c6a.so.5.15.16 +0 -0
  141. opencv_contrib_python.libs/libQt5Widgets-42fd29df.so.5.15.16 +0 -0
  142. opencv_contrib_python.libs/libQt5XcbQpa-3d8da064.so.5.15.16 +0 -0
  143. opencv_contrib_python.libs/libX11-xcb-a0297738.so.1.0.0 +0 -0
  144. opencv_contrib_python.libs/libXau-21870672.so.6.0.0 +0 -0
  145. opencv_contrib_python.libs/libaom-e47476b8.so.3.12.1 +0 -0
  146. opencv_contrib_python.libs/libavcodec-df1d7c1e.so.59.37.100 +0 -0
  147. opencv_contrib_python.libs/libavformat-ef9e8359.so.59.27.100 +0 -0
  148. opencv_contrib_python.libs/libavif-f4efd5aa.so.16.3.0 +0 -0
  149. opencv_contrib_python.libs/libavutil-2dc4740f.so.57.28.100 +0 -0
  150. opencv_contrib_python.libs/libcrypto-43e37667.so.1.1 +0 -0
  151. opencv_contrib_python.libs/libgfortran-8634ef04.so.3.0.0 +0 -0
  152. opencv_contrib_python.libs/libopenblas-r0-8966572e.3.3.so +0 -0
  153. opencv_contrib_python.libs/libpng16-035647ca.so.16.48.0 +0 -0
  154. opencv_contrib_python.libs/libssl-b9692d76.so.1.1 +0 -0
  155. opencv_contrib_python.libs/libswresample-da2ce214.so.4.7.100 +0 -0
  156. opencv_contrib_python.libs/libswscale-e52af062.so.6.7.100 +0 -0
  157. opencv_contrib_python.libs/libvpx-06ef2ab1.so.11.0.0 +0 -0
  158. opencv_contrib_python.libs/libxcb-icccm-05fb8c7f.so.4.0.0 +0 -0
  159. opencv_contrib_python.libs/libxcb-image-75825d2e.so.0.0.0 +0 -0
  160. opencv_contrib_python.libs/libxcb-keysyms-73cd270d.so.1.0.0 +0 -0
  161. opencv_contrib_python.libs/libxcb-randr-e1606dfc.so.0.1.0 +0 -0
  162. opencv_contrib_python.libs/libxcb-render-76b15fe5.so.0.0.0 +0 -0
  163. opencv_contrib_python.libs/libxcb-render-util-486ef3ee.so.0.0.0 +0 -0
  164. opencv_contrib_python.libs/libxcb-shape-e8fe4bc4.so.0.0.0 +0 -0
  165. opencv_contrib_python.libs/libxcb-shm-cad72500.so.0.0.0 +0 -0
  166. opencv_contrib_python.libs/libxcb-sync-dc271c48.so.1.0.0 +0 -0
  167. opencv_contrib_python.libs/libxcb-util-c74d156a.so.1.0.0 +0 -0
  168. opencv_contrib_python.libs/libxcb-xfixes-f4cf71d4.so.0.0.0 +0 -0
  169. opencv_contrib_python.libs/libxcb-xinerama-6372573d.so.0.0.0 +0 -0
  170. opencv_contrib_python.libs/libxcb-xkb-e2f6f9de.so.1.0.0 +0 -0
  171. opencv_contrib_python.libs/libxkbcommon-e272a37d.so.0.0.0 +0 -0
  172. opencv_contrib_python.libs/libxkbcommon-x11-b76c7d31.so.0.0.0 +0 -0
cv2/ml/__init__.pyi ADDED
@@ -0,0 +1,695 @@
1
+ __all__: list[str] = []
2
+
3
+ import cv2
4
+ import cv2.typing
5
+ import typing as _typing
6
+
7
+
8
+ # Enumerations
9
+ VAR_NUMERICAL: int
10
+ VAR_ORDERED: int
11
+ VAR_CATEGORICAL: int
12
+ VariableTypes = int
13
+ """One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
14
+
15
+ TEST_ERROR: int
16
+ TRAIN_ERROR: int
17
+ ErrorTypes = int
18
+ """One of [TEST_ERROR, TRAIN_ERROR]"""
19
+
20
+ ROW_SAMPLE: int
21
+ COL_SAMPLE: int
22
+ SampleTypes = int
23
+ """One of [ROW_SAMPLE, COL_SAMPLE]"""
24
+
25
+
26
+ StatModel_UPDATE_MODEL: int
27
+ STAT_MODEL_UPDATE_MODEL: int
28
+ StatModel_RAW_OUTPUT: int
29
+ STAT_MODEL_RAW_OUTPUT: int
30
+ StatModel_COMPRESSED_INPUT: int
31
+ STAT_MODEL_COMPRESSED_INPUT: int
32
+ StatModel_PREPROCESSED_INPUT: int
33
+ STAT_MODEL_PREPROCESSED_INPUT: int
34
+ StatModel_Flags = int
35
+ """One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
36
+
37
+ KNearest_BRUTE_FORCE: int
38
+ KNEAREST_BRUTE_FORCE: int
39
+ KNearest_KDTREE: int
40
+ KNEAREST_KDTREE: int
41
+ KNearest_Types = int
42
+ """One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
43
+
44
+ SVM_C_SVC: int
45
+ SVM_NU_SVC: int
46
+ SVM_ONE_CLASS: int
47
+ SVM_EPS_SVR: int
48
+ SVM_NU_SVR: int
49
+ SVM_Types = int
50
+ """One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
51
+
52
+ SVM_CUSTOM: int
53
+ SVM_LINEAR: int
54
+ SVM_POLY: int
55
+ SVM_RBF: int
56
+ SVM_SIGMOID: int
57
+ SVM_CHI2: int
58
+ SVM_INTER: int
59
+ SVM_KernelTypes = int
60
+ """One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
61
+
62
+ SVM_C: int
63
+ SVM_GAMMA: int
64
+ SVM_P: int
65
+ SVM_NU: int
66
+ SVM_COEF: int
67
+ SVM_DEGREE: int
68
+ SVM_ParamTypes = int
69
+ """One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
70
+
71
+ EM_COV_MAT_SPHERICAL: int
72
+ EM_COV_MAT_DIAGONAL: int
73
+ EM_COV_MAT_GENERIC: int
74
+ EM_COV_MAT_DEFAULT: int
75
+ EM_Types = int
76
+ """One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
77
+
78
+ EM_DEFAULT_NCLUSTERS: int
79
+ EM_DEFAULT_MAX_ITERS: int
80
+ EM_START_E_STEP: int
81
+ EM_START_M_STEP: int
82
+ EM_START_AUTO_STEP: int
83
+
84
+ DTrees_PREDICT_AUTO: int
85
+ DTREES_PREDICT_AUTO: int
86
+ DTrees_PREDICT_SUM: int
87
+ DTREES_PREDICT_SUM: int
88
+ DTrees_PREDICT_MAX_VOTE: int
89
+ DTREES_PREDICT_MAX_VOTE: int
90
+ DTrees_PREDICT_MASK: int
91
+ DTREES_PREDICT_MASK: int
92
+ DTrees_Flags = int
93
+ """One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
94
+
95
+ Boost_DISCRETE: int
96
+ BOOST_DISCRETE: int
97
+ Boost_REAL: int
98
+ BOOST_REAL: int
99
+ Boost_LOGIT: int
100
+ BOOST_LOGIT: int
101
+ Boost_GENTLE: int
102
+ BOOST_GENTLE: int
103
+ Boost_Types = int
104
+ """One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
105
+
106
+ ANN_MLP_BACKPROP: int
107
+ ANN_MLP_RPROP: int
108
+ ANN_MLP_ANNEAL: int
109
+ ANN_MLP_TrainingMethods = int
110
+ """One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
111
+
112
+ ANN_MLP_IDENTITY: int
113
+ ANN_MLP_SIGMOID_SYM: int
114
+ ANN_MLP_GAUSSIAN: int
115
+ ANN_MLP_RELU: int
116
+ ANN_MLP_LEAKYRELU: int
117
+ ANN_MLP_ActivationFunctions = int
118
+ """One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
119
+
120
+ ANN_MLP_UPDATE_WEIGHTS: int
121
+ ANN_MLP_NO_INPUT_SCALE: int
122
+ ANN_MLP_NO_OUTPUT_SCALE: int
123
+ ANN_MLP_TrainFlags = int
124
+ """One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
125
+
126
+ LogisticRegression_REG_DISABLE: int
127
+ LOGISTIC_REGRESSION_REG_DISABLE: int
128
+ LogisticRegression_REG_L1: int
129
+ LOGISTIC_REGRESSION_REG_L1: int
130
+ LogisticRegression_REG_L2: int
131
+ LOGISTIC_REGRESSION_REG_L2: int
132
+ LogisticRegression_RegKinds = int
133
+ """One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
134
+
135
+ LogisticRegression_BATCH: int
136
+ LOGISTIC_REGRESSION_BATCH: int
137
+ LogisticRegression_MINI_BATCH: int
138
+ LOGISTIC_REGRESSION_MINI_BATCH: int
139
+ LogisticRegression_Methods = int
140
+ """One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
141
+
142
+ SVMSGD_SGD: int
143
+ SVMSGD_ASGD: int
144
+ SVMSGD_SvmsgdType = int
145
+ """One of [SVMSGD_SGD, SVMSGD_ASGD]"""
146
+
147
+ SVMSGD_SOFT_MARGIN: int
148
+ SVMSGD_HARD_MARGIN: int
149
+ SVMSGD_MarginType = int
150
+ """One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
151
+
152
+
153
+ # Classes
154
+ class ParamGrid:
155
+ minVal: float
156
+ maxVal: float
157
+ logStep: float
158
+
159
+ # Functions
160
+ @classmethod
161
+ def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
162
+
163
+
164
+ class TrainData:
165
+ # Functions
166
+ def getLayout(self) -> int: ...
167
+
168
+ def getNTrainSamples(self) -> int: ...
169
+
170
+ def getNTestSamples(self) -> int: ...
171
+
172
+ def getNSamples(self) -> int: ...
173
+
174
+ def getNVars(self) -> int: ...
175
+
176
+ def getNAllVars(self) -> int: ...
177
+
178
+ @_typing.overload
179
+ def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
180
+ @_typing.overload
181
+ def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
182
+
183
+ def getSamples(self) -> cv2.typing.MatLike: ...
184
+
185
+ def getMissing(self) -> cv2.typing.MatLike: ...
186
+
187
+ def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
188
+
189
+ def getTrainResponses(self) -> cv2.typing.MatLike: ...
190
+
191
+ def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
192
+
193
+ def getTestResponses(self) -> cv2.typing.MatLike: ...
194
+
195
+ def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
196
+
197
+ def getResponses(self) -> cv2.typing.MatLike: ...
198
+
199
+ def getNormCatResponses(self) -> cv2.typing.MatLike: ...
200
+
201
+ def getSampleWeights(self) -> cv2.typing.MatLike: ...
202
+
203
+ def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
204
+
205
+ def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
206
+
207
+ def getVarIdx(self) -> cv2.typing.MatLike: ...
208
+
209
+ def getVarType(self) -> cv2.typing.MatLike: ...
210
+
211
+ def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
212
+
213
+ def getResponseType(self) -> int: ...
214
+
215
+ def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
216
+
217
+ def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
218
+
219
+ @_typing.overload
220
+ def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
221
+ @_typing.overload
222
+ def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
223
+
224
+ def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
225
+
226
+ def getCatCount(self, vi: int) -> int: ...
227
+
228
+ def getClassLabels(self) -> cv2.typing.MatLike: ...
229
+
230
+ def getCatOfs(self) -> cv2.typing.MatLike: ...
231
+
232
+ def getCatMap(self) -> cv2.typing.MatLike: ...
233
+
234
+ def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
235
+
236
+ def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
237
+
238
+ def shuffleTrainTest(self) -> None: ...
239
+
240
+ def getTestSamples(self) -> cv2.typing.MatLike: ...
241
+
242
+ def getNames(self, names: _typing.Sequence[str]) -> None: ...
243
+
244
+ @staticmethod
245
+ def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
246
+
247
+ @staticmethod
248
+ def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
249
+
250
+ @classmethod
251
+ @_typing.overload
252
+ def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
253
+ @classmethod
254
+ @_typing.overload
255
+ def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
256
+
257
+
258
+ class StatModel(cv2.Algorithm):
259
+ # Functions
260
+ def getVarCount(self) -> int: ...
261
+
262
+ def empty(self) -> bool: ...
263
+
264
+ def isTrained(self) -> bool: ...
265
+
266
+ def isClassifier(self) -> bool: ...
267
+
268
+ @_typing.overload
269
+ def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
270
+ @_typing.overload
271
+ def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
272
+ @_typing.overload
273
+ def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
274
+
275
+ @_typing.overload
276
+ def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
277
+ @_typing.overload
278
+ def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
279
+
280
+ @_typing.overload
281
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
282
+ @_typing.overload
283
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
284
+
285
+
286
+ class NormalBayesClassifier(StatModel):
287
+ # Functions
288
+ @_typing.overload
289
+ def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
290
+ @_typing.overload
291
+ def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
292
+
293
+ @classmethod
294
+ def create(cls) -> NormalBayesClassifier: ...
295
+
296
+ @classmethod
297
+ def load(cls, filepath: str, nodeName: str = ...) -> NormalBayesClassifier: ...
298
+
299
+
300
+ class KNearest(StatModel):
301
+ # Functions
302
+ def getDefaultK(self) -> int: ...
303
+
304
+ def setDefaultK(self, val: int) -> None: ...
305
+
306
+ def getIsClassifier(self) -> bool: ...
307
+
308
+ def setIsClassifier(self, val: bool) -> None: ...
309
+
310
+ def getEmax(self) -> int: ...
311
+
312
+ def setEmax(self, val: int) -> None: ...
313
+
314
+ def getAlgorithmType(self) -> int: ...
315
+
316
+ def setAlgorithmType(self, val: int) -> None: ...
317
+
318
+ @_typing.overload
319
+ def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
320
+ @_typing.overload
321
+ def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
322
+
323
+ @classmethod
324
+ def create(cls) -> KNearest: ...
325
+
326
+ @classmethod
327
+ def load(cls, filepath: str) -> KNearest: ...
328
+
329
+
330
+ class SVM(StatModel):
331
+ # Functions
332
+ def getType(self) -> int: ...
333
+
334
+ def setType(self, val: int) -> None: ...
335
+
336
+ def getGamma(self) -> float: ...
337
+
338
+ def setGamma(self, val: float) -> None: ...
339
+
340
+ def getCoef0(self) -> float: ...
341
+
342
+ def setCoef0(self, val: float) -> None: ...
343
+
344
+ def getDegree(self) -> float: ...
345
+
346
+ def setDegree(self, val: float) -> None: ...
347
+
348
+ def getC(self) -> float: ...
349
+
350
+ def setC(self, val: float) -> None: ...
351
+
352
+ def getNu(self) -> float: ...
353
+
354
+ def setNu(self, val: float) -> None: ...
355
+
356
+ def getP(self) -> float: ...
357
+
358
+ def setP(self, val: float) -> None: ...
359
+
360
+ def getClassWeights(self) -> cv2.typing.MatLike: ...
361
+
362
+ def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
363
+
364
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
365
+
366
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
367
+
368
+ def getKernelType(self) -> int: ...
369
+
370
+ def setKernel(self, kernelType: int) -> None: ...
371
+
372
+ @_typing.overload
373
+ def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
374
+ @_typing.overload
375
+ def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
376
+
377
+ def getSupportVectors(self) -> cv2.typing.MatLike: ...
378
+
379
+ def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
380
+
381
+ @_typing.overload
382
+ def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
383
+ @_typing.overload
384
+ def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
385
+
386
+ @staticmethod
387
+ def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
388
+
389
+ @classmethod
390
+ def create(cls) -> SVM: ...
391
+
392
+ @classmethod
393
+ def load(cls, filepath: str) -> SVM: ...
394
+
395
+
396
+ class EM(StatModel):
397
+ # Functions
398
+ def getClustersNumber(self) -> int: ...
399
+
400
+ def setClustersNumber(self, val: int) -> None: ...
401
+
402
+ def getCovarianceMatrixType(self) -> int: ...
403
+
404
+ def setCovarianceMatrixType(self, val: int) -> None: ...
405
+
406
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
407
+
408
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
409
+
410
+ def getWeights(self) -> cv2.typing.MatLike: ...
411
+
412
+ def getMeans(self) -> cv2.typing.MatLike: ...
413
+
414
+ def getCovs(self, covs: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
415
+
416
+ @_typing.overload
417
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
418
+ @_typing.overload
419
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
420
+
421
+ @_typing.overload
422
+ def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
423
+ @_typing.overload
424
+ def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
425
+
426
+ @_typing.overload
427
+ def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
428
+ @_typing.overload
429
+ def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
430
+
431
+ @_typing.overload
432
+ def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
433
+ @_typing.overload
434
+ def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
435
+
436
+ @_typing.overload
437
+ def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
438
+ @_typing.overload
439
+ def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
440
+
441
+ @classmethod
442
+ def create(cls) -> EM: ...
443
+
444
+ @classmethod
445
+ def load(cls, filepath: str, nodeName: str = ...) -> EM: ...
446
+
447
+
448
+ class DTrees(StatModel):
449
+ # Functions
450
+ def getMaxCategories(self) -> int: ...
451
+
452
+ def setMaxCategories(self, val: int) -> None: ...
453
+
454
+ def getMaxDepth(self) -> int: ...
455
+
456
+ def setMaxDepth(self, val: int) -> None: ...
457
+
458
+ def getMinSampleCount(self) -> int: ...
459
+
460
+ def setMinSampleCount(self, val: int) -> None: ...
461
+
462
+ def getCVFolds(self) -> int: ...
463
+
464
+ def setCVFolds(self, val: int) -> None: ...
465
+
466
+ def getUseSurrogates(self) -> bool: ...
467
+
468
+ def setUseSurrogates(self, val: bool) -> None: ...
469
+
470
+ def getUse1SERule(self) -> bool: ...
471
+
472
+ def setUse1SERule(self, val: bool) -> None: ...
473
+
474
+ def getTruncatePrunedTree(self) -> bool: ...
475
+
476
+ def setTruncatePrunedTree(self, val: bool) -> None: ...
477
+
478
+ def getRegressionAccuracy(self) -> float: ...
479
+
480
+ def setRegressionAccuracy(self, val: float) -> None: ...
481
+
482
+ def getPriors(self) -> cv2.typing.MatLike: ...
483
+
484
+ def setPriors(self, val: cv2.typing.MatLike) -> None: ...
485
+
486
+ @classmethod
487
+ def create(cls) -> DTrees: ...
488
+
489
+ @classmethod
490
+ def load(cls, filepath: str, nodeName: str = ...) -> DTrees: ...
491
+
492
+
493
+ class RTrees(DTrees):
494
+ # Functions
495
+ def getCalculateVarImportance(self) -> bool: ...
496
+
497
+ def setCalculateVarImportance(self, val: bool) -> None: ...
498
+
499
+ def getActiveVarCount(self) -> int: ...
500
+
501
+ def setActiveVarCount(self, val: int) -> None: ...
502
+
503
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
504
+
505
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
506
+
507
+ def getVarImportance(self) -> cv2.typing.MatLike: ...
508
+
509
+ @_typing.overload
510
+ def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
511
+ @_typing.overload
512
+ def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
513
+
514
+ def getOOBError(self) -> float: ...
515
+
516
+ @classmethod
517
+ def create(cls) -> RTrees: ...
518
+
519
+ @classmethod
520
+ def load(cls, filepath: str, nodeName: str = ...) -> RTrees: ...
521
+
522
+
523
+ class Boost(DTrees):
524
+ # Functions
525
+ def getBoostType(self) -> int: ...
526
+
527
+ def setBoostType(self, val: int) -> None: ...
528
+
529
+ def getWeakCount(self) -> int: ...
530
+
531
+ def setWeakCount(self, val: int) -> None: ...
532
+
533
+ def getWeightTrimRate(self) -> float: ...
534
+
535
+ def setWeightTrimRate(self, val: float) -> None: ...
536
+
537
+ @classmethod
538
+ def create(cls) -> Boost: ...
539
+
540
+ @classmethod
541
+ def load(cls, filepath: str, nodeName: str = ...) -> Boost: ...
542
+
543
+
544
+ class ANN_MLP(StatModel):
545
+ # Functions
546
+ def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
547
+
548
+ def getTrainMethod(self) -> int: ...
549
+
550
+ def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
551
+
552
+ @_typing.overload
553
+ def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
554
+ @_typing.overload
555
+ def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
556
+
557
+ def getLayerSizes(self) -> cv2.typing.MatLike: ...
558
+
559
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
560
+
561
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
562
+
563
+ def getBackpropWeightScale(self) -> float: ...
564
+
565
+ def setBackpropWeightScale(self, val: float) -> None: ...
566
+
567
+ def getBackpropMomentumScale(self) -> float: ...
568
+
569
+ def setBackpropMomentumScale(self, val: float) -> None: ...
570
+
571
+ def getRpropDW0(self) -> float: ...
572
+
573
+ def setRpropDW0(self, val: float) -> None: ...
574
+
575
+ def getRpropDWPlus(self) -> float: ...
576
+
577
+ def setRpropDWPlus(self, val: float) -> None: ...
578
+
579
+ def getRpropDWMinus(self) -> float: ...
580
+
581
+ def setRpropDWMinus(self, val: float) -> None: ...
582
+
583
+ def getRpropDWMin(self) -> float: ...
584
+
585
+ def setRpropDWMin(self, val: float) -> None: ...
586
+
587
+ def getRpropDWMax(self) -> float: ...
588
+
589
+ def setRpropDWMax(self, val: float) -> None: ...
590
+
591
+ def getAnnealInitialT(self) -> float: ...
592
+
593
+ def setAnnealInitialT(self, val: float) -> None: ...
594
+
595
+ def getAnnealFinalT(self) -> float: ...
596
+
597
+ def setAnnealFinalT(self, val: float) -> None: ...
598
+
599
+ def getAnnealCoolingRatio(self) -> float: ...
600
+
601
+ def setAnnealCoolingRatio(self, val: float) -> None: ...
602
+
603
+ def getAnnealItePerStep(self) -> int: ...
604
+
605
+ def setAnnealItePerStep(self, val: int) -> None: ...
606
+
607
+ def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
608
+
609
+ @classmethod
610
+ def create(cls) -> ANN_MLP: ...
611
+
612
+ @classmethod
613
+ def load(cls, filepath: str) -> ANN_MLP: ...
614
+
615
+
616
+ class LogisticRegression(StatModel):
617
+ # Functions
618
+ def getLearningRate(self) -> float: ...
619
+
620
+ def setLearningRate(self, val: float) -> None: ...
621
+
622
+ def getIterations(self) -> int: ...
623
+
624
+ def setIterations(self, val: int) -> None: ...
625
+
626
+ def getRegularization(self) -> int: ...
627
+
628
+ def setRegularization(self, val: int) -> None: ...
629
+
630
+ def getTrainMethod(self) -> int: ...
631
+
632
+ def setTrainMethod(self, val: int) -> None: ...
633
+
634
+ def getMiniBatchSize(self) -> int: ...
635
+
636
+ def setMiniBatchSize(self, val: int) -> None: ...
637
+
638
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
639
+
640
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
641
+
642
+ @_typing.overload
643
+ def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
644
+ @_typing.overload
645
+ def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
646
+
647
+ def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
648
+
649
+ @classmethod
650
+ def create(cls) -> LogisticRegression: ...
651
+
652
+ @classmethod
653
+ def load(cls, filepath: str, nodeName: str = ...) -> LogisticRegression: ...
654
+
655
+
656
+ class SVMSGD(StatModel):
657
+ # Functions
658
+ def getWeights(self) -> cv2.typing.MatLike: ...
659
+
660
+ def getShift(self) -> float: ...
661
+
662
+ @classmethod
663
+ def create(cls) -> SVMSGD: ...
664
+
665
+ @classmethod
666
+ def load(cls, filepath: str, nodeName: str = ...) -> SVMSGD: ...
667
+
668
+ def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
669
+
670
+ def getSvmsgdType(self) -> int: ...
671
+
672
+ def setSvmsgdType(self, svmsgdType: int) -> None: ...
673
+
674
+ def getMarginType(self) -> int: ...
675
+
676
+ def setMarginType(self, marginType: int) -> None: ...
677
+
678
+ def getMarginRegularization(self) -> float: ...
679
+
680
+ def setMarginRegularization(self, marginRegularization: float) -> None: ...
681
+
682
+ def getInitialStepSize(self) -> float: ...
683
+
684
+ def setInitialStepSize(self, InitialStepSize: float) -> None: ...
685
+
686
+ def getStepDecreasingPower(self) -> float: ...
687
+
688
+ def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
689
+
690
+ def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
691
+
692
+ def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
693
+
694
+
695
+