opencv-contrib-python-headless 4.13.0.90__cp37-abi3-macosx_14_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cv2/.dylibs/libaom.3.13.1.dylib +0 -0
- cv2/.dylibs/libavif.16.3.0.dylib +0 -0
- cv2/.dylibs/libdav1d.7.dylib +0 -0
- cv2/.dylibs/libvmaf.3.dylib +0 -0
- cv2/Error/__init__.pyi +118 -0
- cv2/LICENSE-3RD-PARTY.txt +3513 -0
- cv2/LICENSE.txt +21 -0
- cv2/__init__.py +181 -0
- cv2/__init__.pyi +6858 -0
- cv2/aruco/__init__.pyi +410 -0
- cv2/barcode/__init__.pyi +40 -0
- cv2/bgsegm/__init__.pyi +202 -0
- cv2/bioinspired/__init__.pyi +121 -0
- cv2/ccm/__init__.pyi +167 -0
- cv2/colored_kinfu/__init__.pyi +96 -0
- cv2/config-3.py +24 -0
- cv2/config.py +5 -0
- cv2/cuda/__init__.pyi +553 -0
- cv2/cv2.abi3.so +0 -0
- cv2/data/__init__.py +3 -0
- cv2/data/haarcascade_eye.xml +12213 -0
- cv2/data/haarcascade_eye_tree_eyeglasses.xml +22619 -0
- cv2/data/haarcascade_frontalcatface.xml +14382 -0
- cv2/data/haarcascade_frontalcatface_extended.xml +13394 -0
- cv2/data/haarcascade_frontalface_alt.xml +24350 -0
- cv2/data/haarcascade_frontalface_alt2.xml +20719 -0
- cv2/data/haarcascade_frontalface_alt_tree.xml +96484 -0
- cv2/data/haarcascade_frontalface_default.xml +33314 -0
- cv2/data/haarcascade_fullbody.xml +17030 -0
- cv2/data/haarcascade_lefteye_2splits.xml +7390 -0
- cv2/data/haarcascade_license_plate_rus_16stages.xml +1404 -0
- cv2/data/haarcascade_lowerbody.xml +14056 -0
- cv2/data/haarcascade_profileface.xml +29690 -0
- cv2/data/haarcascade_righteye_2splits.xml +7407 -0
- cv2/data/haarcascade_russian_plate_number.xml +2656 -0
- cv2/data/haarcascade_smile.xml +6729 -0
- cv2/data/haarcascade_upperbody.xml +28134 -0
- cv2/datasets/__init__.pyi +80 -0
- cv2/detail/__init__.pyi +627 -0
- cv2/dnn/__init__.pyi +549 -0
- cv2/dnn_superres/__init__.pyi +37 -0
- cv2/dpm/__init__.pyi +10 -0
- cv2/dynafu/__init__.pyi +43 -0
- cv2/face/__init__.pyi +220 -0
- cv2/fisheye/__init__.pyi +88 -0
- cv2/flann/__init__.pyi +65 -0
- cv2/ft/__init__.pyi +98 -0
- cv2/gapi/__init__.py +323 -0
- cv2/gapi/__init__.pyi +349 -0
- cv2/gapi/core/__init__.pyi +7 -0
- cv2/gapi/core/cpu/__init__.pyi +9 -0
- cv2/gapi/core/fluid/__init__.pyi +9 -0
- cv2/gapi/core/ocl/__init__.pyi +9 -0
- cv2/gapi/ie/__init__.pyi +51 -0
- cv2/gapi/ie/detail/__init__.pyi +12 -0
- cv2/gapi/imgproc/__init__.pyi +5 -0
- cv2/gapi/imgproc/fluid/__init__.pyi +9 -0
- cv2/gapi/oak/__init__.pyi +37 -0
- cv2/gapi/onnx/__init__.pyi +55 -0
- cv2/gapi/onnx/ep/__init__.pyi +63 -0
- cv2/gapi/ot/__init__.pyi +32 -0
- cv2/gapi/ot/cpu/__init__.pyi +9 -0
- cv2/gapi/ov/__init__.pyi +74 -0
- cv2/gapi/own/__init__.pyi +5 -0
- cv2/gapi/own/detail/__init__.pyi +10 -0
- cv2/gapi/render/__init__.pyi +5 -0
- cv2/gapi/render/ocv/__init__.pyi +9 -0
- cv2/gapi/streaming/__init__.pyi +42 -0
- cv2/gapi/video/__init__.pyi +10 -0
- cv2/gapi/wip/__init__.pyi +43 -0
- cv2/gapi/wip/draw/__init__.pyi +119 -0
- cv2/gapi/wip/gst/__init__.pyi +17 -0
- cv2/gapi/wip/onevpl/__init__.pyi +16 -0
- cv2/hfs/__init__.pyi +53 -0
- cv2/img_hash/__init__.pyi +116 -0
- cv2/instr/__init__.pyi +24 -0
- cv2/intensity_transform/__init__.pyi +27 -0
- cv2/ipp/__init__.pyi +14 -0
- cv2/kinfu/__init__.pyi +133 -0
- cv2/kinfu/detail/__init__.pyi +7 -0
- cv2/large_kinfu/__init__.pyi +73 -0
- cv2/legacy/__init__.pyi +93 -0
- cv2/line_descriptor/__init__.pyi +112 -0
- cv2/linemod/__init__.pyi +151 -0
- cv2/load_config_py2.py +6 -0
- cv2/load_config_py3.py +9 -0
- cv2/mat_wrapper/__init__.py +40 -0
- cv2/mcc/__init__.pyi +109 -0
- cv2/misc/__init__.py +1 -0
- cv2/misc/version.py +5 -0
- cv2/ml/__init__.pyi +696 -0
- cv2/motempl/__init__.pyi +29 -0
- cv2/multicalib/__init__.pyi +10 -0
- cv2/ocl/__init__.pyi +252 -0
- cv2/ogl/__init__.pyi +51 -0
- cv2/omnidir/__init__.pyi +68 -0
- cv2/optflow/__init__.pyi +286 -0
- cv2/parallel/__init__.pyi +6 -0
- cv2/phase_unwrapping/__init__.pyi +41 -0
- cv2/plot/__init__.pyi +64 -0
- cv2/ppf_match_3d/__init__.pyi +91 -0
- cv2/py.typed +0 -0
- cv2/quality/__init__.pyi +149 -0
- cv2/rapid/__init__.pyi +91 -0
- cv2/reg/__init__.pyi +210 -0
- cv2/rgbd/__init__.pyi +449 -0
- cv2/saliency/__init__.pyi +117 -0
- cv2/samples/__init__.pyi +12 -0
- cv2/segmentation/__init__.pyi +39 -0
- cv2/signal/__init__.pyi +14 -0
- cv2/stereo/__init__.pyi +88 -0
- cv2/structured_light/__init__.pyi +94 -0
- cv2/text/__init__.pyi +204 -0
- cv2/typing/__init__.py +180 -0
- cv2/utils/__init__.py +14 -0
- cv2/utils/__init__.pyi +110 -0
- cv2/utils/fs/__init__.pyi +6 -0
- cv2/utils/logging/__init__.pyi +22 -0
- cv2/utils/nested/__init__.pyi +31 -0
- cv2/version.py +5 -0
- cv2/videoio_registry/__init__.pyi +31 -0
- cv2/videostab/__init__.pyi +16 -0
- cv2/wechat_qrcode/__init__.pyi +23 -0
- cv2/xfeatures2d/__init__.pyi +537 -0
- cv2/ximgproc/__init__.pyi +746 -0
- cv2/ximgproc/segmentation/__init__.pyi +116 -0
- cv2/xphoto/__init__.pyi +142 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/LICENSE-3RD-PARTY.txt +3513 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/LICENSE.txt +21 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/METADATA +300 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/RECORD +133 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/WHEEL +6 -0
- opencv_contrib_python_headless-4.13.0.90.dist-info/top_level.txt +1 -0
cv2/ml/__init__.pyi
ADDED
|
@@ -0,0 +1,696 @@
|
|
|
1
|
+
__all__: list[str] = []
|
|
2
|
+
|
|
3
|
+
import cv2
|
|
4
|
+
import cv2.typing
|
|
5
|
+
import os
|
|
6
|
+
import typing as _typing
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
# Enumerations
|
|
10
|
+
VAR_NUMERICAL: int
|
|
11
|
+
VAR_ORDERED: int
|
|
12
|
+
VAR_CATEGORICAL: int
|
|
13
|
+
VariableTypes = int
|
|
14
|
+
"""One of [VAR_NUMERICAL, VAR_ORDERED, VAR_CATEGORICAL]"""
|
|
15
|
+
|
|
16
|
+
TEST_ERROR: int
|
|
17
|
+
TRAIN_ERROR: int
|
|
18
|
+
ErrorTypes = int
|
|
19
|
+
"""One of [TEST_ERROR, TRAIN_ERROR]"""
|
|
20
|
+
|
|
21
|
+
ROW_SAMPLE: int
|
|
22
|
+
COL_SAMPLE: int
|
|
23
|
+
SampleTypes = int
|
|
24
|
+
"""One of [ROW_SAMPLE, COL_SAMPLE]"""
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
StatModel_UPDATE_MODEL: int
|
|
28
|
+
STAT_MODEL_UPDATE_MODEL: int
|
|
29
|
+
StatModel_RAW_OUTPUT: int
|
|
30
|
+
STAT_MODEL_RAW_OUTPUT: int
|
|
31
|
+
StatModel_COMPRESSED_INPUT: int
|
|
32
|
+
STAT_MODEL_COMPRESSED_INPUT: int
|
|
33
|
+
StatModel_PREPROCESSED_INPUT: int
|
|
34
|
+
STAT_MODEL_PREPROCESSED_INPUT: int
|
|
35
|
+
StatModel_Flags = int
|
|
36
|
+
"""One of [StatModel_UPDATE_MODEL, STAT_MODEL_UPDATE_MODEL, StatModel_RAW_OUTPUT, STAT_MODEL_RAW_OUTPUT, StatModel_COMPRESSED_INPUT, STAT_MODEL_COMPRESSED_INPUT, StatModel_PREPROCESSED_INPUT, STAT_MODEL_PREPROCESSED_INPUT]"""
|
|
37
|
+
|
|
38
|
+
KNearest_BRUTE_FORCE: int
|
|
39
|
+
KNEAREST_BRUTE_FORCE: int
|
|
40
|
+
KNearest_KDTREE: int
|
|
41
|
+
KNEAREST_KDTREE: int
|
|
42
|
+
KNearest_Types = int
|
|
43
|
+
"""One of [KNearest_BRUTE_FORCE, KNEAREST_BRUTE_FORCE, KNearest_KDTREE, KNEAREST_KDTREE]"""
|
|
44
|
+
|
|
45
|
+
SVM_C_SVC: int
|
|
46
|
+
SVM_NU_SVC: int
|
|
47
|
+
SVM_ONE_CLASS: int
|
|
48
|
+
SVM_EPS_SVR: int
|
|
49
|
+
SVM_NU_SVR: int
|
|
50
|
+
SVM_Types = int
|
|
51
|
+
"""One of [SVM_C_SVC, SVM_NU_SVC, SVM_ONE_CLASS, SVM_EPS_SVR, SVM_NU_SVR]"""
|
|
52
|
+
|
|
53
|
+
SVM_CUSTOM: int
|
|
54
|
+
SVM_LINEAR: int
|
|
55
|
+
SVM_POLY: int
|
|
56
|
+
SVM_RBF: int
|
|
57
|
+
SVM_SIGMOID: int
|
|
58
|
+
SVM_CHI2: int
|
|
59
|
+
SVM_INTER: int
|
|
60
|
+
SVM_KernelTypes = int
|
|
61
|
+
"""One of [SVM_CUSTOM, SVM_LINEAR, SVM_POLY, SVM_RBF, SVM_SIGMOID, SVM_CHI2, SVM_INTER]"""
|
|
62
|
+
|
|
63
|
+
SVM_C: int
|
|
64
|
+
SVM_GAMMA: int
|
|
65
|
+
SVM_P: int
|
|
66
|
+
SVM_NU: int
|
|
67
|
+
SVM_COEF: int
|
|
68
|
+
SVM_DEGREE: int
|
|
69
|
+
SVM_ParamTypes = int
|
|
70
|
+
"""One of [SVM_C, SVM_GAMMA, SVM_P, SVM_NU, SVM_COEF, SVM_DEGREE]"""
|
|
71
|
+
|
|
72
|
+
EM_COV_MAT_SPHERICAL: int
|
|
73
|
+
EM_COV_MAT_DIAGONAL: int
|
|
74
|
+
EM_COV_MAT_GENERIC: int
|
|
75
|
+
EM_COV_MAT_DEFAULT: int
|
|
76
|
+
EM_Types = int
|
|
77
|
+
"""One of [EM_COV_MAT_SPHERICAL, EM_COV_MAT_DIAGONAL, EM_COV_MAT_GENERIC, EM_COV_MAT_DEFAULT]"""
|
|
78
|
+
|
|
79
|
+
EM_DEFAULT_NCLUSTERS: int
|
|
80
|
+
EM_DEFAULT_MAX_ITERS: int
|
|
81
|
+
EM_START_E_STEP: int
|
|
82
|
+
EM_START_M_STEP: int
|
|
83
|
+
EM_START_AUTO_STEP: int
|
|
84
|
+
|
|
85
|
+
DTrees_PREDICT_AUTO: int
|
|
86
|
+
DTREES_PREDICT_AUTO: int
|
|
87
|
+
DTrees_PREDICT_SUM: int
|
|
88
|
+
DTREES_PREDICT_SUM: int
|
|
89
|
+
DTrees_PREDICT_MAX_VOTE: int
|
|
90
|
+
DTREES_PREDICT_MAX_VOTE: int
|
|
91
|
+
DTrees_PREDICT_MASK: int
|
|
92
|
+
DTREES_PREDICT_MASK: int
|
|
93
|
+
DTrees_Flags = int
|
|
94
|
+
"""One of [DTrees_PREDICT_AUTO, DTREES_PREDICT_AUTO, DTrees_PREDICT_SUM, DTREES_PREDICT_SUM, DTrees_PREDICT_MAX_VOTE, DTREES_PREDICT_MAX_VOTE, DTrees_PREDICT_MASK, DTREES_PREDICT_MASK]"""
|
|
95
|
+
|
|
96
|
+
Boost_DISCRETE: int
|
|
97
|
+
BOOST_DISCRETE: int
|
|
98
|
+
Boost_REAL: int
|
|
99
|
+
BOOST_REAL: int
|
|
100
|
+
Boost_LOGIT: int
|
|
101
|
+
BOOST_LOGIT: int
|
|
102
|
+
Boost_GENTLE: int
|
|
103
|
+
BOOST_GENTLE: int
|
|
104
|
+
Boost_Types = int
|
|
105
|
+
"""One of [Boost_DISCRETE, BOOST_DISCRETE, Boost_REAL, BOOST_REAL, Boost_LOGIT, BOOST_LOGIT, Boost_GENTLE, BOOST_GENTLE]"""
|
|
106
|
+
|
|
107
|
+
ANN_MLP_BACKPROP: int
|
|
108
|
+
ANN_MLP_RPROP: int
|
|
109
|
+
ANN_MLP_ANNEAL: int
|
|
110
|
+
ANN_MLP_TrainingMethods = int
|
|
111
|
+
"""One of [ANN_MLP_BACKPROP, ANN_MLP_RPROP, ANN_MLP_ANNEAL]"""
|
|
112
|
+
|
|
113
|
+
ANN_MLP_IDENTITY: int
|
|
114
|
+
ANN_MLP_SIGMOID_SYM: int
|
|
115
|
+
ANN_MLP_GAUSSIAN: int
|
|
116
|
+
ANN_MLP_RELU: int
|
|
117
|
+
ANN_MLP_LEAKYRELU: int
|
|
118
|
+
ANN_MLP_ActivationFunctions = int
|
|
119
|
+
"""One of [ANN_MLP_IDENTITY, ANN_MLP_SIGMOID_SYM, ANN_MLP_GAUSSIAN, ANN_MLP_RELU, ANN_MLP_LEAKYRELU]"""
|
|
120
|
+
|
|
121
|
+
ANN_MLP_UPDATE_WEIGHTS: int
|
|
122
|
+
ANN_MLP_NO_INPUT_SCALE: int
|
|
123
|
+
ANN_MLP_NO_OUTPUT_SCALE: int
|
|
124
|
+
ANN_MLP_TrainFlags = int
|
|
125
|
+
"""One of [ANN_MLP_UPDATE_WEIGHTS, ANN_MLP_NO_INPUT_SCALE, ANN_MLP_NO_OUTPUT_SCALE]"""
|
|
126
|
+
|
|
127
|
+
LogisticRegression_REG_DISABLE: int
|
|
128
|
+
LOGISTIC_REGRESSION_REG_DISABLE: int
|
|
129
|
+
LogisticRegression_REG_L1: int
|
|
130
|
+
LOGISTIC_REGRESSION_REG_L1: int
|
|
131
|
+
LogisticRegression_REG_L2: int
|
|
132
|
+
LOGISTIC_REGRESSION_REG_L2: int
|
|
133
|
+
LogisticRegression_RegKinds = int
|
|
134
|
+
"""One of [LogisticRegression_REG_DISABLE, LOGISTIC_REGRESSION_REG_DISABLE, LogisticRegression_REG_L1, LOGISTIC_REGRESSION_REG_L1, LogisticRegression_REG_L2, LOGISTIC_REGRESSION_REG_L2]"""
|
|
135
|
+
|
|
136
|
+
LogisticRegression_BATCH: int
|
|
137
|
+
LOGISTIC_REGRESSION_BATCH: int
|
|
138
|
+
LogisticRegression_MINI_BATCH: int
|
|
139
|
+
LOGISTIC_REGRESSION_MINI_BATCH: int
|
|
140
|
+
LogisticRegression_Methods = int
|
|
141
|
+
"""One of [LogisticRegression_BATCH, LOGISTIC_REGRESSION_BATCH, LogisticRegression_MINI_BATCH, LOGISTIC_REGRESSION_MINI_BATCH]"""
|
|
142
|
+
|
|
143
|
+
SVMSGD_SGD: int
|
|
144
|
+
SVMSGD_ASGD: int
|
|
145
|
+
SVMSGD_SvmsgdType = int
|
|
146
|
+
"""One of [SVMSGD_SGD, SVMSGD_ASGD]"""
|
|
147
|
+
|
|
148
|
+
SVMSGD_SOFT_MARGIN: int
|
|
149
|
+
SVMSGD_HARD_MARGIN: int
|
|
150
|
+
SVMSGD_MarginType = int
|
|
151
|
+
"""One of [SVMSGD_SOFT_MARGIN, SVMSGD_HARD_MARGIN]"""
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
# Classes
|
|
155
|
+
class ParamGrid:
|
|
156
|
+
minVal: float
|
|
157
|
+
maxVal: float
|
|
158
|
+
logStep: float
|
|
159
|
+
|
|
160
|
+
# Functions
|
|
161
|
+
@classmethod
|
|
162
|
+
def create(cls, minVal: float = ..., maxVal: float = ..., logstep: float = ...) -> ParamGrid: ...
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class TrainData:
|
|
166
|
+
# Functions
|
|
167
|
+
def getLayout(self) -> int: ...
|
|
168
|
+
|
|
169
|
+
def getNTrainSamples(self) -> int: ...
|
|
170
|
+
|
|
171
|
+
def getNTestSamples(self) -> int: ...
|
|
172
|
+
|
|
173
|
+
def getNSamples(self) -> int: ...
|
|
174
|
+
|
|
175
|
+
def getNVars(self) -> int: ...
|
|
176
|
+
|
|
177
|
+
def getNAllVars(self) -> int: ...
|
|
178
|
+
|
|
179
|
+
@_typing.overload
|
|
180
|
+
def getSample(self, varIdx: cv2.typing.MatLike, sidx: int, buf: float) -> None: ...
|
|
181
|
+
@_typing.overload
|
|
182
|
+
def getSample(self, varIdx: cv2.UMat, sidx: int, buf: float) -> None: ...
|
|
183
|
+
|
|
184
|
+
def getSamples(self) -> cv2.typing.MatLike: ...
|
|
185
|
+
|
|
186
|
+
def getMissing(self) -> cv2.typing.MatLike: ...
|
|
187
|
+
|
|
188
|
+
def getTrainSamples(self, layout: int = ..., compressSamples: bool = ..., compressVars: bool = ...) -> cv2.typing.MatLike: ...
|
|
189
|
+
|
|
190
|
+
def getTrainResponses(self) -> cv2.typing.MatLike: ...
|
|
191
|
+
|
|
192
|
+
def getTrainNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
193
|
+
|
|
194
|
+
def getTestResponses(self) -> cv2.typing.MatLike: ...
|
|
195
|
+
|
|
196
|
+
def getTestNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
197
|
+
|
|
198
|
+
def getResponses(self) -> cv2.typing.MatLike: ...
|
|
199
|
+
|
|
200
|
+
def getNormCatResponses(self) -> cv2.typing.MatLike: ...
|
|
201
|
+
|
|
202
|
+
def getSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
203
|
+
|
|
204
|
+
def getTrainSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
205
|
+
|
|
206
|
+
def getTestSampleWeights(self) -> cv2.typing.MatLike: ...
|
|
207
|
+
|
|
208
|
+
def getVarIdx(self) -> cv2.typing.MatLike: ...
|
|
209
|
+
|
|
210
|
+
def getVarType(self) -> cv2.typing.MatLike: ...
|
|
211
|
+
|
|
212
|
+
def getVarSymbolFlags(self) -> cv2.typing.MatLike: ...
|
|
213
|
+
|
|
214
|
+
def getResponseType(self) -> int: ...
|
|
215
|
+
|
|
216
|
+
def getTrainSampleIdx(self) -> cv2.typing.MatLike: ...
|
|
217
|
+
|
|
218
|
+
def getTestSampleIdx(self) -> cv2.typing.MatLike: ...
|
|
219
|
+
|
|
220
|
+
@_typing.overload
|
|
221
|
+
def getValues(self, vi: int, sidx: cv2.typing.MatLike, values: float) -> None: ...
|
|
222
|
+
@_typing.overload
|
|
223
|
+
def getValues(self, vi: int, sidx: cv2.UMat, values: float) -> None: ...
|
|
224
|
+
|
|
225
|
+
def getDefaultSubstValues(self) -> cv2.typing.MatLike: ...
|
|
226
|
+
|
|
227
|
+
def getCatCount(self, vi: int) -> int: ...
|
|
228
|
+
|
|
229
|
+
def getClassLabels(self) -> cv2.typing.MatLike: ...
|
|
230
|
+
|
|
231
|
+
def getCatOfs(self) -> cv2.typing.MatLike: ...
|
|
232
|
+
|
|
233
|
+
def getCatMap(self) -> cv2.typing.MatLike: ...
|
|
234
|
+
|
|
235
|
+
def setTrainTestSplit(self, count: int, shuffle: bool = ...) -> None: ...
|
|
236
|
+
|
|
237
|
+
def setTrainTestSplitRatio(self, ratio: float, shuffle: bool = ...) -> None: ...
|
|
238
|
+
|
|
239
|
+
def shuffleTrainTest(self) -> None: ...
|
|
240
|
+
|
|
241
|
+
def getTestSamples(self) -> cv2.typing.MatLike: ...
|
|
242
|
+
|
|
243
|
+
def getNames(self, names: _typing.Sequence[str]) -> None: ...
|
|
244
|
+
|
|
245
|
+
@staticmethod
|
|
246
|
+
def getSubVector(vec: cv2.typing.MatLike, idx: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
|
|
247
|
+
|
|
248
|
+
@staticmethod
|
|
249
|
+
def getSubMatrix(matrix: cv2.typing.MatLike, idx: cv2.typing.MatLike, layout: int) -> cv2.typing.MatLike: ...
|
|
250
|
+
|
|
251
|
+
@classmethod
|
|
252
|
+
@_typing.overload
|
|
253
|
+
def create(cls, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, varIdx: cv2.typing.MatLike | None = ..., sampleIdx: cv2.typing.MatLike | None = ..., sampleWeights: cv2.typing.MatLike | None = ..., varType: cv2.typing.MatLike | None = ...) -> TrainData: ...
|
|
254
|
+
@classmethod
|
|
255
|
+
@_typing.overload
|
|
256
|
+
def create(cls, samples: cv2.UMat, layout: int, responses: cv2.UMat, varIdx: cv2.UMat | None = ..., sampleIdx: cv2.UMat | None = ..., sampleWeights: cv2.UMat | None = ..., varType: cv2.UMat | None = ...) -> TrainData: ...
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
class StatModel(cv2.Algorithm):
|
|
260
|
+
# Functions
|
|
261
|
+
def getVarCount(self) -> int: ...
|
|
262
|
+
|
|
263
|
+
def empty(self) -> bool: ...
|
|
264
|
+
|
|
265
|
+
def isTrained(self) -> bool: ...
|
|
266
|
+
|
|
267
|
+
def isClassifier(self) -> bool: ...
|
|
268
|
+
|
|
269
|
+
@_typing.overload
|
|
270
|
+
def train(self, trainData: TrainData, flags: int = ...) -> bool: ...
|
|
271
|
+
@_typing.overload
|
|
272
|
+
def train(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike) -> bool: ...
|
|
273
|
+
@_typing.overload
|
|
274
|
+
def train(self, samples: cv2.UMat, layout: int, responses: cv2.UMat) -> bool: ...
|
|
275
|
+
|
|
276
|
+
@_typing.overload
|
|
277
|
+
def calcError(self, data: TrainData, test: bool, resp: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
278
|
+
@_typing.overload
|
|
279
|
+
def calcError(self, data: TrainData, test: bool, resp: cv2.UMat | None = ...) -> tuple[float, cv2.UMat]: ...
|
|
280
|
+
|
|
281
|
+
@_typing.overload
|
|
282
|
+
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
283
|
+
@_typing.overload
|
|
284
|
+
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
class NormalBayesClassifier(StatModel):
|
|
288
|
+
# Functions
|
|
289
|
+
@_typing.overload
|
|
290
|
+
def predictProb(self, inputs: cv2.typing.MatLike, outputs: cv2.typing.MatLike | None = ..., outputProbs: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
291
|
+
@_typing.overload
|
|
292
|
+
def predictProb(self, inputs: cv2.UMat, outputs: cv2.UMat | None = ..., outputProbs: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
|
|
293
|
+
|
|
294
|
+
@classmethod
|
|
295
|
+
def create(cls) -> NormalBayesClassifier: ...
|
|
296
|
+
|
|
297
|
+
@classmethod
|
|
298
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> NormalBayesClassifier: ...
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
class KNearest(StatModel):
|
|
302
|
+
# Functions
|
|
303
|
+
def getDefaultK(self) -> int: ...
|
|
304
|
+
|
|
305
|
+
def setDefaultK(self, val: int) -> None: ...
|
|
306
|
+
|
|
307
|
+
def getIsClassifier(self) -> bool: ...
|
|
308
|
+
|
|
309
|
+
def setIsClassifier(self, val: bool) -> None: ...
|
|
310
|
+
|
|
311
|
+
def getEmax(self) -> int: ...
|
|
312
|
+
|
|
313
|
+
def setEmax(self, val: int) -> None: ...
|
|
314
|
+
|
|
315
|
+
def getAlgorithmType(self) -> int: ...
|
|
316
|
+
|
|
317
|
+
def setAlgorithmType(self, val: int) -> None: ...
|
|
318
|
+
|
|
319
|
+
@_typing.overload
|
|
320
|
+
def findNearest(self, samples: cv2.typing.MatLike, k: int, results: cv2.typing.MatLike | None = ..., neighborResponses: cv2.typing.MatLike | None = ..., dist: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
321
|
+
@_typing.overload
|
|
322
|
+
def findNearest(self, samples: cv2.UMat, k: int, results: cv2.UMat | None = ..., neighborResponses: cv2.UMat | None = ..., dist: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
323
|
+
|
|
324
|
+
@classmethod
|
|
325
|
+
def create(cls) -> KNearest: ...
|
|
326
|
+
|
|
327
|
+
@classmethod
|
|
328
|
+
def load(cls, filepath: str | os.PathLike[str]) -> KNearest: ...
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
class SVM(StatModel):
|
|
332
|
+
# Functions
|
|
333
|
+
def getType(self) -> int: ...
|
|
334
|
+
|
|
335
|
+
def setType(self, val: int) -> None: ...
|
|
336
|
+
|
|
337
|
+
def getGamma(self) -> float: ...
|
|
338
|
+
|
|
339
|
+
def setGamma(self, val: float) -> None: ...
|
|
340
|
+
|
|
341
|
+
def getCoef0(self) -> float: ...
|
|
342
|
+
|
|
343
|
+
def setCoef0(self, val: float) -> None: ...
|
|
344
|
+
|
|
345
|
+
def getDegree(self) -> float: ...
|
|
346
|
+
|
|
347
|
+
def setDegree(self, val: float) -> None: ...
|
|
348
|
+
|
|
349
|
+
def getC(self) -> float: ...
|
|
350
|
+
|
|
351
|
+
def setC(self, val: float) -> None: ...
|
|
352
|
+
|
|
353
|
+
def getNu(self) -> float: ...
|
|
354
|
+
|
|
355
|
+
def setNu(self, val: float) -> None: ...
|
|
356
|
+
|
|
357
|
+
def getP(self) -> float: ...
|
|
358
|
+
|
|
359
|
+
def setP(self, val: float) -> None: ...
|
|
360
|
+
|
|
361
|
+
def getClassWeights(self) -> cv2.typing.MatLike: ...
|
|
362
|
+
|
|
363
|
+
def setClassWeights(self, val: cv2.typing.MatLike) -> None: ...
|
|
364
|
+
|
|
365
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
366
|
+
|
|
367
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
368
|
+
|
|
369
|
+
def getKernelType(self) -> int: ...
|
|
370
|
+
|
|
371
|
+
def setKernel(self, kernelType: int) -> None: ...
|
|
372
|
+
|
|
373
|
+
@_typing.overload
|
|
374
|
+
def trainAuto(self, samples: cv2.typing.MatLike, layout: int, responses: cv2.typing.MatLike, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
|
|
375
|
+
@_typing.overload
|
|
376
|
+
def trainAuto(self, samples: cv2.UMat, layout: int, responses: cv2.UMat, kFold: int = ..., Cgrid: ParamGrid = ..., gammaGrid: ParamGrid = ..., pGrid: ParamGrid = ..., nuGrid: ParamGrid = ..., coeffGrid: ParamGrid = ..., degreeGrid: ParamGrid = ..., balanced: bool = ...) -> bool: ...
|
|
377
|
+
|
|
378
|
+
def getSupportVectors(self) -> cv2.typing.MatLike: ...
|
|
379
|
+
|
|
380
|
+
def getUncompressedSupportVectors(self) -> cv2.typing.MatLike: ...
|
|
381
|
+
|
|
382
|
+
@_typing.overload
|
|
383
|
+
def getDecisionFunction(self, i: int, alpha: cv2.typing.MatLike | None = ..., svidx: cv2.typing.MatLike | None = ...) -> tuple[float, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
384
|
+
@_typing.overload
|
|
385
|
+
def getDecisionFunction(self, i: int, alpha: cv2.UMat | None = ..., svidx: cv2.UMat | None = ...) -> tuple[float, cv2.UMat, cv2.UMat]: ...
|
|
386
|
+
|
|
387
|
+
@staticmethod
|
|
388
|
+
def getDefaultGridPtr(param_id: int) -> ParamGrid: ...
|
|
389
|
+
|
|
390
|
+
@classmethod
|
|
391
|
+
def create(cls) -> SVM: ...
|
|
392
|
+
|
|
393
|
+
@classmethod
|
|
394
|
+
def load(cls, filepath: str | os.PathLike[str]) -> SVM: ...
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
class EM(StatModel):
|
|
398
|
+
# Functions
|
|
399
|
+
def getClustersNumber(self) -> int: ...
|
|
400
|
+
|
|
401
|
+
def setClustersNumber(self, val: int) -> None: ...
|
|
402
|
+
|
|
403
|
+
def getCovarianceMatrixType(self) -> int: ...
|
|
404
|
+
|
|
405
|
+
def setCovarianceMatrixType(self, val: int) -> None: ...
|
|
406
|
+
|
|
407
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
408
|
+
|
|
409
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
410
|
+
|
|
411
|
+
def getWeights(self) -> cv2.typing.MatLike: ...
|
|
412
|
+
|
|
413
|
+
def getMeans(self) -> cv2.typing.MatLike: ...
|
|
414
|
+
|
|
415
|
+
def getCovs(self, covs: _typing.Sequence[cv2.typing.MatLike] | None = ...) -> _typing.Sequence[cv2.typing.MatLike]: ...
|
|
416
|
+
|
|
417
|
+
@_typing.overload
|
|
418
|
+
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
419
|
+
@_typing.overload
|
|
420
|
+
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
421
|
+
|
|
422
|
+
@_typing.overload
|
|
423
|
+
def predict2(self, sample: cv2.typing.MatLike, probs: cv2.typing.MatLike | None = ...) -> tuple[cv2.typing.Vec2d, cv2.typing.MatLike]: ...
|
|
424
|
+
@_typing.overload
|
|
425
|
+
def predict2(self, sample: cv2.UMat, probs: cv2.UMat | None = ...) -> tuple[cv2.typing.Vec2d, cv2.UMat]: ...
|
|
426
|
+
|
|
427
|
+
@_typing.overload
|
|
428
|
+
def trainEM(self, samples: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
429
|
+
@_typing.overload
|
|
430
|
+
def trainEM(self, samples: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
431
|
+
|
|
432
|
+
@_typing.overload
|
|
433
|
+
def trainE(self, samples: cv2.typing.MatLike, means0: cv2.typing.MatLike, covs0: cv2.typing.MatLike | None = ..., weights0: cv2.typing.MatLike | None = ..., logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
434
|
+
@_typing.overload
|
|
435
|
+
def trainE(self, samples: cv2.UMat, means0: cv2.UMat, covs0: cv2.UMat | None = ..., weights0: cv2.UMat | None = ..., logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
436
|
+
|
|
437
|
+
@_typing.overload
|
|
438
|
+
def trainM(self, samples: cv2.typing.MatLike, probs0: cv2.typing.MatLike, logLikelihoods: cv2.typing.MatLike | None = ..., labels: cv2.typing.MatLike | None = ..., probs: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike, cv2.typing.MatLike, cv2.typing.MatLike]: ...
|
|
439
|
+
@_typing.overload
|
|
440
|
+
def trainM(self, samples: cv2.UMat, probs0: cv2.UMat, logLikelihoods: cv2.UMat | None = ..., labels: cv2.UMat | None = ..., probs: cv2.UMat | None = ...) -> tuple[bool, cv2.UMat, cv2.UMat, cv2.UMat]: ...
|
|
441
|
+
|
|
442
|
+
@classmethod
|
|
443
|
+
def create(cls) -> EM: ...
|
|
444
|
+
|
|
445
|
+
@classmethod
|
|
446
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> EM: ...
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
class DTrees(StatModel):
|
|
450
|
+
# Functions
|
|
451
|
+
def getMaxCategories(self) -> int: ...
|
|
452
|
+
|
|
453
|
+
def setMaxCategories(self, val: int) -> None: ...
|
|
454
|
+
|
|
455
|
+
def getMaxDepth(self) -> int: ...
|
|
456
|
+
|
|
457
|
+
def setMaxDepth(self, val: int) -> None: ...
|
|
458
|
+
|
|
459
|
+
def getMinSampleCount(self) -> int: ...
|
|
460
|
+
|
|
461
|
+
def setMinSampleCount(self, val: int) -> None: ...
|
|
462
|
+
|
|
463
|
+
def getCVFolds(self) -> int: ...
|
|
464
|
+
|
|
465
|
+
def setCVFolds(self, val: int) -> None: ...
|
|
466
|
+
|
|
467
|
+
def getUseSurrogates(self) -> bool: ...
|
|
468
|
+
|
|
469
|
+
def setUseSurrogates(self, val: bool) -> None: ...
|
|
470
|
+
|
|
471
|
+
def getUse1SERule(self) -> bool: ...
|
|
472
|
+
|
|
473
|
+
def setUse1SERule(self, val: bool) -> None: ...
|
|
474
|
+
|
|
475
|
+
def getTruncatePrunedTree(self) -> bool: ...
|
|
476
|
+
|
|
477
|
+
def setTruncatePrunedTree(self, val: bool) -> None: ...
|
|
478
|
+
|
|
479
|
+
def getRegressionAccuracy(self) -> float: ...
|
|
480
|
+
|
|
481
|
+
def setRegressionAccuracy(self, val: float) -> None: ...
|
|
482
|
+
|
|
483
|
+
def getPriors(self) -> cv2.typing.MatLike: ...
|
|
484
|
+
|
|
485
|
+
def setPriors(self, val: cv2.typing.MatLike) -> None: ...
|
|
486
|
+
|
|
487
|
+
@classmethod
|
|
488
|
+
def create(cls) -> DTrees: ...
|
|
489
|
+
|
|
490
|
+
@classmethod
|
|
491
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> DTrees: ...
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
class RTrees(DTrees):
|
|
495
|
+
# Functions
|
|
496
|
+
def getCalculateVarImportance(self) -> bool: ...
|
|
497
|
+
|
|
498
|
+
def setCalculateVarImportance(self, val: bool) -> None: ...
|
|
499
|
+
|
|
500
|
+
def getActiveVarCount(self) -> int: ...
|
|
501
|
+
|
|
502
|
+
def setActiveVarCount(self, val: int) -> None: ...
|
|
503
|
+
|
|
504
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
505
|
+
|
|
506
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
507
|
+
|
|
508
|
+
def getVarImportance(self) -> cv2.typing.MatLike: ...
|
|
509
|
+
|
|
510
|
+
@_typing.overload
|
|
511
|
+
def getVotes(self, samples: cv2.typing.MatLike, flags: int, results: cv2.typing.MatLike | None = ...) -> cv2.typing.MatLike: ...
|
|
512
|
+
@_typing.overload
|
|
513
|
+
def getVotes(self, samples: cv2.UMat, flags: int, results: cv2.UMat | None = ...) -> cv2.UMat: ...
|
|
514
|
+
|
|
515
|
+
def getOOBError(self) -> float: ...
|
|
516
|
+
|
|
517
|
+
@classmethod
|
|
518
|
+
def create(cls) -> RTrees: ...
|
|
519
|
+
|
|
520
|
+
@classmethod
|
|
521
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> RTrees: ...
|
|
522
|
+
|
|
523
|
+
|
|
524
|
+
class Boost(DTrees):
|
|
525
|
+
# Functions
|
|
526
|
+
def getBoostType(self) -> int: ...
|
|
527
|
+
|
|
528
|
+
def setBoostType(self, val: int) -> None: ...
|
|
529
|
+
|
|
530
|
+
def getWeakCount(self) -> int: ...
|
|
531
|
+
|
|
532
|
+
def setWeakCount(self, val: int) -> None: ...
|
|
533
|
+
|
|
534
|
+
def getWeightTrimRate(self) -> float: ...
|
|
535
|
+
|
|
536
|
+
def setWeightTrimRate(self, val: float) -> None: ...
|
|
537
|
+
|
|
538
|
+
@classmethod
|
|
539
|
+
def create(cls) -> Boost: ...
|
|
540
|
+
|
|
541
|
+
@classmethod
|
|
542
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> Boost: ...
|
|
543
|
+
|
|
544
|
+
|
|
545
|
+
class ANN_MLP(StatModel):
|
|
546
|
+
# Functions
|
|
547
|
+
def setTrainMethod(self, method: int, param1: float = ..., param2: float = ...) -> None: ...
|
|
548
|
+
|
|
549
|
+
def getTrainMethod(self) -> int: ...
|
|
550
|
+
|
|
551
|
+
def setActivationFunction(self, type: int, param1: float = ..., param2: float = ...) -> None: ...
|
|
552
|
+
|
|
553
|
+
@_typing.overload
|
|
554
|
+
def setLayerSizes(self, _layer_sizes: cv2.typing.MatLike) -> None: ...
|
|
555
|
+
@_typing.overload
|
|
556
|
+
def setLayerSizes(self, _layer_sizes: cv2.UMat) -> None: ...
|
|
557
|
+
|
|
558
|
+
def getLayerSizes(self) -> cv2.typing.MatLike: ...
|
|
559
|
+
|
|
560
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
561
|
+
|
|
562
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
563
|
+
|
|
564
|
+
def getBackpropWeightScale(self) -> float: ...
|
|
565
|
+
|
|
566
|
+
def setBackpropWeightScale(self, val: float) -> None: ...
|
|
567
|
+
|
|
568
|
+
def getBackpropMomentumScale(self) -> float: ...
|
|
569
|
+
|
|
570
|
+
def setBackpropMomentumScale(self, val: float) -> None: ...
|
|
571
|
+
|
|
572
|
+
def getRpropDW0(self) -> float: ...
|
|
573
|
+
|
|
574
|
+
def setRpropDW0(self, val: float) -> None: ...
|
|
575
|
+
|
|
576
|
+
def getRpropDWPlus(self) -> float: ...
|
|
577
|
+
|
|
578
|
+
def setRpropDWPlus(self, val: float) -> None: ...
|
|
579
|
+
|
|
580
|
+
def getRpropDWMinus(self) -> float: ...
|
|
581
|
+
|
|
582
|
+
def setRpropDWMinus(self, val: float) -> None: ...
|
|
583
|
+
|
|
584
|
+
def getRpropDWMin(self) -> float: ...
|
|
585
|
+
|
|
586
|
+
def setRpropDWMin(self, val: float) -> None: ...
|
|
587
|
+
|
|
588
|
+
def getRpropDWMax(self) -> float: ...
|
|
589
|
+
|
|
590
|
+
def setRpropDWMax(self, val: float) -> None: ...
|
|
591
|
+
|
|
592
|
+
def getAnnealInitialT(self) -> float: ...
|
|
593
|
+
|
|
594
|
+
def setAnnealInitialT(self, val: float) -> None: ...
|
|
595
|
+
|
|
596
|
+
def getAnnealFinalT(self) -> float: ...
|
|
597
|
+
|
|
598
|
+
def setAnnealFinalT(self, val: float) -> None: ...
|
|
599
|
+
|
|
600
|
+
def getAnnealCoolingRatio(self) -> float: ...
|
|
601
|
+
|
|
602
|
+
def setAnnealCoolingRatio(self, val: float) -> None: ...
|
|
603
|
+
|
|
604
|
+
def getAnnealItePerStep(self) -> int: ...
|
|
605
|
+
|
|
606
|
+
def setAnnealItePerStep(self, val: int) -> None: ...
|
|
607
|
+
|
|
608
|
+
def getWeights(self, layerIdx: int) -> cv2.typing.MatLike: ...
|
|
609
|
+
|
|
610
|
+
@classmethod
|
|
611
|
+
def create(cls) -> ANN_MLP: ...
|
|
612
|
+
|
|
613
|
+
@classmethod
|
|
614
|
+
def load(cls, filepath: str | os.PathLike[str]) -> ANN_MLP: ...
|
|
615
|
+
|
|
616
|
+
|
|
617
|
+
class LogisticRegression(StatModel):
|
|
618
|
+
# Functions
|
|
619
|
+
def getLearningRate(self) -> float: ...
|
|
620
|
+
|
|
621
|
+
def setLearningRate(self, val: float) -> None: ...
|
|
622
|
+
|
|
623
|
+
def getIterations(self) -> int: ...
|
|
624
|
+
|
|
625
|
+
def setIterations(self, val: int) -> None: ...
|
|
626
|
+
|
|
627
|
+
def getRegularization(self) -> int: ...
|
|
628
|
+
|
|
629
|
+
def setRegularization(self, val: int) -> None: ...
|
|
630
|
+
|
|
631
|
+
def getTrainMethod(self) -> int: ...
|
|
632
|
+
|
|
633
|
+
def setTrainMethod(self, val: int) -> None: ...
|
|
634
|
+
|
|
635
|
+
def getMiniBatchSize(self) -> int: ...
|
|
636
|
+
|
|
637
|
+
def setMiniBatchSize(self, val: int) -> None: ...
|
|
638
|
+
|
|
639
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
640
|
+
|
|
641
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
642
|
+
|
|
643
|
+
@_typing.overload
|
|
644
|
+
def predict(self, samples: cv2.typing.MatLike, results: cv2.typing.MatLike | None = ..., flags: int = ...) -> tuple[float, cv2.typing.MatLike]: ...
|
|
645
|
+
@_typing.overload
|
|
646
|
+
def predict(self, samples: cv2.UMat, results: cv2.UMat | None = ..., flags: int = ...) -> tuple[float, cv2.UMat]: ...
|
|
647
|
+
|
|
648
|
+
def get_learnt_thetas(self) -> cv2.typing.MatLike: ...
|
|
649
|
+
|
|
650
|
+
@classmethod
|
|
651
|
+
def create(cls) -> LogisticRegression: ...
|
|
652
|
+
|
|
653
|
+
@classmethod
|
|
654
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> LogisticRegression: ...
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
class SVMSGD(StatModel):
|
|
658
|
+
# Functions
|
|
659
|
+
def getWeights(self) -> cv2.typing.MatLike: ...
|
|
660
|
+
|
|
661
|
+
def getShift(self) -> float: ...
|
|
662
|
+
|
|
663
|
+
@classmethod
|
|
664
|
+
def create(cls) -> SVMSGD: ...
|
|
665
|
+
|
|
666
|
+
@classmethod
|
|
667
|
+
def load(cls, filepath: str | os.PathLike[str], nodeName: str = ...) -> SVMSGD: ...
|
|
668
|
+
|
|
669
|
+
def setOptimalParameters(self, svmsgdType: int = ..., marginType: int = ...) -> None: ...
|
|
670
|
+
|
|
671
|
+
def getSvmsgdType(self) -> int: ...
|
|
672
|
+
|
|
673
|
+
def setSvmsgdType(self, svmsgdType: int) -> None: ...
|
|
674
|
+
|
|
675
|
+
def getMarginType(self) -> int: ...
|
|
676
|
+
|
|
677
|
+
def setMarginType(self, marginType: int) -> None: ...
|
|
678
|
+
|
|
679
|
+
def getMarginRegularization(self) -> float: ...
|
|
680
|
+
|
|
681
|
+
def setMarginRegularization(self, marginRegularization: float) -> None: ...
|
|
682
|
+
|
|
683
|
+
def getInitialStepSize(self) -> float: ...
|
|
684
|
+
|
|
685
|
+
def setInitialStepSize(self, InitialStepSize: float) -> None: ...
|
|
686
|
+
|
|
687
|
+
def getStepDecreasingPower(self) -> float: ...
|
|
688
|
+
|
|
689
|
+
def setStepDecreasingPower(self, stepDecreasingPower: float) -> None: ...
|
|
690
|
+
|
|
691
|
+
def getTermCriteria(self) -> cv2.typing.TermCriteria: ...
|
|
692
|
+
|
|
693
|
+
def setTermCriteria(self, val: cv2.typing.TermCriteria) -> None: ...
|
|
694
|
+
|
|
695
|
+
|
|
696
|
+
|