openaivec 0.14.7__py3-none-any.whl → 0.14.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openaivec/_di.py CHANGED
@@ -1,6 +1,7 @@
1
+ from collections.abc import Callable
1
2
  from dataclasses import dataclass, field
2
3
  from threading import RLock
3
- from typing import Any, Callable, Dict, Set, Type, TypeVar
4
+ from typing import Any, TypeVar
4
5
 
5
6
  __all__ = []
6
7
 
@@ -119,12 +120,12 @@ class Container:
119
120
  ```
120
121
  """
121
122
 
122
- _instances: Dict[Type[Any], Any] = field(default_factory=dict)
123
- _providers: Dict[Type[Any], Provider[Any]] = field(default_factory=dict)
123
+ _instances: dict[type[Any], Any] = field(default_factory=dict)
124
+ _providers: dict[type[Any], Provider[Any]] = field(default_factory=dict)
124
125
  _lock: RLock = field(default_factory=RLock)
125
- _resolving: Set[Type[Any]] = field(default_factory=set)
126
+ _resolving: set[type[Any]] = field(default_factory=set)
126
127
 
127
- def register(self, cls: Type[T], provider: Provider[T]) -> None:
128
+ def register(self, cls: type[T], provider: Provider[T]) -> None:
128
129
  """Register a provider function for a service type.
129
130
 
130
131
  The provider function will be called once to create the singleton instance
@@ -150,7 +151,7 @@ class Container:
150
151
 
151
152
  self._providers[cls] = provider
152
153
 
153
- def register_instance(self, cls: Type[T], instance: T) -> None:
154
+ def register_instance(self, cls: type[T], instance: T) -> None:
154
155
  """Register a pre-created instance for a service type.
155
156
 
156
157
  The provided instance will be stored directly in the container and returned
@@ -178,7 +179,7 @@ class Container:
178
179
  self._instances[cls] = instance
179
180
  self._providers[cls] = lambda: instance
180
181
 
181
- def resolve(self, cls: Type[T]) -> T:
182
+ def resolve(self, cls: type[T]) -> T:
182
183
  """Resolve a service instance, creating it if necessary.
183
184
 
184
185
  Returns the singleton instance for the requested service type. If this is
@@ -232,7 +233,7 @@ class Container:
232
233
  finally:
233
234
  self._resolving.discard(cls)
234
235
 
235
- def is_registered(self, cls: Type[Any]) -> bool:
236
+ def is_registered(self, cls: type[Any]) -> bool:
236
237
  """Check if a service type is registered in the container.
237
238
 
238
239
  Args:
@@ -252,7 +253,7 @@ class Container:
252
253
  with self._lock:
253
254
  return cls in self._providers
254
255
 
255
- def unregister(self, cls: Type[Any]) -> None:
256
+ def unregister(self, cls: type[Any]) -> None:
256
257
  """Unregister a service type from the container.
257
258
 
258
259
  Removes the provider function and any cached singleton instance for
openaivec/_dynamic.py ADDED
@@ -0,0 +1,350 @@
1
+ from __future__ import annotations
2
+
3
+ import re
4
+ from enum import Enum
5
+ from typing import Literal
6
+
7
+ from pydantic import BaseModel, Field, create_model
8
+
9
+ __all__: list[str] = []
10
+
11
+ _MAX_ENUM_VALUES = 24
12
+
13
+
14
+ class FieldSpec(BaseModel):
15
+ name: str = Field(
16
+ description=(
17
+ "Field name in lower_snake_case. Rules: (1) Use only lowercase letters, numbers, and underscores; "
18
+ "must start with a letter. (2) For numeric quantities append an explicit unit (e.g. 'duration_seconds', "
19
+ "'price_usd'). (3) Boolean fields use an affirmative 'is_' prefix (e.g. 'is_active'); avoid negative / "
20
+ "ambiguous forms like 'is_deleted' (prefer 'is_active', 'is_enabled'). (4) Name must be unique within the "
21
+ "containing object."
22
+ )
23
+ )
24
+ type: Literal[
25
+ "string",
26
+ "integer",
27
+ "float",
28
+ "boolean",
29
+ "enum",
30
+ "object",
31
+ "string_array",
32
+ "integer_array",
33
+ "float_array",
34
+ "boolean_array",
35
+ "enum_array",
36
+ "object_array",
37
+ ] = Field(
38
+ description=(
39
+ "Logical data type. Allowed values: string | integer | float | boolean | enum | object | string_array | "
40
+ "integer_array | float_array | boolean_array | enum_array | object_array. *_array variants represent a "
41
+ "homogeneous list of the base type. 'enum' / 'enum_array' require 'enum_spec'. 'object' / 'object_array' "
42
+ "require 'object_spec'. Primitives must not define 'enum_spec' or 'object_spec'."
43
+ )
44
+ )
45
+ description: str = Field(
46
+ description=(
47
+ "Human‑readable, concise explanation of the field's meaning and business intent. Should clarify units, "
48
+ "value semantics, and any domain constraints not captured by type. 1–2 sentences; no implementation notes."
49
+ )
50
+ )
51
+ enum_spec: EnumSpec | None = Field(
52
+ default=None,
53
+ description=(
54
+ "Enumeration specification for 'enum' / 'enum_array'. Must be provided (non-empty) for those types and "
55
+ "omitted for all others. Maximum size enforced by constant."
56
+ ),
57
+ )
58
+ object_spec: ObjectSpec | None = Field(
59
+ default=None,
60
+ description=(
61
+ "Nested object schema. Required for 'object' / 'object_array'; must be omitted for every other type. The "
62
+ "contained 'name' is used to derive the generated nested Pydantic model class name."
63
+ ),
64
+ )
65
+
66
+
67
+ class EnumSpec(BaseModel):
68
+ """Enumeration specification for enum / enum_array field types.
69
+
70
+ Attributes:
71
+ name: Required Enum class name (UpperCamelCase). Must match ^[A-Z][A-Za-z0-9]*$. Previously optional; now
72
+ explicit to remove implicit coupling to the field name and make schemas self‑describing.
73
+ values: Raw label values (1–_MAX_ENUM_VALUES before de‑dup). Values are uppercased then
74
+ de-duplicated using a set; ordering of generated Enum members is not guaranteed. Any
75
+ casing variants collapse silently to a single member.
76
+ """
77
+
78
+ name: str = Field(
79
+ description=("Required Enum class name (UpperCamelCase). Valid pattern: ^[A-Z][A-Za-z0-9]*$."),
80
+ )
81
+ values: list[str] = Field(
82
+ description=(
83
+ f"Raw enum label values (1–{_MAX_ENUM_VALUES}). Uppercased then deduplicated; order of members "
84
+ "not guaranteed."
85
+ )
86
+ )
87
+
88
+
89
+ class ObjectSpec(BaseModel):
90
+ name: str = Field(
91
+ description=(
92
+ "Object model class name in UpperCamelCase (singular noun). Must match ^[A-Z][A-Za-z0-9]*$ and is used "
93
+ "directly as the generated Pydantic model class name (no transformation)."
94
+ )
95
+ )
96
+ fields: list[FieldSpec] = Field(
97
+ description=(
98
+ "Non-empty list of FieldSpec definitions composing the object. Each field name must be unique; order is "
99
+ "preserved in the generated model."
100
+ )
101
+ )
102
+
103
+
104
+ def _build_model(object_spec: ObjectSpec) -> type[BaseModel]:
105
+ lower_sname_pattern = re.compile(r"^[a-z][a-z0-9]*(?:_[a-z0-9]+)*$")
106
+ upper_camel_pattern = re.compile(r"^[A-Z][A-Za-z0-9]*$")
107
+ type_map: dict[str, type] = {
108
+ "string": str,
109
+ "integer": int,
110
+ "float": float,
111
+ "boolean": bool,
112
+ "string_array": list[str],
113
+ "integer_array": list[int],
114
+ "float_array": list[float],
115
+ "boolean_array": list[bool],
116
+ }
117
+ output_fields: dict[str, tuple[type, object]] = {}
118
+
119
+ field_names: list[str] = [field.name for field in object_spec.fields]
120
+
121
+ # Assert that names of fields are not duplicated
122
+ if len(field_names) != len(set(field_names)):
123
+ raise ValueError("Field names must be unique within the object spec.")
124
+
125
+ for field in object_spec.fields:
126
+ # Assert that field names are lower_snake_case
127
+ if not lower_sname_pattern.match(field.name):
128
+ raise ValueError(f"Field name '{field.name}' must be in lower_snake_case format (e.g., 'my_field_name').")
129
+
130
+ # (EnumSpec.name now mandatory; no need to derive a fallback name from the field.)
131
+ match field:
132
+ case FieldSpec(
133
+ name=name,
134
+ type="string"
135
+ | "integer"
136
+ | "float"
137
+ | "boolean"
138
+ | "string_array"
139
+ | "integer_array"
140
+ | "float_array"
141
+ | "boolean_array",
142
+ description=description,
143
+ enum_spec=None,
144
+ object_spec=None,
145
+ ):
146
+ field_type = type_map[field.type]
147
+ output_fields[name] = (field_type, Field(description=description))
148
+
149
+ case FieldSpec(name=name, type="enum", description=description, enum_spec=enum_spec, object_spec=None) if (
150
+ enum_spec
151
+ and 0 < len(enum_spec.values) <= _MAX_ENUM_VALUES
152
+ and upper_camel_pattern.match(enum_spec.name)
153
+ ):
154
+ member_names = list({v.upper() for v in enum_spec.values})
155
+ enum_type = Enum(enum_spec.name, member_names)
156
+ output_fields[name] = (enum_type, Field(description=description))
157
+
158
+ case FieldSpec(
159
+ name=name, type="enum_array", description=description, enum_spec=enum_spec, object_spec=None
160
+ ) if (
161
+ enum_spec
162
+ and 0 < len(enum_spec.values) <= _MAX_ENUM_VALUES
163
+ and upper_camel_pattern.match(enum_spec.name)
164
+ ):
165
+ member_names = list({v.upper() for v in enum_spec.values})
166
+ enum_type = Enum(enum_spec.name, member_names)
167
+ output_fields[name] = (list[enum_type], Field(description=description))
168
+
169
+ case FieldSpec(
170
+ name=name, type="object", description=description, enum_spec=None, object_spec=object_spec
171
+ ) if object_spec and upper_camel_pattern.match(object_spec.name):
172
+ nested_model = _build_model(object_spec)
173
+ output_fields[name] = (nested_model, Field(description=description))
174
+
175
+ case FieldSpec(
176
+ name=name, type="object_array", description=description, enum_spec=None, object_spec=object_spec
177
+ ) if object_spec and upper_camel_pattern.match(object_spec.name):
178
+ nested_model = _build_model(object_spec)
179
+ output_fields[name] = (list[nested_model], Field(description=description))
180
+
181
+ # ---- Error cases (explicit reasons) ----
182
+ # Enum type without enum_spec (None or empty)
183
+ case FieldSpec(
184
+ name=name,
185
+ type="enum",
186
+ enum_spec=enum_spec,
187
+ object_spec=None,
188
+ ) if not enum_spec or not enum_spec.values:
189
+ raise ValueError(f"Field '{name}': enum type requires non-empty enum_spec values list.")
190
+ # Enum type exceeding max length
191
+ case FieldSpec(
192
+ name=name,
193
+ type="enum",
194
+ enum_spec=enum_spec,
195
+ object_spec=None,
196
+ ) if enum_spec and len(enum_spec.values) > _MAX_ENUM_VALUES:
197
+ raise ValueError(
198
+ (
199
+ f"Field '{name}': enum type supports at most {_MAX_ENUM_VALUES} enum_spec values "
200
+ f"(got {len(enum_spec.values)})."
201
+ )
202
+ )
203
+ # Enum type invalid explicit name pattern
204
+ case FieldSpec(
205
+ name=name,
206
+ type="enum",
207
+ enum_spec=enum_spec,
208
+ object_spec=None,
209
+ ) if enum_spec and not upper_camel_pattern.match(enum_spec.name):
210
+ raise ValueError(
211
+ (f"Field '{name}': enum_spec.name '{enum_spec.name}' invalid – must match ^[A-Z][A-Za-z0-9]*$")
212
+ )
213
+ # Enum type incorrectly provides an object_spec
214
+ case FieldSpec(
215
+ name=name,
216
+ type="enum",
217
+ enum_spec=enum_spec,
218
+ object_spec=object_spec,
219
+ ) if object_spec is not None:
220
+ raise ValueError(
221
+ f"Field '{name}': enum type must not provide object_spec (got object_spec={object_spec!r})."
222
+ )
223
+ # Enum array type without enum_spec
224
+ case FieldSpec(
225
+ name=name,
226
+ type="enum_array",
227
+ enum_spec=enum_spec,
228
+ object_spec=None,
229
+ ) if not enum_spec or not enum_spec.values:
230
+ raise ValueError(f"Field '{name}': enum_array type requires non-empty enum_spec values list.")
231
+ # Enum array type exceeding max length
232
+ case FieldSpec(
233
+ name=name,
234
+ type="enum_array",
235
+ enum_spec=enum_spec,
236
+ object_spec=None,
237
+ ) if enum_spec and len(enum_spec.values) > _MAX_ENUM_VALUES:
238
+ raise ValueError(
239
+ (
240
+ f"Field '{name}': enum_array type supports at most {_MAX_ENUM_VALUES} enum_spec values "
241
+ f"(got {len(enum_spec.values)})."
242
+ )
243
+ )
244
+ # Enum array type invalid explicit name pattern
245
+ case FieldSpec(
246
+ name=name,
247
+ type="enum_array",
248
+ enum_spec=enum_spec,
249
+ object_spec=None,
250
+ ) if enum_spec and not upper_camel_pattern.match(enum_spec.name):
251
+ raise ValueError(
252
+ (f"Field '{name}': enum_spec.name '{enum_spec.name}' invalid – must match ^[A-Z][A-Za-z0-9]*$")
253
+ )
254
+ # Enum array type incorrectly provides an object_spec
255
+ case FieldSpec(
256
+ name=name,
257
+ type="enum_array",
258
+ enum_spec=enum_spec,
259
+ object_spec=object_spec,
260
+ ) if object_spec is not None:
261
+ raise ValueError(
262
+ f"Field '{name}': enum_array type must not provide object_spec (got object_spec={object_spec!r})."
263
+ )
264
+ # Object type missing object_spec
265
+ case FieldSpec(
266
+ name=name,
267
+ type="object",
268
+ enum_spec=enum_spec,
269
+ object_spec=None,
270
+ ):
271
+ raise ValueError(f"Field '{name}': object type requires object_spec (got object_spec=None).")
272
+ # Object array type missing object_spec
273
+ case FieldSpec(
274
+ name=name,
275
+ type="object_array",
276
+ enum_spec=enum_spec,
277
+ object_spec=None,
278
+ ):
279
+ raise ValueError(f"Field '{name}': object_array type requires object_spec (got object_spec=None).")
280
+ # Object/object_array provided but invalid name pattern
281
+ case FieldSpec(
282
+ name=name,
283
+ type="object" | "object_array",
284
+ enum_spec=enum_spec,
285
+ object_spec=object_spec,
286
+ ) if object_spec is not None and not upper_camel_pattern.match(object_spec.name):
287
+ raise ValueError(
288
+ (
289
+ f"Field '{name}': object_spec.name '{object_spec.name}' must be UpperCamelCase "
290
+ "(regex ^[A-Z][A-Za-z0-9]*$) and contain only letters and digits."
291
+ )
292
+ )
293
+ # Object/object_array types must not provide enum_spec
294
+ case FieldSpec(
295
+ name=name,
296
+ type="object" | "object_array",
297
+ enum_spec=enum_spec,
298
+ object_spec=object_spec,
299
+ ) if enum_spec is not None:
300
+ raise ValueError(
301
+ f"Field '{name}': {field.type} must not define enum_spec (got enum_spec={enum_spec!r})."
302
+ )
303
+ # Primitive / simple array types must not have enum_spec
304
+ case FieldSpec(
305
+ name=name,
306
+ type="string"
307
+ | "integer"
308
+ | "float"
309
+ | "boolean"
310
+ | "string_array"
311
+ | "integer_array"
312
+ | "float_array"
313
+ | "boolean_array",
314
+ enum_spec=enum_spec,
315
+ object_spec=object_spec,
316
+ ) if enum_spec is not None:
317
+ raise ValueError(
318
+ (f"Field '{name}': type '{field.type}' must not define enum_spec (got enum_spec={enum_spec!r}).")
319
+ )
320
+ # Primitive / simple array types must not have object_spec
321
+ case FieldSpec(
322
+ name=name,
323
+ type="string"
324
+ | "integer"
325
+ | "float"
326
+ | "boolean"
327
+ | "string_array"
328
+ | "integer_array"
329
+ | "float_array"
330
+ | "boolean_array",
331
+ enum_spec=None,
332
+ object_spec=object_spec,
333
+ ) if object_spec is not None:
334
+ raise ValueError(
335
+ (
336
+ f"Field '{name}': type '{field.type}' must not define object_spec "
337
+ f"(got object_spec={object_spec!r})."
338
+ )
339
+ )
340
+ # Any other unmatched combination
341
+ case FieldSpec() as f:
342
+ raise ValueError(
343
+ (
344
+ "Field configuration invalid / unrecognized combination: "
345
+ f"name={f.name!r}, type={f.type!r}, enum_spec={'set' if f.enum_spec else None}, "
346
+ f"object_spec={'set' if f.object_spec else None}."
347
+ )
348
+ )
349
+
350
+ return create_model(object_spec.name, **output_fields)
openaivec/_embeddings.py CHANGED
@@ -1,6 +1,5 @@
1
1
  from dataclasses import dataclass, field
2
2
  from logging import Logger, getLogger
3
- from typing import List
4
3
 
5
4
  import numpy as np
6
5
  from numpy.typing import NDArray
@@ -50,7 +49,7 @@ class BatchEmbeddings:
50
49
 
51
50
  @observe(_LOGGER)
52
51
  @backoff(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
53
- def _embed_chunk(self, inputs: List[str]) -> List[NDArray[np.float32]]:
52
+ def _embed_chunk(self, inputs: list[str]) -> list[NDArray[np.float32]]:
54
53
  """Embed one minibatch of strings.
55
54
 
56
55
  This private helper is the unit of work used by the map/parallel
@@ -58,23 +57,23 @@ class BatchEmbeddings:
58
57
  ``openai.RateLimitError`` is raised.
59
58
 
60
59
  Args:
61
- inputs (List[str]): Input strings to be embedded. Duplicates allowed.
60
+ inputs (list[str]): Input strings to be embedded. Duplicates allowed.
62
61
 
63
62
  Returns:
64
- List[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
63
+ list[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
65
64
  """
66
65
  responses = self.client.embeddings.create(input=inputs, model=self.model_name)
67
66
  return [np.array(d.embedding, dtype=np.float32) for d in responses.data]
68
67
 
69
68
  @observe(_LOGGER)
70
- def create(self, inputs: List[str]) -> List[NDArray[np.float32]]:
69
+ def create(self, inputs: list[str]) -> list[NDArray[np.float32]]:
71
70
  """Generate embeddings for inputs using cached, ordered batching.
72
71
 
73
72
  Args:
74
- inputs (List[str]): Input strings. Duplicates allowed.
73
+ inputs (list[str]): Input strings. Duplicates allowed.
75
74
 
76
75
  Returns:
77
- List[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
76
+ list[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
78
77
  """
79
78
  return self.cache.map(inputs, self._embed_chunk)
80
79
 
@@ -159,7 +158,7 @@ class AsyncBatchEmbeddings:
159
158
 
160
159
  @backoff_async(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
161
160
  @observe(_LOGGER)
162
- async def _embed_chunk(self, inputs: List[str]) -> List[NDArray[np.float32]]:
161
+ async def _embed_chunk(self, inputs: list[str]) -> list[NDArray[np.float32]]:
163
162
  """Embed one minibatch of strings asynchronously.
164
163
 
165
164
  This private helper handles the actual API call for a batch of inputs.
@@ -167,10 +166,10 @@ class AsyncBatchEmbeddings:
167
166
  is raised.
168
167
 
169
168
  Args:
170
- inputs (List[str]): Input strings to be embedded. Duplicates allowed.
169
+ inputs (list[str]): Input strings to be embedded. Duplicates allowed.
171
170
 
172
171
  Returns:
173
- List[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
172
+ list[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
174
173
 
175
174
  Raises:
176
175
  RateLimitError: Propagated if retries are exhausted.
@@ -179,13 +178,13 @@ class AsyncBatchEmbeddings:
179
178
  return [np.array(d.embedding, dtype=np.float32) for d in responses.data]
180
179
 
181
180
  @observe(_LOGGER)
182
- async def create(self, inputs: List[str]) -> List[NDArray[np.float32]]:
181
+ async def create(self, inputs: list[str]) -> list[NDArray[np.float32]]:
183
182
  """Generate embeddings for inputs using proxy batching (async).
184
183
 
185
184
  Args:
186
- inputs (List[str]): Input strings. Duplicates allowed.
185
+ inputs (list[str]): Input strings. Duplicates allowed.
187
186
 
188
187
  Returns:
189
- List[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
188
+ list[NDArray[np.float32]]: Embedding vectors aligned to ``inputs``.
190
189
  """
191
190
  return await self.cache.map(inputs, self._embed_chunk) # type: ignore[arg-type]
openaivec/_log.py CHANGED
@@ -2,8 +2,8 @@ import functools
2
2
  import json
3
3
  import time
4
4
  import uuid
5
+ from collections.abc import Callable
5
6
  from logging import Logger
6
- from typing import Callable
7
7
 
8
8
  __all__ = []
9
9
 
openaivec/_model.py CHANGED
@@ -1,5 +1,5 @@
1
1
  from dataclasses import dataclass
2
- from typing import Generic, Type, TypeVar
2
+ from typing import Generic, TypeVar
3
3
 
4
4
  __all__ = [
5
5
  "PreparedTask",
@@ -20,7 +20,7 @@ class PreparedTask(Generic[ResponseFormat]):
20
20
  Attributes:
21
21
  instructions (str): The prompt or instructions to send to the OpenAI model.
22
22
  This should contain clear, specific directions for the task.
23
- response_format (Type[ResponseFormat]): A Pydantic model class or str type that defines the expected
23
+ response_format (type[ResponseFormat]): A Pydantic model class or str type that defines the expected
24
24
  structure of the response. Can be either a BaseModel subclass or str.
25
25
  temperature (float): Controls randomness in the model's output.
26
26
  Range: 0.0 to 1.0. Lower values make output more deterministic.
@@ -54,7 +54,7 @@ class PreparedTask(Generic[ResponseFormat]):
54
54
  """
55
55
 
56
56
  instructions: str
57
- response_format: Type[ResponseFormat]
57
+ response_format: type[ResponseFormat]
58
58
  temperature: float = 0.0
59
59
  top_p: float = 1.0
60
60
 
openaivec/_optimize.py CHANGED
@@ -3,7 +3,6 @@ import time
3
3
  from contextlib import contextmanager
4
4
  from dataclasses import dataclass, field
5
5
  from datetime import datetime, timezone
6
- from typing import List
7
6
 
8
7
  __all__ = []
9
8
 
@@ -24,7 +23,7 @@ class BatchSizeSuggester:
24
23
  max_duration: float = 60.0
25
24
  step_ratio: float = 0.2
26
25
  sample_size: int = 4
27
- _history: List[PerformanceMetric] = field(default_factory=list)
26
+ _history: list[PerformanceMetric] = field(default_factory=list)
28
27
  _lock: threading.RLock = field(default_factory=threading.RLock, repr=False)
29
28
  _batch_size_changed_at: datetime | None = field(default=None, init=False)
30
29
 
@@ -65,9 +64,9 @@ class BatchSizeSuggester:
65
64
  )
66
65
 
67
66
  @property
68
- def samples(self) -> List[PerformanceMetric]:
67
+ def samples(self) -> list[PerformanceMetric]:
69
68
  with self._lock:
70
- selected: List[PerformanceMetric] = []
69
+ selected: list[PerformanceMetric] = []
71
70
  for metric in reversed(self._history):
72
71
  if metric.exception is not None:
73
72
  continue
openaivec/_prompt.py CHANGED
@@ -44,7 +44,6 @@ this will produce an XML string that looks like this:
44
44
 
45
45
  import difflib
46
46
  import logging
47
- from typing import List
48
47
  from xml.etree import ElementTree
49
48
 
50
49
  from openai import OpenAI
@@ -90,8 +89,8 @@ class FewShotPrompt(BaseModel):
90
89
  """
91
90
 
92
91
  purpose: str
93
- cautions: List[str]
94
- examples: List[Example]
92
+ cautions: list[str]
93
+ examples: list[Example]
95
94
 
96
95
 
97
96
  class Step(BaseModel):
@@ -116,7 +115,7 @@ class Request(BaseModel):
116
115
 
117
116
 
118
117
  class Response(BaseModel):
119
- iterations: List[Step]
118
+ iterations: list[Step]
120
119
 
121
120
 
122
121
  _PROMPT: str = """
@@ -358,7 +357,7 @@ class FewShotPromptBuilder:
358
357
  """
359
358
 
360
359
  _prompt: FewShotPrompt
361
- _steps: List[Step]
360
+ _steps: list[Step]
362
361
 
363
362
  def __init__(self):
364
363
  """Initialize an empty FewShotPromptBuilder.