openaivec 0.14.2__py3-none-any.whl → 0.14.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openaivec/_proxy.py +24 -2
- openaivec/_responses.py +77 -25
- openaivec/_schema.py +454 -0
- openaivec/pandas_ext.py +559 -423
- openaivec/spark.py +21 -1
- {openaivec-0.14.2.dist-info → openaivec-0.14.4.dist-info}/METADATA +1 -1
- {openaivec-0.14.2.dist-info → openaivec-0.14.4.dist-info}/RECORD +9 -8
- {openaivec-0.14.2.dist-info → openaivec-0.14.4.dist-info}/WHEEL +0 -0
- {openaivec-0.14.2.dist-info → openaivec-0.14.4.dist-info}/licenses/LICENSE +0 -0
openaivec/_proxy.py
CHANGED
|
@@ -460,7 +460,20 @@ class BatchingMapProxy(ProxyBase[S, T], Generic[S, T]):
|
|
|
460
460
|
self.__process_owned(owned, map_func)
|
|
461
461
|
self.__wait_for(wait_for, map_func)
|
|
462
462
|
|
|
463
|
-
|
|
463
|
+
# Fetch results before purging None entries
|
|
464
|
+
results = self.__values(items)
|
|
465
|
+
|
|
466
|
+
# Remove None values from cache so they are recomputed on future calls
|
|
467
|
+
with self._lock:
|
|
468
|
+
if self._cache: # micro-optimization
|
|
469
|
+
for k in set(items):
|
|
470
|
+
try:
|
|
471
|
+
if self._cache.get(k, object()) is None:
|
|
472
|
+
del self._cache[k]
|
|
473
|
+
except KeyError:
|
|
474
|
+
pass
|
|
475
|
+
|
|
476
|
+
return results
|
|
464
477
|
|
|
465
478
|
|
|
466
479
|
@dataclass
|
|
@@ -745,4 +758,13 @@ class AsyncBatchingMapProxy(ProxyBase[S, T], Generic[S, T]):
|
|
|
745
758
|
await self.__process_owned(owned, map_func)
|
|
746
759
|
await self.__wait_for(wait_for, map_func)
|
|
747
760
|
|
|
748
|
-
|
|
761
|
+
results = await self.__values(items)
|
|
762
|
+
|
|
763
|
+
# Remove None values from cache after retrieval to avoid persisting incomplete results
|
|
764
|
+
async with self._lock:
|
|
765
|
+
if self._cache:
|
|
766
|
+
for k in set(items):
|
|
767
|
+
if self._cache.get(k, object()) is None:
|
|
768
|
+
self._cache.pop(k, None)
|
|
769
|
+
|
|
770
|
+
return results
|
openaivec/_responses.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import warnings
|
|
2
2
|
from dataclasses import dataclass, field
|
|
3
3
|
from logging import Logger, getLogger
|
|
4
|
-
from typing import Generic, List, Type, cast
|
|
4
|
+
from typing import Any, Generic, List, Type, cast
|
|
5
5
|
|
|
6
6
|
from openai import AsyncOpenAI, BadRequestError, InternalServerError, OpenAI, RateLimitError
|
|
7
7
|
from openai.types.responses import ParsedResponse
|
|
@@ -163,7 +163,7 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
163
163
|
client: OpenAI
|
|
164
164
|
model_name: str # For Azure: deployment name, for OpenAI: model name
|
|
165
165
|
system_message: str
|
|
166
|
-
temperature: float | None =
|
|
166
|
+
temperature: float | None = None
|
|
167
167
|
top_p: float = 1.0
|
|
168
168
|
response_format: Type[ResponseFormat] = str # type: ignore[assignment]
|
|
169
169
|
cache: BatchingMapProxy[str, ResponseFormat] = field(default_factory=lambda: BatchingMapProxy(batch_size=None))
|
|
@@ -241,7 +241,9 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
241
241
|
|
|
242
242
|
@observe(_LOGGER)
|
|
243
243
|
@backoff(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
|
|
244
|
-
def _request_llm(
|
|
244
|
+
def _request_llm(
|
|
245
|
+
self, user_messages: List[Message[str]], **extra_api_params: Any
|
|
246
|
+
) -> ParsedResponse[Response[ResponseFormat]]:
|
|
245
247
|
"""Make a single call to the OpenAI JSON‑mode endpoint.
|
|
246
248
|
|
|
247
249
|
Args:
|
|
@@ -265,16 +267,29 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
265
267
|
class ResponseT(BaseModel):
|
|
266
268
|
assistant_messages: List[MessageT]
|
|
267
269
|
|
|
268
|
-
#
|
|
269
|
-
api_params = {
|
|
270
|
+
# Build base API parameters (cannot be overridden by caller)
|
|
271
|
+
api_params: dict[str, Any] = {
|
|
270
272
|
"model": self.model_name,
|
|
271
273
|
"instructions": self._vectorized_system_message,
|
|
272
274
|
"input": Request(user_messages=user_messages).model_dump_json(),
|
|
273
|
-
"top_p": self.top_p,
|
|
274
275
|
"text_format": ResponseT,
|
|
275
276
|
}
|
|
276
|
-
|
|
277
|
-
|
|
277
|
+
|
|
278
|
+
# Resolve nucleus sampling (caller can override)
|
|
279
|
+
top_p = extra_api_params.pop("top_p", self.top_p)
|
|
280
|
+
if top_p is not None:
|
|
281
|
+
api_params["top_p"] = top_p
|
|
282
|
+
|
|
283
|
+
# Resolve temperature (caller can override). If None, omit entirely for reasoning models.
|
|
284
|
+
temperature = extra_api_params.pop("temperature", self.temperature)
|
|
285
|
+
if temperature is not None:
|
|
286
|
+
api_params["temperature"] = temperature
|
|
287
|
+
|
|
288
|
+
# Merge remaining user supplied params, excluding protected keys
|
|
289
|
+
for k, v in extra_api_params.items():
|
|
290
|
+
if k in {"model", "instructions", "input", "text_format"}:
|
|
291
|
+
continue # ignore attempts to override core batching contract
|
|
292
|
+
api_params[k] = v
|
|
278
293
|
|
|
279
294
|
try:
|
|
280
295
|
completion: ParsedResponse[ResponseT] = self.client.responses.parse(**api_params)
|
|
@@ -285,7 +300,7 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
285
300
|
return cast(ParsedResponse[Response[ResponseFormat]], completion)
|
|
286
301
|
|
|
287
302
|
@observe(_LOGGER)
|
|
288
|
-
def _predict_chunk(self, user_messages: List[str]) -> List[ResponseFormat | None]:
|
|
303
|
+
def _predict_chunk(self, user_messages: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
|
|
289
304
|
"""Helper executed for every unique minibatch.
|
|
290
305
|
|
|
291
306
|
This method:
|
|
@@ -297,7 +312,7 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
297
312
|
only on its arguments – which allows safe reuse.
|
|
298
313
|
"""
|
|
299
314
|
messages = [Message(id=i, body=message) for i, message in enumerate(user_messages)]
|
|
300
|
-
responses: ParsedResponse[Response[ResponseFormat]] = self._request_llm(messages)
|
|
315
|
+
responses: ParsedResponse[Response[ResponseFormat]] = self._request_llm(messages, **api_kwargs)
|
|
301
316
|
if not responses.output_parsed:
|
|
302
317
|
return [None] * len(messages)
|
|
303
318
|
response_dict = {message.id: message.body for message in responses.output_parsed.assistant_messages}
|
|
@@ -305,17 +320,28 @@ class BatchResponses(Generic[ResponseFormat]):
|
|
|
305
320
|
return sorted_responses
|
|
306
321
|
|
|
307
322
|
@observe(_LOGGER)
|
|
308
|
-
def parse(self, inputs: List[str]) -> List[ResponseFormat | None]:
|
|
323
|
+
def parse(self, inputs: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
|
|
309
324
|
"""Batched predict.
|
|
310
325
|
|
|
326
|
+
Accepts arbitrary keyword arguments that are forwarded to the underlying
|
|
327
|
+
``OpenAI.responses.parse`` call for future‑proofing (e.g., ``max_output_tokens``,
|
|
328
|
+
penalties, etc.). ``top_p`` and ``temperature`` default to the instance's
|
|
329
|
+
configured values but can be overridden explicitly.
|
|
330
|
+
|
|
311
331
|
Args:
|
|
312
332
|
inputs (List[str]): Prompts that require responses. Duplicates are de‑duplicated.
|
|
333
|
+
**api_kwargs: Extra keyword args forwarded to the OpenAI Responses API.
|
|
313
334
|
|
|
314
335
|
Returns:
|
|
315
336
|
List[ResponseFormat | None]: Assistant responses aligned to ``inputs``.
|
|
316
337
|
"""
|
|
317
|
-
|
|
318
|
-
|
|
338
|
+
if not api_kwargs:
|
|
339
|
+
return self.cache.map(inputs, self._predict_chunk) # type: ignore[return-value]
|
|
340
|
+
|
|
341
|
+
def _predict_with(xs: List[str]) -> List[ResponseFormat | None]:
|
|
342
|
+
return self._predict_chunk(xs, **api_kwargs)
|
|
343
|
+
|
|
344
|
+
return self.cache.map(inputs, _predict_with) # type: ignore[return-value]
|
|
319
345
|
|
|
320
346
|
|
|
321
347
|
@dataclass(frozen=True)
|
|
@@ -382,7 +408,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
382
408
|
client: AsyncOpenAI,
|
|
383
409
|
model_name: str,
|
|
384
410
|
system_message: str,
|
|
385
|
-
temperature: float | None =
|
|
411
|
+
temperature: float | None = None,
|
|
386
412
|
top_p: float = 1.0,
|
|
387
413
|
response_format: Type[ResponseFormat] = str,
|
|
388
414
|
batch_size: int | None = None,
|
|
@@ -455,7 +481,9 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
455
481
|
|
|
456
482
|
@backoff_async(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
|
|
457
483
|
@observe(_LOGGER)
|
|
458
|
-
async def _request_llm(
|
|
484
|
+
async def _request_llm(
|
|
485
|
+
self, user_messages: List[Message[str]], **extra_api_params: Any
|
|
486
|
+
) -> ParsedResponse[Response[ResponseFormat]]:
|
|
459
487
|
"""Make a single async call to the OpenAI JSON‑mode endpoint.
|
|
460
488
|
|
|
461
489
|
Args:
|
|
@@ -476,16 +504,29 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
476
504
|
class ResponseT(BaseModel):
|
|
477
505
|
assistant_messages: List[MessageT]
|
|
478
506
|
|
|
479
|
-
#
|
|
480
|
-
api_params = {
|
|
507
|
+
# Build base API parameters (cannot be overridden by caller)
|
|
508
|
+
api_params: dict[str, Any] = {
|
|
481
509
|
"model": self.model_name,
|
|
482
510
|
"instructions": self._vectorized_system_message,
|
|
483
511
|
"input": Request(user_messages=user_messages).model_dump_json(),
|
|
484
|
-
"top_p": self.top_p,
|
|
485
512
|
"text_format": ResponseT,
|
|
486
513
|
}
|
|
487
|
-
|
|
488
|
-
|
|
514
|
+
|
|
515
|
+
# Resolve nucleus sampling (caller can override)
|
|
516
|
+
top_p = extra_api_params.pop("top_p", self.top_p)
|
|
517
|
+
if top_p is not None:
|
|
518
|
+
api_params["top_p"] = top_p
|
|
519
|
+
|
|
520
|
+
# Resolve temperature (caller can override). If None, omit entirely for reasoning models.
|
|
521
|
+
temperature = extra_api_params.pop("temperature", self.temperature)
|
|
522
|
+
if temperature is not None:
|
|
523
|
+
api_params["temperature"] = temperature
|
|
524
|
+
|
|
525
|
+
# Merge remaining user supplied params, excluding protected keys
|
|
526
|
+
for k, v in extra_api_params.items():
|
|
527
|
+
if k in {"model", "instructions", "input", "text_format"}:
|
|
528
|
+
continue
|
|
529
|
+
api_params[k] = v
|
|
489
530
|
|
|
490
531
|
try:
|
|
491
532
|
completion: ParsedResponse[ResponseT] = await self.client.responses.parse(**api_params)
|
|
@@ -496,7 +537,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
496
537
|
return cast(ParsedResponse[Response[ResponseFormat]], completion)
|
|
497
538
|
|
|
498
539
|
@observe(_LOGGER)
|
|
499
|
-
async def _predict_chunk(self, user_messages: List[str]) -> List[ResponseFormat | None]:
|
|
540
|
+
async def _predict_chunk(self, user_messages: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
|
|
500
541
|
"""Async helper executed for every unique minibatch.
|
|
501
542
|
|
|
502
543
|
This method:
|
|
@@ -507,7 +548,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
507
548
|
The function is pure – it has no side‑effects and the result depends only on its arguments.
|
|
508
549
|
"""
|
|
509
550
|
messages = [Message(id=i, body=message) for i, message in enumerate(user_messages)]
|
|
510
|
-
responses: ParsedResponse[Response[ResponseFormat]] = await self._request_llm(messages) # type: ignore[call-issue]
|
|
551
|
+
responses: ParsedResponse[Response[ResponseFormat]] = await self._request_llm(messages, **api_kwargs) # type: ignore[call-issue]
|
|
511
552
|
if not responses.output_parsed:
|
|
512
553
|
return [None] * len(messages)
|
|
513
554
|
response_dict = {message.id: message.body for message in responses.output_parsed.assistant_messages}
|
|
@@ -516,14 +557,25 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
|
|
|
516
557
|
return sorted_responses
|
|
517
558
|
|
|
518
559
|
@observe(_LOGGER)
|
|
519
|
-
async def parse(self, inputs: List[str]) -> List[ResponseFormat | None]:
|
|
560
|
+
async def parse(self, inputs: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
|
|
520
561
|
"""Batched predict (async).
|
|
521
562
|
|
|
563
|
+
Accepts arbitrary keyword arguments forwarded to ``AsyncOpenAI.responses.parse``.
|
|
564
|
+
``top_p`` and ``temperature`` default to instance configuration but can be
|
|
565
|
+
overridden per call. This prepares for future API parameters without
|
|
566
|
+
changing the public surface again.
|
|
567
|
+
|
|
522
568
|
Args:
|
|
523
569
|
inputs (List[str]): Prompts that require responses. Duplicates are de‑duplicated.
|
|
570
|
+
**api_kwargs: Extra keyword args for the OpenAI Responses API.
|
|
524
571
|
|
|
525
572
|
Returns:
|
|
526
573
|
List[ResponseFormat | None]: Assistant responses aligned to ``inputs``.
|
|
527
574
|
"""
|
|
528
|
-
|
|
529
|
-
|
|
575
|
+
if not api_kwargs:
|
|
576
|
+
return await self.cache.map(inputs, self._predict_chunk) # type: ignore[return-value]
|
|
577
|
+
|
|
578
|
+
async def _predict_with(xs: List[str]) -> List[ResponseFormat | None]:
|
|
579
|
+
return await self._predict_chunk(xs, **api_kwargs)
|
|
580
|
+
|
|
581
|
+
return await self.cache.map(inputs, _predict_with) # type: ignore[return-value]
|