openaivec 0.14.1__py3-none-any.whl → 0.14.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openaivec/_responses.py CHANGED
@@ -1,7 +1,7 @@
1
1
  import warnings
2
2
  from dataclasses import dataclass, field
3
3
  from logging import Logger, getLogger
4
- from typing import Generic, List, Type, cast
4
+ from typing import Any, Generic, List, Type, cast
5
5
 
6
6
  from openai import AsyncOpenAI, BadRequestError, InternalServerError, OpenAI, RateLimitError
7
7
  from openai.types.responses import ParsedResponse
@@ -163,7 +163,7 @@ class BatchResponses(Generic[ResponseFormat]):
163
163
  client: OpenAI
164
164
  model_name: str # For Azure: deployment name, for OpenAI: model name
165
165
  system_message: str
166
- temperature: float | None = 0.0
166
+ temperature: float | None = None
167
167
  top_p: float = 1.0
168
168
  response_format: Type[ResponseFormat] = str # type: ignore[assignment]
169
169
  cache: BatchingMapProxy[str, ResponseFormat] = field(default_factory=lambda: BatchingMapProxy(batch_size=None))
@@ -241,7 +241,9 @@ class BatchResponses(Generic[ResponseFormat]):
241
241
 
242
242
  @observe(_LOGGER)
243
243
  @backoff(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
244
- def _request_llm(self, user_messages: List[Message[str]]) -> ParsedResponse[Response[ResponseFormat]]:
244
+ def _request_llm(
245
+ self, user_messages: List[Message[str]], **extra_api_params: Any
246
+ ) -> ParsedResponse[Response[ResponseFormat]]:
245
247
  """Make a single call to the OpenAI JSON‑mode endpoint.
246
248
 
247
249
  Args:
@@ -265,16 +267,29 @@ class BatchResponses(Generic[ResponseFormat]):
265
267
  class ResponseT(BaseModel):
266
268
  assistant_messages: List[MessageT]
267
269
 
268
- # Prepare API parameters, excluding temperature if None (for reasoning models)
269
- api_params = {
270
+ # Build base API parameters (cannot be overridden by caller)
271
+ api_params: dict[str, Any] = {
270
272
  "model": self.model_name,
271
273
  "instructions": self._vectorized_system_message,
272
274
  "input": Request(user_messages=user_messages).model_dump_json(),
273
- "top_p": self.top_p,
274
275
  "text_format": ResponseT,
275
276
  }
276
- if self.temperature is not None:
277
- api_params["temperature"] = self.temperature
277
+
278
+ # Resolve nucleus sampling (caller can override)
279
+ top_p = extra_api_params.pop("top_p", self.top_p)
280
+ if top_p is not None:
281
+ api_params["top_p"] = top_p
282
+
283
+ # Resolve temperature (caller can override). If None, omit entirely for reasoning models.
284
+ temperature = extra_api_params.pop("temperature", self.temperature)
285
+ if temperature is not None:
286
+ api_params["temperature"] = temperature
287
+
288
+ # Merge remaining user supplied params, excluding protected keys
289
+ for k, v in extra_api_params.items():
290
+ if k in {"model", "instructions", "input", "text_format"}:
291
+ continue # ignore attempts to override core batching contract
292
+ api_params[k] = v
278
293
 
279
294
  try:
280
295
  completion: ParsedResponse[ResponseT] = self.client.responses.parse(**api_params)
@@ -285,7 +300,7 @@ class BatchResponses(Generic[ResponseFormat]):
285
300
  return cast(ParsedResponse[Response[ResponseFormat]], completion)
286
301
 
287
302
  @observe(_LOGGER)
288
- def _predict_chunk(self, user_messages: List[str]) -> List[ResponseFormat | None]:
303
+ def _predict_chunk(self, user_messages: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
289
304
  """Helper executed for every unique minibatch.
290
305
 
291
306
  This method:
@@ -297,7 +312,7 @@ class BatchResponses(Generic[ResponseFormat]):
297
312
  only on its arguments – which allows safe reuse.
298
313
  """
299
314
  messages = [Message(id=i, body=message) for i, message in enumerate(user_messages)]
300
- responses: ParsedResponse[Response[ResponseFormat]] = self._request_llm(messages)
315
+ responses: ParsedResponse[Response[ResponseFormat]] = self._request_llm(messages, **api_kwargs)
301
316
  if not responses.output_parsed:
302
317
  return [None] * len(messages)
303
318
  response_dict = {message.id: message.body for message in responses.output_parsed.assistant_messages}
@@ -305,17 +320,28 @@ class BatchResponses(Generic[ResponseFormat]):
305
320
  return sorted_responses
306
321
 
307
322
  @observe(_LOGGER)
308
- def parse(self, inputs: List[str]) -> List[ResponseFormat | None]:
323
+ def parse(self, inputs: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
309
324
  """Batched predict.
310
325
 
326
+ Accepts arbitrary keyword arguments that are forwarded to the underlying
327
+ ``OpenAI.responses.parse`` call for future‑proofing (e.g., ``max_output_tokens``,
328
+ penalties, etc.). ``top_p`` and ``temperature`` default to the instance's
329
+ configured values but can be overridden explicitly.
330
+
311
331
  Args:
312
332
  inputs (List[str]): Prompts that require responses. Duplicates are de‑duplicated.
333
+ **api_kwargs: Extra keyword args forwarded to the OpenAI Responses API.
313
334
 
314
335
  Returns:
315
336
  List[ResponseFormat | None]: Assistant responses aligned to ``inputs``.
316
337
  """
317
- result = self.cache.map(inputs, self._predict_chunk)
318
- return result # type: ignore[return-value]
338
+ if not api_kwargs:
339
+ return self.cache.map(inputs, self._predict_chunk) # type: ignore[return-value]
340
+
341
+ def _predict_with(xs: List[str]) -> List[ResponseFormat | None]:
342
+ return self._predict_chunk(xs, **api_kwargs)
343
+
344
+ return self.cache.map(inputs, _predict_with) # type: ignore[return-value]
319
345
 
320
346
 
321
347
  @dataclass(frozen=True)
@@ -382,7 +408,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
382
408
  client: AsyncOpenAI,
383
409
  model_name: str,
384
410
  system_message: str,
385
- temperature: float | None = 0.0,
411
+ temperature: float | None = None,
386
412
  top_p: float = 1.0,
387
413
  response_format: Type[ResponseFormat] = str,
388
414
  batch_size: int | None = None,
@@ -455,7 +481,9 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
455
481
 
456
482
  @backoff_async(exceptions=[RateLimitError, InternalServerError], scale=1, max_retries=12)
457
483
  @observe(_LOGGER)
458
- async def _request_llm(self, user_messages: List[Message[str]]) -> ParsedResponse[Response[ResponseFormat]]:
484
+ async def _request_llm(
485
+ self, user_messages: List[Message[str]], **extra_api_params: Any
486
+ ) -> ParsedResponse[Response[ResponseFormat]]:
459
487
  """Make a single async call to the OpenAI JSON‑mode endpoint.
460
488
 
461
489
  Args:
@@ -476,16 +504,29 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
476
504
  class ResponseT(BaseModel):
477
505
  assistant_messages: List[MessageT]
478
506
 
479
- # Prepare API parameters, excluding temperature if None (for reasoning models)
480
- api_params = {
507
+ # Build base API parameters (cannot be overridden by caller)
508
+ api_params: dict[str, Any] = {
481
509
  "model": self.model_name,
482
510
  "instructions": self._vectorized_system_message,
483
511
  "input": Request(user_messages=user_messages).model_dump_json(),
484
- "top_p": self.top_p,
485
512
  "text_format": ResponseT,
486
513
  }
487
- if self.temperature is not None:
488
- api_params["temperature"] = self.temperature
514
+
515
+ # Resolve nucleus sampling (caller can override)
516
+ top_p = extra_api_params.pop("top_p", self.top_p)
517
+ if top_p is not None:
518
+ api_params["top_p"] = top_p
519
+
520
+ # Resolve temperature (caller can override). If None, omit entirely for reasoning models.
521
+ temperature = extra_api_params.pop("temperature", self.temperature)
522
+ if temperature is not None:
523
+ api_params["temperature"] = temperature
524
+
525
+ # Merge remaining user supplied params, excluding protected keys
526
+ for k, v in extra_api_params.items():
527
+ if k in {"model", "instructions", "input", "text_format"}:
528
+ continue
529
+ api_params[k] = v
489
530
 
490
531
  try:
491
532
  completion: ParsedResponse[ResponseT] = await self.client.responses.parse(**api_params)
@@ -496,7 +537,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
496
537
  return cast(ParsedResponse[Response[ResponseFormat]], completion)
497
538
 
498
539
  @observe(_LOGGER)
499
- async def _predict_chunk(self, user_messages: List[str]) -> List[ResponseFormat | None]:
540
+ async def _predict_chunk(self, user_messages: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
500
541
  """Async helper executed for every unique minibatch.
501
542
 
502
543
  This method:
@@ -507,7 +548,7 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
507
548
  The function is pure – it has no side‑effects and the result depends only on its arguments.
508
549
  """
509
550
  messages = [Message(id=i, body=message) for i, message in enumerate(user_messages)]
510
- responses: ParsedResponse[Response[ResponseFormat]] = await self._request_llm(messages) # type: ignore[call-issue]
551
+ responses: ParsedResponse[Response[ResponseFormat]] = await self._request_llm(messages, **api_kwargs) # type: ignore[call-issue]
511
552
  if not responses.output_parsed:
512
553
  return [None] * len(messages)
513
554
  response_dict = {message.id: message.body for message in responses.output_parsed.assistant_messages}
@@ -516,14 +557,25 @@ class AsyncBatchResponses(Generic[ResponseFormat]):
516
557
  return sorted_responses
517
558
 
518
559
  @observe(_LOGGER)
519
- async def parse(self, inputs: List[str]) -> List[ResponseFormat | None]:
560
+ async def parse(self, inputs: List[str], **api_kwargs: Any) -> List[ResponseFormat | None]:
520
561
  """Batched predict (async).
521
562
 
563
+ Accepts arbitrary keyword arguments forwarded to ``AsyncOpenAI.responses.parse``.
564
+ ``top_p`` and ``temperature`` default to instance configuration but can be
565
+ overridden per call. This prepares for future API parameters without
566
+ changing the public surface again.
567
+
522
568
  Args:
523
569
  inputs (List[str]): Prompts that require responses. Duplicates are de‑duplicated.
570
+ **api_kwargs: Extra keyword args for the OpenAI Responses API.
524
571
 
525
572
  Returns:
526
573
  List[ResponseFormat | None]: Assistant responses aligned to ``inputs``.
527
574
  """
528
- result = await self.cache.map(inputs, self._predict_chunk)
529
- return result # type: ignore[return-value]
575
+ if not api_kwargs:
576
+ return await self.cache.map(inputs, self._predict_chunk) # type: ignore[return-value]
577
+
578
+ async def _predict_with(xs: List[str]) -> List[ResponseFormat | None]:
579
+ return await self._predict_chunk(xs, **api_kwargs)
580
+
581
+ return await self.cache.map(inputs, _predict_with) # type: ignore[return-value]
openaivec/_schema.py ADDED
@@ -0,0 +1,413 @@
1
+ """Internal schema inference & dynamic model materialization utilities.
2
+
3
+ This (non-public) module converts a small *representative* sample of free‑text
4
+ examples plus a *purpose* statement into:
5
+
6
+ 1. A vetted, flat list of scalar field specifications (``FieldSpec``) that can
7
+ be *reliably* extracted across similar future inputs.
8
+ 2. A reusable, self‑contained extraction prompt (``inference_prompt``) that
9
+ freezes the agreed schema contract (no additions / renames / omissions).
10
+ 3. A dynamically generated Pydantic model whose fields mirror the inferred
11
+ schema, enabling immediate typed parsing with the OpenAI Responses API.
12
+ 4. A ``PreparedTask`` wrapper (``InferredSchema.task``) for downstream batched
13
+ responses/structured extraction flows in pandas or Spark.
14
+
15
+ Core goals:
16
+ * Minimize manual, subjective schema design iterations.
17
+ * Enforce objective naming / typing / enum rules early (guard rails rather than
18
+ after‑the‑fact cleaning).
19
+ * Provide deterministic reusability: the same prompt + model yield stable
20
+ column ordering & types for analytics or feature engineering.
21
+ * Avoid outcome / target label leakage in predictive (feature engineering)
22
+ contexts by explicitly excluding direct target restatements.
23
+
24
+ This module is intentionally **internal** (``__all__ = []``). Public users
25
+ should interact through higher‑level batch APIs once a schema has been inferred.
26
+
27
+ Design constraints:
28
+ * Flat schema only (no nesting / arrays) to simplify Spark & pandas alignment.
29
+ * Primitive types limited to {string, integer, float, boolean}.
30
+ * Optional enumerations for *closed*, *observed* categorical sets only.
31
+ * Validation retries ensure a structurally coherent suggestion before returning.
32
+
33
+ Example (conceptual):
34
+ from openai import OpenAI
35
+ client = OpenAI()
36
+ inferer = SchemaInferer(client=client, model_name="gpt-4.1-mini")
37
+ schema = inferer.infer_schema(
38
+ SchemaInferenceInput(
39
+ examples=["Order #123 delayed due to weather", "Order #456 delivered"],
40
+ purpose="Extract operational status signals for logistics analytics",
41
+ )
42
+ )
43
+ Model = schema.model # dynamic Pydantic model
44
+ task = schema.task # PreparedTask for batch extraction
45
+
46
+ The implementation purposefully does *not* emit or depend on JSON Schema; the
47
+ authoritative contract is the ordered list of ``FieldSpec`` instances.
48
+ """
49
+
50
+ from dataclasses import dataclass
51
+ from enum import Enum
52
+ from typing import List, Literal, Optional, Type
53
+
54
+ from openai import OpenAI
55
+ from openai.types.responses import ParsedResponse
56
+ from pydantic import BaseModel, Field, create_model
57
+
58
+ from openaivec._model import PreparedTask
59
+
60
+ # Internal module: explicitly not part of public API
61
+ __all__: list[str] = []
62
+
63
+
64
+ class FieldSpec(BaseModel):
65
+ """Specification for a single candidate output field.
66
+
67
+ Each ``FieldSpec`` encodes a *flat*, scalar, semantically atomic unit the
68
+ model should extract. These become columns in downstream DataFrames.
69
+
70
+ Validation focuses on: objective naming, primitive typing, and *optional*
71
+ closed categorical vocabularies. Enumerations are intentionally conservative
72
+ (must derive from clear evidence) to reduce over‑fitted schemas.
73
+
74
+ Attributes:
75
+ name: Lower snake_case unique identifier (regex ^[a-z][a-z0-9_]*$). Avoid
76
+ subjective modifiers ("best", "great", "high_quality").
77
+ type: One of ``string|integer|float|boolean``. ``integer`` only if all
78
+ observed numeric values are whole numbers; ``float`` if any decimal
79
+ or ratio appears. ``boolean`` strictly for explicit binary forms.
80
+ description: Concise, objective extraction rule (what qualifies / what
81
+ to ignore). Disambiguate from overlapping fields if needed.
82
+ enum_values: Optional stable closed set of lowercase string labels
83
+ (2–24). Only for *string* type when the vocabulary is clearly
84
+ evidenced; never hallucinate or extrapolate.
85
+ """
86
+
87
+ name: str = Field(
88
+ description=(
89
+ "Lower snake_case identifier (regex: ^[a-z][a-z0-9_]*$). Must be unique across all fields and "
90
+ "express the semantic meaning succinctly (no adjectives like 'best', 'great')."
91
+ )
92
+ )
93
+ type: Literal["string", "integer", "float", "boolean"] = Field(
94
+ description=(
95
+ "Primitive type. Use 'integer' only if all observed numeric values are whole numbers. "
96
+ "Use 'float' if any value can contain a decimal or represents a ratio/score. Use 'boolean' only for "
97
+ "explicit binary states (yes/no, true/false, present/absent) consistently encoded. Use 'string' otherwise. "
98
+ "Never output arrays, objects, or composite encodings; flatten to the most specific scalar value."
99
+ )
100
+ )
101
+ description: str = Field(
102
+ description=(
103
+ "Concise, objective definition plus extraction rule (what qualifies / what to ignore). Avoid subjective, "
104
+ "speculative, or promotional language. If ambiguity exists with another field, clarify the distinction."
105
+ )
106
+ )
107
+ enum_values: Optional[List[str]] = Field(
108
+ default=None,
109
+ description=(
110
+ "Optional finite categorical label set (classification) for a string field. Provide ONLY when a closed, "
111
+ "stable vocabulary (2–24 lowercase tokens) is clearly evidenced or strongly implied by examples. "
112
+ "Do NOT invent labels. Omit if open-ended or ambiguous. Order must be stable and semantically natural."
113
+ ),
114
+ )
115
+
116
+
117
+ class InferredSchema(BaseModel):
118
+ """Result of a schema inference round.
119
+
120
+ Contains the normalized *purpose*, an objective *examples_summary*, the
121
+ ordered ``fields`` contract, and the canonical reusable ``inference_prompt``.
122
+
123
+ The prompt is constrained to be fully derivable from the other components;
124
+ adding novel unstated facts is disallowed to preserve traceability.
125
+
126
+ Attributes:
127
+ purpose: Unambiguous restatement of the user's objective (noise &
128
+ redundancy removed).
129
+ examples_summary: Neutral description of structural / semantic patterns
130
+ observed in the examples (domain, recurring signals, constraints).
131
+ fields: Ordered list of ``FieldSpec`` objects comprising the schema's
132
+ sole authoritative contract.
133
+ inference_prompt: Self-contained extraction instructions enforcing an
134
+ exact field set (names, order, primitive types) with prohibition on
135
+ alterations or subjective flourishes.
136
+ """
137
+
138
+ purpose: str = Field(
139
+ description=(
140
+ "Normalized, unambiguous restatement of the user objective with redundant, vague, or "
141
+ "conflicting phrasing removed."
142
+ )
143
+ )
144
+ examples_summary: str = Field(
145
+ description=(
146
+ "Objective characterization of the provided examples: content domain, structure, recurring "
147
+ "patterns, and notable constraints."
148
+ )
149
+ )
150
+ fields: List[FieldSpec] = Field(
151
+ description=(
152
+ "Ordered list of proposed fields derived strictly from observable, repeatable signals in the "
153
+ "examples and aligned with the purpose."
154
+ )
155
+ )
156
+ inference_prompt: str = Field(
157
+ description=(
158
+ "Canonical, reusable extraction prompt for structuring future inputs with this schema. "
159
+ "Must be fully derivable from 'purpose', 'examples_summary', and 'fields' (no new unstated facts or "
160
+ "speculation). It MUST: (1) instruct the model to output only the listed fields with the exact names "
161
+ "and primitive types; (2) forbid adding, removing, or renaming fields; (3) avoid subjective or "
162
+ "marketing language; (4) be self-contained (no TODOs, no external references, no unresolved "
163
+ "placeholders). Intended for direct reuse as the prompt for deterministic alignment with 'fields'."
164
+ )
165
+ )
166
+
167
+ @classmethod
168
+ def load(cls, path: str) -> "InferredSchema":
169
+ """Load an inferred schema from a JSON file.
170
+
171
+ Args:
172
+ path (str): Path to a UTF‑8 JSON document previously produced via ``save``.
173
+
174
+ Returns:
175
+ InferredSchema: Reconstructed instance.
176
+ """
177
+ with open(path, "r", encoding="utf-8") as f:
178
+ return cls.model_validate_json(f.read())
179
+
180
+ @property
181
+ def model(self) -> Type[BaseModel]:
182
+ """Dynamically materialized Pydantic model for the inferred schema.
183
+
184
+ Equivalent to calling :meth:`build_model` each access (not cached).
185
+
186
+ Returns:
187
+ Type[BaseModel]: Fresh model type reflecting ``fields`` ordering.
188
+ """
189
+ return self.build_model()
190
+
191
+ @property
192
+ def task(self) -> PreparedTask:
193
+ """PreparedTask integrating the schema's extraction prompt & model.
194
+
195
+ Returns:
196
+ PreparedTask: Ready for batched structured extraction calls.
197
+ """
198
+ return PreparedTask(
199
+ instructions=self.inference_prompt, response_format=self.model, top_p=None, temperature=None
200
+ )
201
+
202
+ def build_model(self) -> Type[BaseModel]:
203
+ """Create a new dynamic ``BaseModel`` class adhering to this schema.
204
+
205
+ Implementation details:
206
+ * Maps primitive types: string→``str``, integer→``int``, float→``float``, boolean→``bool``.
207
+ * For enumerated string fields, constructs an ad‑hoc ``Enum`` subclass with
208
+ stable member names (collision‑safe, normalized to ``UPPER_SNAKE``).
209
+ * All fields are required (ellipsis ``...``). Optionality can be
210
+ introduced later by modifying this logic if needed.
211
+
212
+ Returns:
213
+ Type[BaseModel]: New (not cached) model type; order matches ``fields``.
214
+ """
215
+ type_map: dict[str, type] = {"string": str, "integer": int, "float": float, "boolean": bool}
216
+ fields: dict[str, tuple[type, object]] = {}
217
+
218
+ for spec in self.fields:
219
+ py_type: type
220
+ if spec.enum_values:
221
+ enum_class_name = "Enum_" + "".join(part.capitalize() for part in spec.name.split("_"))
222
+ members: dict[str, str] = {}
223
+ for raw in spec.enum_values:
224
+ sanitized = raw.upper().replace("-", "_").replace(" ", "_")
225
+ if not sanitized or sanitized[0].isdigit():
226
+ sanitized = f"V_{sanitized}"
227
+ base = sanitized
228
+ i = 2
229
+ while sanitized in members:
230
+ sanitized = f"{base}_{i}"
231
+ i += 1
232
+ members[sanitized] = raw
233
+ enum_cls = Enum(enum_class_name, members) # type: ignore[arg-type]
234
+ py_type = enum_cls
235
+ else:
236
+ py_type = type_map[spec.type]
237
+ fields[spec.name] = (py_type, ...)
238
+
239
+ model = create_model("InferredSchema", **fields) # type: ignore[call-arg]
240
+ return model
241
+
242
+ def save(self, path: str) -> None:
243
+ """Persist this inferred schema as pretty‑printed JSON.
244
+
245
+ Args:
246
+ path (str): Destination filesystem path.
247
+ """
248
+ with open(path, "w", encoding="utf-8") as f:
249
+ f.write(self.model_dump_json(indent=2))
250
+
251
+
252
+ class SchemaInferenceInput(BaseModel):
253
+ """Input payload for schema inference.
254
+
255
+ Attributes:
256
+ examples: Representative sample texts restricted to the in‑scope
257
+ distribution (exclude outliers / noise). Size should be *minimal*
258
+ yet sufficient to surface recurring patterns.
259
+ purpose: Plain language description of downstream usage (analytics,
260
+ filtering, enrichment, feature engineering, etc.). Guides field
261
+ relevance & exclusion of outcome labels.
262
+ """
263
+
264
+ examples: List[str] = Field(
265
+ description=(
266
+ "Representative sample texts (strings). Provide only data the schema should generalize over; "
267
+ "exclude outliers not in scope."
268
+ )
269
+ )
270
+ purpose: str = Field(
271
+ description=(
272
+ "Plain language statement describing the downstream use of the extracted structured data (e.g. "
273
+ "analytics, filtering, enrichment)."
274
+ )
275
+ )
276
+
277
+
278
+ _INFER_INSTRUCTIONS = """
279
+ You are a schema inference engine.
280
+
281
+ Task:
282
+ 1. Normalize the user's purpose (eliminate ambiguity, redundancy, contradictions).
283
+ 2. Objectively summarize observable patterns in the example texts.
284
+ 3. Propose a minimal flat set of scalar fields (no nesting / arrays) that are reliably extractable.
285
+ 4. Skip fields likely missing in a large share (>~20%) of realistic inputs.
286
+ 5. Provide enum_values ONLY when a small stable closed categorical set (2–24 lowercase tokens)
287
+ is clearly evidenced; never invent.
288
+ 6. If the purpose indicates prediction (predict / probability / likelihood), output only
289
+ explanatory features (no target restatement).
290
+
291
+ Rules:
292
+ - Names: lower snake_case, unique, regex ^[a-z][a-z0-9_]*$, no subjective adjectives.
293
+ - Types: string | integer | float | boolean
294
+ * integer = all whole numbers
295
+ * float = any decimals / ratios
296
+ * boolean = explicit binary
297
+ * else use string
298
+ - No arrays, objects, composite encodings, or merged multi-concept fields.
299
+ - Descriptions: concise, objective extraction rules (no marketing/emotion/speculation).
300
+ - enum_values only for string fields with stable closed vocab; omit otherwise.
301
+ - Exclude direct outcome labels (e.g. attrition_probability, will_buy, purchase_likelihood)
302
+ in predictive / feature engineering contexts.
303
+
304
+ Output contract:
305
+ Return exactly an InferredSchema object with JSON keys:
306
+ - purpose (string)
307
+ - examples_summary (string)
308
+ - fields (array of FieldSpec objects: name, type, description, enum_values?)
309
+ - inference_prompt (string)
310
+ """.strip()
311
+
312
+
313
+ @dataclass(frozen=True)
314
+ class SchemaInferer:
315
+ """High-level orchestrator for schema inference against the Responses API.
316
+
317
+ Responsibilities:
318
+ * Issue a structured parsing request with strict instructions.
319
+ * Retry (up to ``max_retries``) when the produced field list violates
320
+ baseline structural rules (duplicate names, unsupported types, etc.).
321
+ * Return a fully validated ``InferredSchema`` ready for dynamic model
322
+ generation & downstream batch extraction.
323
+
324
+ The inferred schema intentionally avoids JSON Schema intermediates; the
325
+ authoritative contract is the ordered ``FieldSpec`` list.
326
+
327
+ Attributes:
328
+ client: OpenAI client for calling ``responses.parse``.
329
+ model_name: Model / deployment identifier.
330
+ """
331
+
332
+ client: OpenAI
333
+ model_name: str
334
+
335
+ def infer_schema(self, data: "SchemaInferenceInput", *args, max_retries: int = 3, **kwargs) -> "InferredSchema":
336
+ """Infer a validated schema from representative examples.
337
+
338
+ Workflow:
339
+ 1. Submit ``SchemaInferenceInput`` (JSON) + instructions via
340
+ ``responses.parse`` requesting an ``InferredSchema`` object.
341
+ 2. Validate the returned field list with ``_basic_field_list_validation``.
342
+ 3. Retry (up to ``max_retries``) if validation fails.
343
+
344
+ Args:
345
+ data (SchemaInferenceInput): Representative examples + purpose.
346
+ *args: Positional passthrough to ``client.responses.parse``.
347
+ max_retries (int, optional): Attempts before surfacing the last validation error
348
+ (must be >= 1). Defaults to 3.
349
+ **kwargs: Keyword passthrough to ``client.responses.parse``.
350
+
351
+ Returns:
352
+ InferredSchema: Fully validated schema (purpose, examples summary,
353
+ ordered fields, extraction prompt).
354
+
355
+ Raises:
356
+ ValueError: Validation still fails after exhausting retries.
357
+ """
358
+ if max_retries < 1:
359
+ raise ValueError("max_retries must be >= 1")
360
+
361
+ last_err: Exception | None = None
362
+ for attempt in range(max_retries):
363
+ response: ParsedResponse[InferredSchema] = self.client.responses.parse(
364
+ model=self.model_name,
365
+ instructions=_INFER_INSTRUCTIONS,
366
+ input=data.model_dump_json(),
367
+ text_format=InferredSchema,
368
+ *args,
369
+ **kwargs,
370
+ )
371
+ parsed = response.output_parsed
372
+ try:
373
+ _basic_field_list_validation(parsed)
374
+ except ValueError as e:
375
+ last_err = e
376
+ if attempt == max_retries - 1:
377
+ raise
378
+ continue
379
+ return parsed
380
+ if last_err: # pragma: no cover
381
+ raise last_err
382
+ raise RuntimeError("unreachable retry loop state") # pragma: no cover
383
+
384
+
385
+ def _basic_field_list_validation(parsed: InferredSchema) -> None:
386
+ """Lightweight structural validation of an inferred field list.
387
+
388
+ Checks:
389
+ * Non-empty field set.
390
+ * No duplicate names.
391
+ * All types in the allowed primitive set.
392
+ * ``enum_values`` only on string fields and size within bounds (2–24).
393
+
394
+ Args:
395
+ parsed (InferredSchema): Candidate ``InferredSchema`` instance.
396
+
397
+ Raises:
398
+ ValueError: Any invariant is violated.
399
+ """
400
+ names = [f.name for f in parsed.fields]
401
+ if not names:
402
+ raise ValueError("no fields suggested")
403
+ if len(names) != len(set(names)):
404
+ raise ValueError("duplicate field names detected")
405
+ allowed = {"string", "integer", "float", "boolean"}
406
+ for f in parsed.fields:
407
+ if f.type not in allowed:
408
+ raise ValueError(f"unsupported field type: {f.type}")
409
+ if f.enum_values is not None:
410
+ if f.type != "string":
411
+ raise ValueError(f"enum_values only allowed for string field: {f.name}")
412
+ if not (2 <= len(f.enum_values) <= 24):
413
+ raise ValueError(f"enum_values length out of bounds for field {f.name}")