openaivec 0.14.10__py3-none-any.whl → 0.14.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openaivec/_di.py +21 -0
- openaivec/_embeddings.py +17 -4
- openaivec/_model.py +7 -12
- openaivec/_prompt.py +3 -6
- openaivec/_provider.py +8 -29
- openaivec/_responses.py +39 -117
- openaivec/_schema.py +27 -23
- openaivec/pandas_ext.py +356 -343
- openaivec/spark.py +253 -115
- openaivec/task/__init__.py +1 -1
- openaivec/task/customer_support/customer_sentiment.py +4 -9
- openaivec/task/customer_support/inquiry_classification.py +5 -8
- openaivec/task/customer_support/inquiry_summary.py +5 -6
- openaivec/task/customer_support/intent_analysis.py +5 -7
- openaivec/task/customer_support/response_suggestion.py +5 -8
- openaivec/task/customer_support/urgency_analysis.py +5 -8
- openaivec/task/nlp/dependency_parsing.py +1 -2
- openaivec/task/nlp/keyword_extraction.py +1 -2
- openaivec/task/nlp/morphological_analysis.py +1 -2
- openaivec/task/nlp/named_entity_recognition.py +1 -2
- openaivec/task/nlp/sentiment_analysis.py +1 -2
- openaivec/task/nlp/translation.py +1 -1
- openaivec/task/table/fillna.py +8 -3
- {openaivec-0.14.10.dist-info → openaivec-0.14.13.dist-info}/METADATA +40 -16
- openaivec-0.14.13.dist-info/RECORD +37 -0
- openaivec-0.14.10.dist-info/RECORD +0 -37
- {openaivec-0.14.10.dist-info → openaivec-0.14.13.dist-info}/WHEEL +0 -0
- {openaivec-0.14.10.dist-info → openaivec-0.14.13.dist-info}/licenses/LICENSE +0 -0
|
@@ -100,15 +100,13 @@ class IntentAnalysis(BaseModel):
|
|
|
100
100
|
)
|
|
101
101
|
|
|
102
102
|
|
|
103
|
-
def intent_analysis(
|
|
104
|
-
business_context: str = "general customer support", temperature: float = 0.0, top_p: float = 1.0
|
|
105
|
-
) -> PreparedTask:
|
|
103
|
+
def intent_analysis(business_context: str = "general customer support", **api_kwargs) -> PreparedTask:
|
|
106
104
|
"""Create a configurable intent analysis task.
|
|
107
105
|
|
|
108
106
|
Args:
|
|
109
107
|
business_context (str): Business context for intent analysis.
|
|
110
|
-
|
|
111
|
-
|
|
108
|
+
**api_kwargs: Additional keyword arguments to pass to the OpenAI API,
|
|
109
|
+
such as temperature, top_p, etc.
|
|
112
110
|
|
|
113
111
|
Returns:
|
|
114
112
|
PreparedTask configured for intent analysis.
|
|
@@ -171,8 +169,8 @@ next_steps, and reasoning in Japanese, but use English values like "get_help" fo
|
|
|
171
169
|
|
|
172
170
|
Provide comprehensive intent analysis with actionable recommendations."""
|
|
173
171
|
|
|
174
|
-
return PreparedTask(instructions=instructions, response_format=IntentAnalysis,
|
|
172
|
+
return PreparedTask(instructions=instructions, response_format=IntentAnalysis, api_kwargs=api_kwargs)
|
|
175
173
|
|
|
176
174
|
|
|
177
175
|
# Backward compatibility - default configuration
|
|
178
|
-
INTENT_ANALYSIS = intent_analysis()
|
|
176
|
+
INTENT_ANALYSIS = intent_analysis(temperature=0.0, top_p=1.0)
|
|
@@ -92,8 +92,7 @@ def response_suggestion(
|
|
|
92
92
|
response_style: str = "professional",
|
|
93
93
|
company_name: str = "our company",
|
|
94
94
|
business_context: str = "general customer support",
|
|
95
|
-
|
|
96
|
-
top_p: float = 1.0,
|
|
95
|
+
**api_kwargs,
|
|
97
96
|
) -> PreparedTask:
|
|
98
97
|
"""Create a configurable response suggestion task.
|
|
99
98
|
|
|
@@ -101,8 +100,8 @@ def response_suggestion(
|
|
|
101
100
|
response_style (str): Style of response (professional, friendly, empathetic, formal).
|
|
102
101
|
company_name (str): Name of the company for personalization.
|
|
103
102
|
business_context (str): Business context for responses.
|
|
104
|
-
|
|
105
|
-
|
|
103
|
+
**api_kwargs: Additional keyword arguments to pass to the OpenAI API,
|
|
104
|
+
such as temperature, top_p, etc.
|
|
106
105
|
|
|
107
106
|
Returns:
|
|
108
107
|
PreparedTask configured for response suggestions.
|
|
@@ -190,10 +189,8 @@ but use English values like "empathetic" for tone.
|
|
|
190
189
|
Generate helpful, professional response that moves toward resolution while maintaining
|
|
191
190
|
positive customer relationship."""
|
|
192
191
|
|
|
193
|
-
return PreparedTask(
|
|
194
|
-
instructions=instructions, response_format=ResponseSuggestion, temperature=temperature, top_p=top_p
|
|
195
|
-
)
|
|
192
|
+
return PreparedTask(instructions=instructions, response_format=ResponseSuggestion, api_kwargs=api_kwargs)
|
|
196
193
|
|
|
197
194
|
|
|
198
195
|
# Backward compatibility - default configuration
|
|
199
|
-
RESPONSE_SUGGESTION = response_suggestion()
|
|
196
|
+
RESPONSE_SUGGESTION = response_suggestion(temperature=0.0, top_p=1.0)
|
|
@@ -135,8 +135,7 @@ def urgency_analysis(
|
|
|
135
135
|
business_context: str = "general customer support",
|
|
136
136
|
business_hours: str = "24/7 support",
|
|
137
137
|
sla_rules: Dict[str, str] | None = None,
|
|
138
|
-
|
|
139
|
-
top_p: float = 1.0,
|
|
138
|
+
**api_kwargs,
|
|
140
139
|
) -> PreparedTask:
|
|
141
140
|
"""Create a configurable urgency analysis task.
|
|
142
141
|
|
|
@@ -149,8 +148,8 @@ def urgency_analysis(
|
|
|
149
148
|
business_context (str): Description of the business context.
|
|
150
149
|
business_hours (str): Description of business hours for response time calculation.
|
|
151
150
|
sla_rules (dict[str, str] | None): Dictionary mapping customer tiers to SLA requirements.
|
|
152
|
-
|
|
153
|
-
|
|
151
|
+
**api_kwargs: Additional keyword arguments to pass to the OpenAI API,
|
|
152
|
+
such as temperature, top_p, etc.
|
|
154
153
|
|
|
155
154
|
Returns:
|
|
156
155
|
PreparedTask configured for urgency analysis.
|
|
@@ -287,10 +286,8 @@ urgency_level.
|
|
|
287
286
|
|
|
288
287
|
Provide detailed analysis with clear reasoning for urgency level and response time recommendations."""
|
|
289
288
|
|
|
290
|
-
return PreparedTask(
|
|
291
|
-
instructions=instructions, response_format=UrgencyAnalysis, temperature=temperature, top_p=top_p
|
|
292
|
-
)
|
|
289
|
+
return PreparedTask(instructions=instructions, response_format=UrgencyAnalysis, api_kwargs=api_kwargs)
|
|
293
290
|
|
|
294
291
|
|
|
295
292
|
# Backward compatibility - default configuration
|
|
296
|
-
URGENCY_ANALYSIS = urgency_analysis()
|
|
293
|
+
URGENCY_ANALYSIS = urgency_analysis(temperature=0.0, top_p=1.0)
|
|
@@ -75,6 +75,5 @@ DEPENDENCY_PARSING = PreparedTask(
|
|
|
75
75
|
"relations between words, determine the root word, and provide a tree representation of the "
|
|
76
76
|
"syntactic structure.",
|
|
77
77
|
response_format=DependencyParsing,
|
|
78
|
-
temperature
|
|
79
|
-
top_p=1.0,
|
|
78
|
+
api_kwargs={"temperature": 0.0, "top_p": 1.0},
|
|
80
79
|
)
|
|
@@ -75,6 +75,5 @@ KEYWORD_EXTRACTION = PreparedTask(
|
|
|
75
75
|
instructions="Extract important keywords and phrases from the following text. Rank them "
|
|
76
76
|
"by importance, provide frequency counts, identify main topics, and generate a brief summary.",
|
|
77
77
|
response_format=KeywordExtraction,
|
|
78
|
-
temperature
|
|
79
|
-
top_p=1.0,
|
|
78
|
+
api_kwargs={"temperature": 0.0, "top_p": 1.0},
|
|
80
79
|
)
|
|
@@ -70,6 +70,5 @@ MORPHOLOGICAL_ANALYSIS = PreparedTask(
|
|
|
70
70
|
"identify part-of-speech tags, provide lemmatized forms, and extract morphological features "
|
|
71
71
|
"for each token.",
|
|
72
72
|
response_format=MorphologicalAnalysis,
|
|
73
|
-
temperature
|
|
74
|
-
top_p=1.0,
|
|
73
|
+
api_kwargs={"temperature": 0.0, "top_p": 1.0},
|
|
75
74
|
)
|
|
@@ -78,6 +78,5 @@ NAMED_ENTITY_RECOGNITION = PreparedTask(
|
|
|
78
78
|
"organizations, locations, dates, money, percentages, and other miscellaneous entities "
|
|
79
79
|
"with their positions and confidence scores.",
|
|
80
80
|
response_format=NamedEntityRecognition,
|
|
81
|
-
temperature
|
|
82
|
-
top_p=1.0,
|
|
81
|
+
api_kwargs={"temperature": 0.0, "top_p": 1.0},
|
|
83
82
|
)
|
|
@@ -78,6 +78,5 @@ SENTIMENT_ANALYSIS = PreparedTask(
|
|
|
78
78
|
"English values specified (positive/negative/neutral for sentiment, and "
|
|
79
79
|
"joy/sadness/anger/fear/surprise/disgust for emotions).",
|
|
80
80
|
response_format=SentimentAnalysis,
|
|
81
|
-
temperature
|
|
82
|
-
top_p=1.0,
|
|
81
|
+
api_kwargs={"temperature": 0.0, "top_p": 1.0},
|
|
83
82
|
)
|
|
@@ -157,5 +157,5 @@ class TranslatedString(BaseModel):
|
|
|
157
157
|
instructions = "Translate the following text into multiple languages. "
|
|
158
158
|
|
|
159
159
|
MULTILINGUAL_TRANSLATION = PreparedTask(
|
|
160
|
-
instructions=instructions, response_format=TranslatedString, temperature
|
|
160
|
+
instructions=instructions, response_format=TranslatedString, api_kwargs={"temperature": 0.0, "top_p": 1.0}
|
|
161
161
|
)
|
openaivec/task/table/fillna.py
CHANGED
|
@@ -125,7 +125,7 @@ class FillNaResponse(BaseModel):
|
|
|
125
125
|
)
|
|
126
126
|
|
|
127
127
|
|
|
128
|
-
def fillna(df: pd.DataFrame, target_column_name: str, max_examples: int = 500) -> PreparedTask:
|
|
128
|
+
def fillna(df: pd.DataFrame, target_column_name: str, max_examples: int = 500, **api_kwargs) -> PreparedTask:
|
|
129
129
|
"""Create a prepared task for filling missing values in a DataFrame column.
|
|
130
130
|
|
|
131
131
|
Analyzes the provided DataFrame to understand data patterns and creates
|
|
@@ -141,12 +141,14 @@ def fillna(df: pd.DataFrame, target_column_name: str, max_examples: int = 500) -
|
|
|
141
141
|
max_examples (int): Maximum number of example rows to use for few-shot
|
|
142
142
|
learning. Defaults to 500. Higher values provide more context
|
|
143
143
|
but increase token usage and processing time.
|
|
144
|
+
**api_kwargs: Additional keyword arguments to pass to the OpenAI API,
|
|
145
|
+
such as temperature, top_p, etc.
|
|
144
146
|
|
|
145
147
|
Returns:
|
|
146
148
|
PreparedTask configured for missing value imputation with:
|
|
147
149
|
- Instructions based on DataFrame patterns
|
|
148
150
|
- FillNaResponse format for structured output
|
|
149
|
-
-
|
|
151
|
+
- Default deterministic settings (temperature=0.0, top_p=1.0)
|
|
150
152
|
|
|
151
153
|
Raises:
|
|
152
154
|
ValueError: If target_column_name doesn't exist in DataFrame,
|
|
@@ -180,4 +182,7 @@ def fillna(df: pd.DataFrame, target_column_name: str, max_examples: int = 500) -
|
|
|
180
182
|
if df[target_column_name].notna().sum() == 0:
|
|
181
183
|
raise ValueError(f"Column '{target_column_name}' contains no non-null values for training examples.")
|
|
182
184
|
instructions = get_instructions(df, target_column_name, max_examples)
|
|
183
|
-
|
|
185
|
+
# Set default values for deterministic results if not provided
|
|
186
|
+
if not api_kwargs:
|
|
187
|
+
api_kwargs = {"temperature": 0.0, "top_p": 1.0}
|
|
188
|
+
return PreparedTask(instructions=instructions, response_format=FillNaResponse, api_kwargs=api_kwargs)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: openaivec
|
|
3
|
-
Version: 0.14.
|
|
3
|
+
Version: 0.14.13
|
|
4
4
|
Summary: Generative mutation for tabular calculation
|
|
5
5
|
Project-URL: Homepage, https://microsoft.github.io/openaivec/
|
|
6
6
|
Project-URL: Repository, https://github.com/microsoft/openaivec
|
|
@@ -334,26 +334,34 @@ Scale to enterprise datasets with distributed processing:
|
|
|
334
334
|
First, obtain a Spark session and configure authentication:
|
|
335
335
|
|
|
336
336
|
```python
|
|
337
|
-
import os
|
|
338
337
|
from pyspark.sql import SparkSession
|
|
338
|
+
from openaivec.spark import setup, setup_azure
|
|
339
339
|
|
|
340
340
|
spark = SparkSession.builder.getOrCreate()
|
|
341
|
-
sc = spark.sparkContext
|
|
342
341
|
|
|
343
|
-
# Configure authentication via SparkContext environment variables
|
|
344
342
|
# Option 1: Using OpenAI
|
|
345
|
-
|
|
343
|
+
setup(
|
|
344
|
+
spark,
|
|
345
|
+
api_key="your-openai-api-key",
|
|
346
|
+
responses_model_name="gpt-4.1-mini", # Optional: set default model
|
|
347
|
+
embeddings_model_name="text-embedding-3-small" # Optional: set default model
|
|
348
|
+
)
|
|
346
349
|
|
|
347
350
|
# Option 2: Using Azure OpenAI
|
|
348
|
-
#
|
|
349
|
-
#
|
|
350
|
-
#
|
|
351
|
+
# setup_azure(
|
|
352
|
+
# spark,
|
|
353
|
+
# api_key="your-azure-openai-api-key",
|
|
354
|
+
# base_url="https://YOUR-RESOURCE-NAME.services.ai.azure.com/openai/v1/",
|
|
355
|
+
# api_version="preview",
|
|
356
|
+
# responses_model_name="my-gpt4-deployment", # Optional: set default deployment
|
|
357
|
+
# embeddings_model_name="my-embedding-deployment" # Optional: set default deployment
|
|
358
|
+
# )
|
|
351
359
|
```
|
|
352
360
|
|
|
353
361
|
Next, create and register UDFs using the provided functions:
|
|
354
362
|
|
|
355
363
|
```python
|
|
356
|
-
from openaivec.spark import responses_udf, task_udf, embeddings_udf, count_tokens_udf
|
|
364
|
+
from openaivec.spark import responses_udf, task_udf, embeddings_udf, count_tokens_udf, similarity_udf, parse_udf
|
|
357
365
|
from pydantic import BaseModel
|
|
358
366
|
|
|
359
367
|
# --- Register Responses UDF (String Output) ---
|
|
@@ -387,6 +395,9 @@ spark.udf.register(
|
|
|
387
395
|
# --- Register Token Counting UDF ---
|
|
388
396
|
spark.udf.register("count_tokens", count_tokens_udf())
|
|
389
397
|
|
|
398
|
+
# --- Register Similarity UDF ---
|
|
399
|
+
spark.udf.register("compute_similarity", similarity_udf())
|
|
400
|
+
|
|
390
401
|
# --- Register UDFs with Pre-configured Tasks ---
|
|
391
402
|
from openaivec.task import nlp, customer_support
|
|
392
403
|
|
|
@@ -414,6 +425,17 @@ spark.udf.register(
|
|
|
414
425
|
)
|
|
415
426
|
)
|
|
416
427
|
|
|
428
|
+
# --- Register Parse UDF (Dynamic Schema Inference) ---
|
|
429
|
+
spark.udf.register(
|
|
430
|
+
"parse_dynamic",
|
|
431
|
+
parse_udf(
|
|
432
|
+
instructions="Extract key entities and attributes from the text",
|
|
433
|
+
example_table_name="sample_texts", # Infer schema from examples
|
|
434
|
+
example_field_name="text",
|
|
435
|
+
max_examples=50
|
|
436
|
+
)
|
|
437
|
+
)
|
|
438
|
+
|
|
417
439
|
```
|
|
418
440
|
|
|
419
441
|
You can now use these UDFs in Spark SQL:
|
|
@@ -691,17 +713,19 @@ steps:
|
|
|
691
713
|
- In the notebook, import and use `openaivec.spark` functions as you normally would. For example:
|
|
692
714
|
|
|
693
715
|
```python
|
|
694
|
-
import
|
|
695
|
-
from openaivec.spark import responses_udf, embeddings_udf
|
|
716
|
+
from openaivec.spark import setup_azure, responses_udf, embeddings_udf
|
|
696
717
|
|
|
697
718
|
# In Microsoft Fabric, spark session is automatically available
|
|
698
719
|
# spark = SparkSession.builder.getOrCreate()
|
|
699
|
-
|
|
700
|
-
|
|
720
|
+
|
|
701
721
|
# Configure Azure OpenAI authentication
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
722
|
+
setup_azure(
|
|
723
|
+
spark,
|
|
724
|
+
api_key="<your-api-key>",
|
|
725
|
+
base_url="https://YOUR-RESOURCE-NAME.services.ai.azure.com/openai/v1/",
|
|
726
|
+
api_version="preview",
|
|
727
|
+
responses_model_name="my-gpt4-deployment" # Your Azure deployment name
|
|
728
|
+
)
|
|
705
729
|
|
|
706
730
|
# Register UDFs
|
|
707
731
|
spark.udf.register(
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
openaivec/__init__.py,sha256=mXCGNNTjYbmE4CAXGvAs78soxUsoy_mxxnvaCk_CL6Y,361
|
|
2
|
+
openaivec/_di.py,sha256=Cl1ZoNBlQsJL1bpzoMDl08uT9pZFVSlqOdLbS3_MwPE,11462
|
|
3
|
+
openaivec/_dynamic.py,sha256=7ZaC59w2Edemnao57XeZVO4qmSOA-Kus6TchZC3Dd5o,14821
|
|
4
|
+
openaivec/_embeddings.py,sha256=nirLqOu69fTB7aSCYhbbRbwAA6ggwEYJiQoPDsHqAqQ,8200
|
|
5
|
+
openaivec/_log.py,sha256=LHNs6AbJzM4weaRARZFroigxR6D148d7WSIMLk1IhbU,1439
|
|
6
|
+
openaivec/_model.py,sha256=71oiENUKwpY58ilj1LE7fDOAhs7PUSiZRiUHKUIuu7Y,3235
|
|
7
|
+
openaivec/_optimize.py,sha256=3nS8VehbS7iGC1tPDDQh-iAgyKHbVYmMbCRBWM77U_U,3827
|
|
8
|
+
openaivec/_prompt.py,sha256=NWE7jZKYphkD856haynJLmRadPugJ68emT42pd7Ciso,20633
|
|
9
|
+
openaivec/_provider.py,sha256=8z8gPYY5-Z7rzDlj_NC6hR__DUqVAH7VLHJn6LalzRg,6158
|
|
10
|
+
openaivec/_proxy.py,sha256=AiGuC1MCFjZCRXCac-pHUI3Np3nf1HIpWY6nC9ZVCFY,29671
|
|
11
|
+
openaivec/_responses.py,sha256=qBrYv4qblDIs5dRvj9t96r8UfAJmy4ZvtAe6csNZ7oM,20412
|
|
12
|
+
openaivec/_schema.py,sha256=iOeR5J_ihZRDZtzmqvOK1ZtInKcx4OnoR38DB3VmmQw,15666
|
|
13
|
+
openaivec/_serialize.py,sha256=u2Om94Sc_QgJkTlW2BAGw8wd6gYDhc6IRqvS-qevFSs,8399
|
|
14
|
+
openaivec/_util.py,sha256=XfueAycVCQvgRLS7wF7e306b53lebORvZOBzbQjy4vE,6438
|
|
15
|
+
openaivec/pandas_ext.py,sha256=r2jpFqDnWcQYK3pMv5hCtOStOMltccDyLkpprLmIOls,85715
|
|
16
|
+
openaivec/spark.py,sha256=zaEivVOe3ukG8coa9JEUyISQ1YcMqCvAbhaarvn2SOM,32507
|
|
17
|
+
openaivec/task/__init__.py,sha256=RkYIKrcE83M_9Um9cSMkeGzL9kPRAovajfRvr31YxLE,6178
|
|
18
|
+
openaivec/task/customer_support/__init__.py,sha256=KWfGyXPdZyfGdRH17x7hPpJJ1N2EP9PPhZx0fvBAwSI,884
|
|
19
|
+
openaivec/task/customer_support/customer_sentiment.py,sha256=d8spZUtImjePK0xWGvIW98ghbdyOZ0KEZmaUpG8QB7M,7532
|
|
20
|
+
openaivec/task/customer_support/inquiry_classification.py,sha256=NKz1oTm06eU6W-plHe3T3o20lCk6M2NemVXZ4Y_IozU,9602
|
|
21
|
+
openaivec/task/customer_support/inquiry_summary.py,sha256=8X1J8lZwlgX6s02cs86-K0moZ5gTrX7E7WEKiY2vpiQ,6896
|
|
22
|
+
openaivec/task/customer_support/intent_analysis.py,sha256=Jnokzi0wTlHpuTRl5uqxdoHClYU71b9iFTzn3KNeNVM,7478
|
|
23
|
+
openaivec/task/customer_support/response_suggestion.py,sha256=IykZE-BJ_ENhe5frnVl4bQKpArwOuNAITGlBxlu62c0,8306
|
|
24
|
+
openaivec/task/customer_support/urgency_analysis.py,sha256=fdBT0Ud-InGqou-ZuFcVc3EpUNAq5N55_Q9D6D74WlQ,11531
|
|
25
|
+
openaivec/task/nlp/__init__.py,sha256=QoQ0egEK9IEh5hdrE07rZ_KCmC0gy_2FPrWJYRWiipY,512
|
|
26
|
+
openaivec/task/nlp/dependency_parsing.py,sha256=V7pd4_EbBBvdpnFDkfZh08u7kfJ7XJLq_qLkec48yr0,2832
|
|
27
|
+
openaivec/task/nlp/keyword_extraction.py,sha256=e6niCt8XU0EPJLGYOJXQvbfWtl7w9CgfnCE188kecb4,2819
|
|
28
|
+
openaivec/task/nlp/morphological_analysis.py,sha256=qTFFBkFP8CRZU87S59ju5ygXWlEBCtjYlH9Su7czLjs,2416
|
|
29
|
+
openaivec/task/nlp/named_entity_recognition.py,sha256=9BFKYk0PZlyNN8pItGIEFecvZew4K_F5GgY5Ub8xDtM,3052
|
|
30
|
+
openaivec/task/nlp/sentiment_analysis.py,sha256=u-zpqAaQYcr7I3mqMv_CTJXkfxtoLft3qm-qwmqb_p4,3100
|
|
31
|
+
openaivec/task/nlp/translation.py,sha256=kgWj2oN8pUId3vuHTJNx636gB49AGEKXWICA_XJgE_0,6628
|
|
32
|
+
openaivec/task/table/__init__.py,sha256=kJz15WDJXjyC7UIHKBvlTRhCf347PCDMH5T5fONV2sU,83
|
|
33
|
+
openaivec/task/table/fillna.py,sha256=zL6m5hGD4kamV7qHETnn__B59wIY540Ks0EzNgUJgdI,6888
|
|
34
|
+
openaivec-0.14.13.dist-info/METADATA,sha256=rB_WJhIVX11WUoA-r2Ryn57QIuTWj0q0JhjPlz6wXv4,28216
|
|
35
|
+
openaivec-0.14.13.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
36
|
+
openaivec-0.14.13.dist-info/licenses/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
|
|
37
|
+
openaivec-0.14.13.dist-info/RECORD,,
|
|
@@ -1,37 +0,0 @@
|
|
|
1
|
-
openaivec/__init__.py,sha256=mXCGNNTjYbmE4CAXGvAs78soxUsoy_mxxnvaCk_CL6Y,361
|
|
2
|
-
openaivec/_di.py,sha256=1MXaBzaH_ZenQnWKQzBY2z-egHwiteMvg7byoUH3ZZI,10658
|
|
3
|
-
openaivec/_dynamic.py,sha256=7ZaC59w2Edemnao57XeZVO4qmSOA-Kus6TchZC3Dd5o,14821
|
|
4
|
-
openaivec/_embeddings.py,sha256=upCjl8m9h1CihP6t7wvIH_vivOAPSgmgooAxIhnUMUw,7449
|
|
5
|
-
openaivec/_log.py,sha256=LHNs6AbJzM4weaRARZFroigxR6D148d7WSIMLk1IhbU,1439
|
|
6
|
-
openaivec/_model.py,sha256=toS2oBubrJa9jrdYy-87Fb2XivjXUlk_8Zn5gKUAcFI,3345
|
|
7
|
-
openaivec/_optimize.py,sha256=3nS8VehbS7iGC1tPDDQh-iAgyKHbVYmMbCRBWM77U_U,3827
|
|
8
|
-
openaivec/_prompt.py,sha256=zLv13q47CKV3jnETUyWAIlnjXFSEMs70c8m0yN7_Hek,20820
|
|
9
|
-
openaivec/_provider.py,sha256=YLrEcb4aWBD1fj0n6PNcJpCtEXK6jkUuRH_WxcLDCuI,7145
|
|
10
|
-
openaivec/_proxy.py,sha256=AiGuC1MCFjZCRXCac-pHUI3Np3nf1HIpWY6nC9ZVCFY,29671
|
|
11
|
-
openaivec/_responses.py,sha256=lVJRa_Uc7hQJnYJRgumqwBbu6GToZqsLFS6tIAFO1Fc,24014
|
|
12
|
-
openaivec/_schema.py,sha256=RKjDPqet1TlReYibah0R0NIvCV1VWN5SZxiaBeV0gCY,15492
|
|
13
|
-
openaivec/_serialize.py,sha256=u2Om94Sc_QgJkTlW2BAGw8wd6gYDhc6IRqvS-qevFSs,8399
|
|
14
|
-
openaivec/_util.py,sha256=XfueAycVCQvgRLS7wF7e306b53lebORvZOBzbQjy4vE,6438
|
|
15
|
-
openaivec/pandas_ext.py,sha256=_MdiZWokius62zI_sTp_nd-33fMNlnRHbyqso0eF_Hw,85406
|
|
16
|
-
openaivec/spark.py,sha256=Dbuhlk8Z89Fwk3fbWp1Ud9uTpfNyfjZOIx8ARJMnQf0,25371
|
|
17
|
-
openaivec/task/__init__.py,sha256=lrgoc9UIox7XnxZ96dQRl88a-8QfuZRFBHshxctpMB8,6178
|
|
18
|
-
openaivec/task/customer_support/__init__.py,sha256=KWfGyXPdZyfGdRH17x7hPpJJ1N2EP9PPhZx0fvBAwSI,884
|
|
19
|
-
openaivec/task/customer_support/customer_sentiment.py,sha256=NHIr9nm2d2Bu1MSpxFsM3_w1UuQrQEwnHrClVbhdCUw,7612
|
|
20
|
-
openaivec/task/customer_support/inquiry_classification.py,sha256=NUU_apX6ADi4SyGUbvflGt-v5Ka7heHXlJOHPAeVoGg,9640
|
|
21
|
-
openaivec/task/customer_support/inquiry_summary.py,sha256=PDQvF_ZEZ9TnFhLM2yIinP-OKz_PSPeIET48P9UIgzQ,6920
|
|
22
|
-
openaivec/task/customer_support/intent_analysis.py,sha256=uWdza2pkqnRJn3JtPWbsTAUDL1Sn-BwH-ZpN2cUxhe8,7504
|
|
23
|
-
openaivec/task/customer_support/response_suggestion.py,sha256=Hxt5MDpdfoo5S7_I_eQ302AOIsSCyNBeaDSMMMfPYoQ,8344
|
|
24
|
-
openaivec/task/customer_support/urgency_analysis.py,sha256=DRd4pmFnwuiNGBKxxkEkfp5CZZeDppmBUThs5NYOL9g,11569
|
|
25
|
-
openaivec/task/nlp/__init__.py,sha256=QoQ0egEK9IEh5hdrE07rZ_KCmC0gy_2FPrWJYRWiipY,512
|
|
26
|
-
openaivec/task/nlp/dependency_parsing.py,sha256=MhrHNCqSd-JmlQ21ISYwGYXazNVZGsVuX_v0ZpyI50w,2817
|
|
27
|
-
openaivec/task/nlp/keyword_extraction.py,sha256=seFeuk6Z2dmlVBFoDN-tOVgCnR7jq36sTsWySjb_ric,2804
|
|
28
|
-
openaivec/task/nlp/morphological_analysis.py,sha256=TcNGA0cYrPczr1ZxflBiokh-qdwMSvRDHq66fP7gi2c,2401
|
|
29
|
-
openaivec/task/nlp/named_entity_recognition.py,sha256=jnVfGtf7TDCNNHrLQ5rhMYvmHc8FKXQxEzC5ib6NnVc,3037
|
|
30
|
-
openaivec/task/nlp/sentiment_analysis.py,sha256=Np-yY0d4Kr5WEjGjq4tNFHDNarBLajJr8Q2E6K9ms3A,3085
|
|
31
|
-
openaivec/task/nlp/translation.py,sha256=VYgiXtr2TL1tbqZkBpyVAy4ahrgd8UO4ZjhIL6xMdkI,6609
|
|
32
|
-
openaivec/task/table/__init__.py,sha256=kJz15WDJXjyC7UIHKBvlTRhCf347PCDMH5T5fONV2sU,83
|
|
33
|
-
openaivec/task/table/fillna.py,sha256=g_CpLnLzK1C5rCiVq15L3X0kywJK6CtSrKRYxQFuhn8,6606
|
|
34
|
-
openaivec-0.14.10.dist-info/METADATA,sha256=BXQWevriu4qabbZM1paMO1PV_i8zmFPqiodTMwzeJnQ,27567
|
|
35
|
-
openaivec-0.14.10.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
36
|
-
openaivec-0.14.10.dist-info/licenses/LICENSE,sha256=ws_MuBL-SCEBqPBFl9_FqZkaaydIJmxHrJG2parhU4M,1141
|
|
37
|
-
openaivec-0.14.10.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|