openai-sdk-helpers 0.5.2__py3-none-any.whl → 0.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- openai_sdk_helpers/agent/__init__.py +2 -0
- openai_sdk_helpers/agent/base.py +13 -5
- openai_sdk_helpers/agent/classifier.py +848 -0
- openai_sdk_helpers/prompt/classifier.jinja +31 -0
- openai_sdk_helpers/response/base.py +26 -7
- openai_sdk_helpers/settings.py +65 -0
- openai_sdk_helpers/structure/__init__.py +12 -0
- openai_sdk_helpers/structure/base.py +79 -55
- openai_sdk_helpers/structure/classification.py +453 -0
- openai_sdk_helpers/structure/plan/enum.py +4 -0
- {openai_sdk_helpers-0.5.2.dist-info → openai_sdk_helpers-0.6.1.dist-info}/METADATA +12 -1
- {openai_sdk_helpers-0.5.2.dist-info → openai_sdk_helpers-0.6.1.dist-info}/RECORD +15 -12
- {openai_sdk_helpers-0.5.2.dist-info → openai_sdk_helpers-0.6.1.dist-info}/WHEEL +0 -0
- {openai_sdk_helpers-0.5.2.dist-info → openai_sdk_helpers-0.6.1.dist-info}/entry_points.txt +0 -0
- {openai_sdk_helpers-0.5.2.dist-info → openai_sdk_helpers-0.6.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,848 @@
|
|
|
1
|
+
"""Recursive agent for taxonomy-driven text classification."""
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import asyncio
|
|
6
|
+
import re
|
|
7
|
+
from dataclasses import dataclass, field
|
|
8
|
+
from enum import Enum
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
from typing import Any, Awaitable, Dict, Iterable, Optional, Sequence, cast
|
|
11
|
+
|
|
12
|
+
from ..structure import (
|
|
13
|
+
ClassificationResult,
|
|
14
|
+
ClassificationStep,
|
|
15
|
+
ClassificationStopReason,
|
|
16
|
+
StructureBase,
|
|
17
|
+
TaxonomyNode,
|
|
18
|
+
)
|
|
19
|
+
from .base import AgentBase
|
|
20
|
+
from .configuration import AgentConfiguration
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class TaxonomyClassifierAgent(AgentBase):
|
|
24
|
+
"""Classify text by recursively traversing a taxonomy.
|
|
25
|
+
|
|
26
|
+
Parameters
|
|
27
|
+
----------
|
|
28
|
+
template_path : Path | str | None, default=None
|
|
29
|
+
Optional template file path for prompt rendering.
|
|
30
|
+
model : str | None, default=None
|
|
31
|
+
Model identifier to use for classification.
|
|
32
|
+
|
|
33
|
+
Methods
|
|
34
|
+
-------
|
|
35
|
+
run_agent(text, taxonomy, context, max_depth)
|
|
36
|
+
Classify text by recursively walking the taxonomy tree.
|
|
37
|
+
|
|
38
|
+
Examples
|
|
39
|
+
--------
|
|
40
|
+
Create a classifier with a flat taxonomy:
|
|
41
|
+
|
|
42
|
+
>>> taxonomy = [
|
|
43
|
+
... TaxonomyNode(label="Billing"),
|
|
44
|
+
... TaxonomyNode(label="Support"),
|
|
45
|
+
... ]
|
|
46
|
+
>>> agent = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=taxonomy)
|
|
47
|
+
"""
|
|
48
|
+
|
|
49
|
+
def __init__(
|
|
50
|
+
self,
|
|
51
|
+
*,
|
|
52
|
+
template_path: Path | str | None = None,
|
|
53
|
+
model: str | None = None,
|
|
54
|
+
taxonomy: TaxonomyNode | Sequence[TaxonomyNode],
|
|
55
|
+
) -> None:
|
|
56
|
+
"""Initialize the taxonomy classifier agent configuration.
|
|
57
|
+
|
|
58
|
+
Parameters
|
|
59
|
+
----------
|
|
60
|
+
template_path : Path | str | None, default=None
|
|
61
|
+
Optional template file path for prompt rendering.
|
|
62
|
+
model : str | None, default=None
|
|
63
|
+
Model identifier to use for classification.
|
|
64
|
+
taxonomy : TaxonomyNode | Sequence[TaxonomyNode]
|
|
65
|
+
Root taxonomy node or list of root nodes.
|
|
66
|
+
|
|
67
|
+
Raises
|
|
68
|
+
------
|
|
69
|
+
ValueError
|
|
70
|
+
If the taxonomy is empty.
|
|
71
|
+
|
|
72
|
+
Examples
|
|
73
|
+
--------
|
|
74
|
+
>>> classifier = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=[])
|
|
75
|
+
"""
|
|
76
|
+
self._taxonomy = taxonomy
|
|
77
|
+
self._root_nodes = _normalize_roots(taxonomy)
|
|
78
|
+
if not self._root_nodes:
|
|
79
|
+
raise ValueError("taxonomy must include at least one node")
|
|
80
|
+
resolved_template_path = template_path or _default_template_path()
|
|
81
|
+
configuration = AgentConfiguration(
|
|
82
|
+
name="taxonomy_classifier",
|
|
83
|
+
instructions="Agent instructions",
|
|
84
|
+
description="Classify text by traversing taxonomy levels recursively.",
|
|
85
|
+
template_path=resolved_template_path,
|
|
86
|
+
output_structure=ClassificationStep,
|
|
87
|
+
model=model,
|
|
88
|
+
)
|
|
89
|
+
super().__init__(configuration=configuration)
|
|
90
|
+
|
|
91
|
+
async def run_agent(
|
|
92
|
+
self,
|
|
93
|
+
text: str,
|
|
94
|
+
*,
|
|
95
|
+
context: Optional[Dict[str, Any]] = None,
|
|
96
|
+
max_depth: Optional[int] = None,
|
|
97
|
+
confidence_threshold: float | None = None,
|
|
98
|
+
single_class: bool = False,
|
|
99
|
+
) -> ClassificationResult:
|
|
100
|
+
"""Classify ``text`` by recursively walking taxonomy levels.
|
|
101
|
+
|
|
102
|
+
Parameters
|
|
103
|
+
----------
|
|
104
|
+
text : str
|
|
105
|
+
Source text to classify.
|
|
106
|
+
context : dict or None, default=None
|
|
107
|
+
Additional context values to merge into the prompt.
|
|
108
|
+
max_depth : int or None, default=None
|
|
109
|
+
Maximum depth to traverse before stopping.
|
|
110
|
+
confidence_threshold : float or None, default=None
|
|
111
|
+
Minimum confidence required to accept a classification step.
|
|
112
|
+
single_class : bool, default=False
|
|
113
|
+
Whether to keep only the highest-priority selection per step.
|
|
114
|
+
|
|
115
|
+
Returns
|
|
116
|
+
-------
|
|
117
|
+
ClassificationResult
|
|
118
|
+
Structured classification result describing the traversal.
|
|
119
|
+
|
|
120
|
+
Examples
|
|
121
|
+
--------
|
|
122
|
+
>>> taxonomy = TaxonomyNode(label="Finance")
|
|
123
|
+
>>> agent = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=taxonomy)
|
|
124
|
+
>>> isinstance(agent.root_nodes, list)
|
|
125
|
+
True
|
|
126
|
+
"""
|
|
127
|
+
state = _TraversalState()
|
|
128
|
+
await self._classify_nodes(
|
|
129
|
+
text=text,
|
|
130
|
+
nodes=list(self._root_nodes),
|
|
131
|
+
depth=0,
|
|
132
|
+
parent_path=[],
|
|
133
|
+
context=context,
|
|
134
|
+
max_depth=max_depth,
|
|
135
|
+
confidence_threshold=confidence_threshold,
|
|
136
|
+
single_class=single_class,
|
|
137
|
+
state=state,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
final_nodes_value = state.final_nodes or None
|
|
141
|
+
final_node = state.final_nodes[0] if state.final_nodes else None
|
|
142
|
+
stop_reason = _resolve_stop_reason(state)
|
|
143
|
+
return ClassificationResult(
|
|
144
|
+
final_node=final_node,
|
|
145
|
+
final_nodes=final_nodes_value,
|
|
146
|
+
confidence=state.best_confidence,
|
|
147
|
+
stop_reason=stop_reason,
|
|
148
|
+
path=state.path,
|
|
149
|
+
path_nodes=state.path_nodes,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
async def _classify_nodes(
|
|
153
|
+
self,
|
|
154
|
+
*,
|
|
155
|
+
text: str,
|
|
156
|
+
nodes: list[TaxonomyNode],
|
|
157
|
+
depth: int,
|
|
158
|
+
parent_path: list[str],
|
|
159
|
+
context: Optional[Dict[str, Any]],
|
|
160
|
+
max_depth: Optional[int],
|
|
161
|
+
confidence_threshold: float | None,
|
|
162
|
+
single_class: bool,
|
|
163
|
+
state: "_TraversalState",
|
|
164
|
+
) -> None:
|
|
165
|
+
"""Classify a taxonomy level and recursively traverse children.
|
|
166
|
+
|
|
167
|
+
Parameters
|
|
168
|
+
----------
|
|
169
|
+
text : str
|
|
170
|
+
Source text to classify.
|
|
171
|
+
nodes : list[TaxonomyNode]
|
|
172
|
+
Candidate taxonomy nodes for the current level.
|
|
173
|
+
depth : int
|
|
174
|
+
Current traversal depth.
|
|
175
|
+
context : dict or None
|
|
176
|
+
Additional context values to merge into the prompt.
|
|
177
|
+
max_depth : int or None
|
|
178
|
+
Maximum traversal depth before stopping.
|
|
179
|
+
confidence_threshold : float or None
|
|
180
|
+
Minimum confidence required to accept a classification step.
|
|
181
|
+
single_class : bool
|
|
182
|
+
Whether to keep only the highest-priority selection per step.
|
|
183
|
+
state : _TraversalState
|
|
184
|
+
Aggregated traversal state.
|
|
185
|
+
"""
|
|
186
|
+
if max_depth is not None and depth >= max_depth:
|
|
187
|
+
state.saw_max_depth = True
|
|
188
|
+
return
|
|
189
|
+
if not nodes:
|
|
190
|
+
return
|
|
191
|
+
|
|
192
|
+
node_paths = _build_node_path_map(nodes, parent_path)
|
|
193
|
+
template_context = _build_context(
|
|
194
|
+
node_descriptors=_build_node_descriptors(node_paths),
|
|
195
|
+
path=state.path,
|
|
196
|
+
depth=depth,
|
|
197
|
+
context=context,
|
|
198
|
+
)
|
|
199
|
+
step_structure = _build_step_structure(list(node_paths.keys()))
|
|
200
|
+
raw_step = await self.run_async(
|
|
201
|
+
input=text,
|
|
202
|
+
context=template_context,
|
|
203
|
+
output_structure=step_structure,
|
|
204
|
+
)
|
|
205
|
+
step = _normalize_step_output(raw_step, step_structure)
|
|
206
|
+
state.path.append(step)
|
|
207
|
+
|
|
208
|
+
if (
|
|
209
|
+
confidence_threshold is not None
|
|
210
|
+
and step.confidence is not None
|
|
211
|
+
and step.confidence < confidence_threshold
|
|
212
|
+
):
|
|
213
|
+
return
|
|
214
|
+
|
|
215
|
+
resolved_nodes = _resolve_nodes(node_paths, step)
|
|
216
|
+
if resolved_nodes:
|
|
217
|
+
if single_class:
|
|
218
|
+
resolved_nodes = resolved_nodes[:1]
|
|
219
|
+
state.path_nodes.extend(resolved_nodes)
|
|
220
|
+
|
|
221
|
+
if step.stop_reason.is_terminal:
|
|
222
|
+
if resolved_nodes:
|
|
223
|
+
state.final_nodes.extend(resolved_nodes)
|
|
224
|
+
state.best_confidence = _max_confidence(
|
|
225
|
+
state.best_confidence, step.confidence
|
|
226
|
+
)
|
|
227
|
+
state.saw_terminal_stop = True
|
|
228
|
+
return
|
|
229
|
+
|
|
230
|
+
if not resolved_nodes:
|
|
231
|
+
return
|
|
232
|
+
|
|
233
|
+
base_path_len = len(state.path)
|
|
234
|
+
base_path_nodes_len = len(state.path_nodes)
|
|
235
|
+
child_tasks: list[tuple[Awaitable["_TraversalState"], int]] = []
|
|
236
|
+
for node in resolved_nodes:
|
|
237
|
+
if node.children:
|
|
238
|
+
sub_agent = self._build_sub_agent(list(node.children))
|
|
239
|
+
sub_state = _copy_traversal_state(state)
|
|
240
|
+
base_final_nodes_len = len(state.final_nodes)
|
|
241
|
+
child_tasks.append(
|
|
242
|
+
(
|
|
243
|
+
self._classify_subtree(
|
|
244
|
+
sub_agent=sub_agent,
|
|
245
|
+
text=text,
|
|
246
|
+
nodes=list(node.children),
|
|
247
|
+
depth=depth + 1,
|
|
248
|
+
parent_path=[*parent_path, node.label],
|
|
249
|
+
context=context,
|
|
250
|
+
max_depth=max_depth,
|
|
251
|
+
confidence_threshold=confidence_threshold,
|
|
252
|
+
single_class=single_class,
|
|
253
|
+
state=sub_state,
|
|
254
|
+
),
|
|
255
|
+
base_final_nodes_len,
|
|
256
|
+
)
|
|
257
|
+
)
|
|
258
|
+
else:
|
|
259
|
+
state.saw_no_children = True
|
|
260
|
+
state.final_nodes.append(node)
|
|
261
|
+
state.best_confidence = _max_confidence(
|
|
262
|
+
state.best_confidence, step.confidence
|
|
263
|
+
)
|
|
264
|
+
if child_tasks:
|
|
265
|
+
child_states = await asyncio.gather(
|
|
266
|
+
*(child_task for child_task, _ in child_tasks)
|
|
267
|
+
)
|
|
268
|
+
for child_state, (_, base_final_nodes_len) in zip(
|
|
269
|
+
child_states, child_tasks, strict=True
|
|
270
|
+
):
|
|
271
|
+
state.path.extend(child_state.path[base_path_len:])
|
|
272
|
+
state.path_nodes.extend(child_state.path_nodes[base_path_nodes_len:])
|
|
273
|
+
state.final_nodes.extend(child_state.final_nodes[base_final_nodes_len:])
|
|
274
|
+
state.best_confidence = _max_confidence(
|
|
275
|
+
state.best_confidence, child_state.best_confidence
|
|
276
|
+
)
|
|
277
|
+
state.saw_max_depth = state.saw_max_depth or child_state.saw_max_depth
|
|
278
|
+
state.saw_no_children = (
|
|
279
|
+
state.saw_no_children or child_state.saw_no_children
|
|
280
|
+
)
|
|
281
|
+
state.saw_terminal_stop = (
|
|
282
|
+
state.saw_terminal_stop or child_state.saw_terminal_stop
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
@property
|
|
286
|
+
def taxonomy(self) -> TaxonomyNode | Sequence[TaxonomyNode]:
|
|
287
|
+
"""Return the root taxonomy node(s).
|
|
288
|
+
|
|
289
|
+
Returns
|
|
290
|
+
-------
|
|
291
|
+
TaxonomyNode or Sequence[TaxonomyNode]
|
|
292
|
+
Root taxonomy node or list of root nodes.
|
|
293
|
+
"""
|
|
294
|
+
return self._taxonomy
|
|
295
|
+
|
|
296
|
+
@property
|
|
297
|
+
def root_nodes(self) -> list[TaxonomyNode]:
|
|
298
|
+
"""Return the list of root taxonomy nodes.
|
|
299
|
+
|
|
300
|
+
Returns
|
|
301
|
+
-------
|
|
302
|
+
list[TaxonomyNode]
|
|
303
|
+
List of root taxonomy nodes.
|
|
304
|
+
"""
|
|
305
|
+
return self._root_nodes
|
|
306
|
+
|
|
307
|
+
def _build_sub_agent(
|
|
308
|
+
self,
|
|
309
|
+
nodes: Sequence[TaxonomyNode],
|
|
310
|
+
) -> "TaxonomyClassifierAgent":
|
|
311
|
+
"""Build a classifier agent for a taxonomy subtree.
|
|
312
|
+
|
|
313
|
+
Parameters
|
|
314
|
+
----------
|
|
315
|
+
nodes : Sequence[TaxonomyNode]
|
|
316
|
+
Taxonomy nodes to use as the sub-agent's root taxonomy.
|
|
317
|
+
|
|
318
|
+
Returns
|
|
319
|
+
-------
|
|
320
|
+
TaxonomyClassifierAgent
|
|
321
|
+
Configured classifier agent for the taxonomy slice.
|
|
322
|
+
"""
|
|
323
|
+
sub_agent = TaxonomyClassifierAgent(
|
|
324
|
+
template_path=self._template_path,
|
|
325
|
+
model=self._model,
|
|
326
|
+
taxonomy=list(nodes),
|
|
327
|
+
)
|
|
328
|
+
sub_agent.run_async = self.run_async
|
|
329
|
+
return sub_agent
|
|
330
|
+
|
|
331
|
+
async def _classify_subtree(
|
|
332
|
+
self,
|
|
333
|
+
*,
|
|
334
|
+
sub_agent: "TaxonomyClassifierAgent",
|
|
335
|
+
text: str,
|
|
336
|
+
nodes: list[TaxonomyNode],
|
|
337
|
+
depth: int,
|
|
338
|
+
parent_path: list[str],
|
|
339
|
+
context: Optional[Dict[str, Any]],
|
|
340
|
+
max_depth: Optional[int],
|
|
341
|
+
confidence_threshold: float | None,
|
|
342
|
+
single_class: bool,
|
|
343
|
+
state: "_TraversalState",
|
|
344
|
+
) -> "_TraversalState":
|
|
345
|
+
"""Classify a taxonomy subtree and return the traversal state.
|
|
346
|
+
|
|
347
|
+
Parameters
|
|
348
|
+
----------
|
|
349
|
+
sub_agent : TaxonomyClassifierAgent
|
|
350
|
+
Sub-agent configured for the subtree traversal.
|
|
351
|
+
text : str
|
|
352
|
+
Source text to classify.
|
|
353
|
+
nodes : list[TaxonomyNode]
|
|
354
|
+
Candidate taxonomy nodes for the subtree.
|
|
355
|
+
depth : int
|
|
356
|
+
Current traversal depth.
|
|
357
|
+
parent_path : list[str]
|
|
358
|
+
Path segments leading to the current subtree.
|
|
359
|
+
context : dict or None
|
|
360
|
+
Additional context values to merge into the prompt.
|
|
361
|
+
max_depth : int or None
|
|
362
|
+
Maximum traversal depth before stopping.
|
|
363
|
+
confidence_threshold : float or None
|
|
364
|
+
Minimum confidence required to accept a classification step.
|
|
365
|
+
single_class : bool
|
|
366
|
+
Whether to keep only the highest-priority selection per step.
|
|
367
|
+
state : _TraversalState
|
|
368
|
+
Traversal state to populate for the subtree.
|
|
369
|
+
|
|
370
|
+
Returns
|
|
371
|
+
-------
|
|
372
|
+
_TraversalState
|
|
373
|
+
Populated traversal state for the subtree.
|
|
374
|
+
"""
|
|
375
|
+
await sub_agent._classify_nodes(
|
|
376
|
+
text=text,
|
|
377
|
+
nodes=nodes,
|
|
378
|
+
depth=depth,
|
|
379
|
+
parent_path=parent_path,
|
|
380
|
+
context=context,
|
|
381
|
+
max_depth=max_depth,
|
|
382
|
+
confidence_threshold=confidence_threshold,
|
|
383
|
+
single_class=single_class,
|
|
384
|
+
state=state,
|
|
385
|
+
)
|
|
386
|
+
return state
|
|
387
|
+
|
|
388
|
+
|
|
389
|
+
@dataclass
|
|
390
|
+
class _TraversalState:
|
|
391
|
+
"""Track recursive traversal state."""
|
|
392
|
+
|
|
393
|
+
path: list[ClassificationStep] = field(default_factory=list)
|
|
394
|
+
path_nodes: list[TaxonomyNode] = field(default_factory=list)
|
|
395
|
+
final_nodes: list[TaxonomyNode] = field(default_factory=list)
|
|
396
|
+
best_confidence: float | None = None
|
|
397
|
+
saw_max_depth: bool = False
|
|
398
|
+
saw_no_children: bool = False
|
|
399
|
+
saw_terminal_stop: bool = False
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
def _copy_traversal_state(state: _TraversalState) -> _TraversalState:
|
|
403
|
+
"""Copy traversal state for parallel subtree execution.
|
|
404
|
+
|
|
405
|
+
Parameters
|
|
406
|
+
----------
|
|
407
|
+
state : _TraversalState
|
|
408
|
+
Traversal state to clone.
|
|
409
|
+
|
|
410
|
+
Returns
|
|
411
|
+
-------
|
|
412
|
+
_TraversalState
|
|
413
|
+
Cloned traversal state with copied collections.
|
|
414
|
+
"""
|
|
415
|
+
return _TraversalState(
|
|
416
|
+
path=list(state.path),
|
|
417
|
+
path_nodes=list(state.path_nodes),
|
|
418
|
+
final_nodes=list(state.final_nodes),
|
|
419
|
+
best_confidence=state.best_confidence,
|
|
420
|
+
saw_max_depth=state.saw_max_depth,
|
|
421
|
+
saw_no_children=state.saw_no_children,
|
|
422
|
+
saw_terminal_stop=state.saw_terminal_stop,
|
|
423
|
+
)
|
|
424
|
+
|
|
425
|
+
|
|
426
|
+
def _resolve_stop_reason(state: _TraversalState) -> ClassificationStopReason:
|
|
427
|
+
"""Resolve the final stop reason based on traversal state.
|
|
428
|
+
|
|
429
|
+
Parameters
|
|
430
|
+
----------
|
|
431
|
+
state : _TraversalState
|
|
432
|
+
Traversal state to inspect.
|
|
433
|
+
|
|
434
|
+
Returns
|
|
435
|
+
-------
|
|
436
|
+
ClassificationStopReason
|
|
437
|
+
Resolved stop reason.
|
|
438
|
+
"""
|
|
439
|
+
if state.saw_terminal_stop:
|
|
440
|
+
return ClassificationStopReason.STOP
|
|
441
|
+
if state.final_nodes and state.saw_no_children:
|
|
442
|
+
return ClassificationStopReason.NO_CHILDREN
|
|
443
|
+
if state.final_nodes:
|
|
444
|
+
return ClassificationStopReason.STOP
|
|
445
|
+
if state.saw_max_depth:
|
|
446
|
+
return ClassificationStopReason.MAX_DEPTH
|
|
447
|
+
if state.saw_no_children:
|
|
448
|
+
return ClassificationStopReason.NO_CHILDREN
|
|
449
|
+
return ClassificationStopReason.NO_MATCH
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
def _normalize_roots(
|
|
453
|
+
taxonomy: TaxonomyNode | Sequence[TaxonomyNode],
|
|
454
|
+
) -> list[TaxonomyNode]:
|
|
455
|
+
"""Normalize taxonomy input into a list of root nodes.
|
|
456
|
+
|
|
457
|
+
Parameters
|
|
458
|
+
----------
|
|
459
|
+
taxonomy : TaxonomyNode | Sequence[TaxonomyNode]
|
|
460
|
+
Root taxonomy node or list of root nodes.
|
|
461
|
+
|
|
462
|
+
Returns
|
|
463
|
+
-------
|
|
464
|
+
list[TaxonomyNode]
|
|
465
|
+
Normalized list of root nodes.
|
|
466
|
+
"""
|
|
467
|
+
if isinstance(taxonomy, TaxonomyNode):
|
|
468
|
+
return [taxonomy]
|
|
469
|
+
return [node for node in taxonomy if node is not None]
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
def _default_template_path() -> Path:
|
|
473
|
+
"""Return the built-in classifier prompt template path.
|
|
474
|
+
|
|
475
|
+
Returns
|
|
476
|
+
-------
|
|
477
|
+
Path
|
|
478
|
+
Path to the bundled classifier Jinja template.
|
|
479
|
+
"""
|
|
480
|
+
return Path(__file__).resolve().parents[1] / "prompt" / "classifier.jinja"
|
|
481
|
+
|
|
482
|
+
|
|
483
|
+
def _build_context(
|
|
484
|
+
*,
|
|
485
|
+
node_descriptors: Iterable[dict[str, Any]],
|
|
486
|
+
path: Sequence[ClassificationStep],
|
|
487
|
+
depth: int,
|
|
488
|
+
context: Optional[Dict[str, Any]],
|
|
489
|
+
) -> Dict[str, Any]:
|
|
490
|
+
"""Build the template context for a classification step.
|
|
491
|
+
|
|
492
|
+
Parameters
|
|
493
|
+
----------
|
|
494
|
+
node_descriptors : Iterable[dict[str, Any]]
|
|
495
|
+
Node descriptors available at the current taxonomy level.
|
|
496
|
+
path : Sequence[ClassificationStep]
|
|
497
|
+
Steps recorded so far in the traversal.
|
|
498
|
+
depth : int
|
|
499
|
+
Current traversal depth.
|
|
500
|
+
context : dict or None
|
|
501
|
+
Optional additional context values.
|
|
502
|
+
|
|
503
|
+
Returns
|
|
504
|
+
-------
|
|
505
|
+
dict[str, Any]
|
|
506
|
+
Context dictionary for prompt rendering.
|
|
507
|
+
"""
|
|
508
|
+
template_context: Dict[str, Any] = {
|
|
509
|
+
"taxonomy_nodes": list(node_descriptors),
|
|
510
|
+
"path": [step.as_summary() for step in path],
|
|
511
|
+
"depth": depth,
|
|
512
|
+
}
|
|
513
|
+
if context:
|
|
514
|
+
template_context.update(context)
|
|
515
|
+
return template_context
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
def _build_step_structure(
|
|
519
|
+
path_identifiers: Sequence[str],
|
|
520
|
+
) -> type[ClassificationStep]:
|
|
521
|
+
"""Build a step output structure constrained to taxonomy paths.
|
|
522
|
+
|
|
523
|
+
Parameters
|
|
524
|
+
----------
|
|
525
|
+
path_identifiers : Sequence[str]
|
|
526
|
+
Path identifiers for nodes at the current classification step.
|
|
527
|
+
|
|
528
|
+
Returns
|
|
529
|
+
-------
|
|
530
|
+
type[ClassificationStep]
|
|
531
|
+
Dynamic structure class for the classification step output.
|
|
532
|
+
"""
|
|
533
|
+
node_enum = _build_taxonomy_enum("TaxonomyPath", path_identifiers)
|
|
534
|
+
return ClassificationStep.build_for_enum(node_enum)
|
|
535
|
+
|
|
536
|
+
|
|
537
|
+
def _build_node_path_map(
|
|
538
|
+
nodes: Sequence[TaxonomyNode],
|
|
539
|
+
parent_path: Sequence[str],
|
|
540
|
+
) -> dict[str, TaxonomyNode]:
|
|
541
|
+
"""Build a mapping of node path identifiers to taxonomy nodes.
|
|
542
|
+
|
|
543
|
+
Parameters
|
|
544
|
+
----------
|
|
545
|
+
nodes : Sequence[TaxonomyNode]
|
|
546
|
+
Candidate nodes at the current taxonomy level.
|
|
547
|
+
parent_path : Sequence[str]
|
|
548
|
+
Path segments leading to the current taxonomy level.
|
|
549
|
+
|
|
550
|
+
Returns
|
|
551
|
+
-------
|
|
552
|
+
dict[str, TaxonomyNode]
|
|
553
|
+
Mapping of path identifiers to taxonomy nodes.
|
|
554
|
+
"""
|
|
555
|
+
path_map: dict[str, TaxonomyNode] = {}
|
|
556
|
+
seen: dict[str, int] = {}
|
|
557
|
+
for node in nodes:
|
|
558
|
+
base_path = _format_path_identifier([*parent_path, node.label])
|
|
559
|
+
count = seen.get(base_path, 0) + 1
|
|
560
|
+
seen[base_path] = count
|
|
561
|
+
path = f"{base_path} ({count})" if count > 1 else base_path
|
|
562
|
+
path_map[path] = node
|
|
563
|
+
return path_map
|
|
564
|
+
|
|
565
|
+
|
|
566
|
+
def _build_node_descriptors(
|
|
567
|
+
node_paths: dict[str, TaxonomyNode],
|
|
568
|
+
) -> list[dict[str, Any]]:
|
|
569
|
+
"""Build node descriptors for prompt rendering.
|
|
570
|
+
|
|
571
|
+
Parameters
|
|
572
|
+
----------
|
|
573
|
+
node_paths : dict[str, TaxonomyNode]
|
|
574
|
+
Mapping of path identifiers to taxonomy nodes.
|
|
575
|
+
|
|
576
|
+
Returns
|
|
577
|
+
-------
|
|
578
|
+
list[dict[str, Any]]
|
|
579
|
+
Node descriptor dictionaries for prompt rendering.
|
|
580
|
+
"""
|
|
581
|
+
descriptors: list[dict[str, Any]] = []
|
|
582
|
+
for path_id, node in node_paths.items():
|
|
583
|
+
descriptors.append(
|
|
584
|
+
{
|
|
585
|
+
"identifier": path_id,
|
|
586
|
+
"label": node.label,
|
|
587
|
+
"description": node.description,
|
|
588
|
+
}
|
|
589
|
+
)
|
|
590
|
+
return descriptors
|
|
591
|
+
|
|
592
|
+
|
|
593
|
+
def _format_path_identifier(path_segments: Sequence[str]) -> str:
|
|
594
|
+
"""Format path segments into a safe identifier string.
|
|
595
|
+
|
|
596
|
+
Parameters
|
|
597
|
+
----------
|
|
598
|
+
path_segments : Sequence[str]
|
|
599
|
+
Path segments to format.
|
|
600
|
+
|
|
601
|
+
Returns
|
|
602
|
+
-------
|
|
603
|
+
str
|
|
604
|
+
Escaped path identifier string.
|
|
605
|
+
"""
|
|
606
|
+
delimiter = " > "
|
|
607
|
+
escape_token = "\\>"
|
|
608
|
+
escaped_segments = [
|
|
609
|
+
segment.replace(delimiter, escape_token) for segment in path_segments
|
|
610
|
+
]
|
|
611
|
+
return delimiter.join(escaped_segments)
|
|
612
|
+
|
|
613
|
+
|
|
614
|
+
def _build_taxonomy_enum(name: str, values: Sequence[str]) -> type[Enum]:
|
|
615
|
+
"""Build a safe Enum from taxonomy node values.
|
|
616
|
+
|
|
617
|
+
Parameters
|
|
618
|
+
----------
|
|
619
|
+
name : str
|
|
620
|
+
Name to use for the enum class.
|
|
621
|
+
values : Sequence[str]
|
|
622
|
+
Taxonomy node values to include as enum members.
|
|
623
|
+
|
|
624
|
+
Returns
|
|
625
|
+
-------
|
|
626
|
+
type[Enum]
|
|
627
|
+
Enum class with sanitized member names.
|
|
628
|
+
"""
|
|
629
|
+
members: dict[str, str] = {}
|
|
630
|
+
for index, value in enumerate(values, start=1):
|
|
631
|
+
member_name = _sanitize_enum_member(value, index, members)
|
|
632
|
+
members[member_name] = value
|
|
633
|
+
if not members:
|
|
634
|
+
members["UNSPECIFIED"] = ""
|
|
635
|
+
return cast(type[Enum], Enum(name, members))
|
|
636
|
+
|
|
637
|
+
|
|
638
|
+
def _split_taxonomy_path(value: str) -> list[str]:
|
|
639
|
+
"""Split a taxonomy identifier into its path segments.
|
|
640
|
+
|
|
641
|
+
Parameters
|
|
642
|
+
----------
|
|
643
|
+
value : str
|
|
644
|
+
Taxonomy path identifier to split.
|
|
645
|
+
|
|
646
|
+
Returns
|
|
647
|
+
-------
|
|
648
|
+
list[str]
|
|
649
|
+
Path segments with escaped delimiters restored.
|
|
650
|
+
"""
|
|
651
|
+
delimiter = " > "
|
|
652
|
+
escape_token = "\\>"
|
|
653
|
+
segments = value.split(delimiter)
|
|
654
|
+
return [segment.replace(escape_token, delimiter) for segment in segments]
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
def _sanitize_enum_member(
|
|
658
|
+
value: str,
|
|
659
|
+
index: int,
|
|
660
|
+
existing: dict[str, str],
|
|
661
|
+
) -> str:
|
|
662
|
+
"""Return a valid enum member name for a taxonomy value.
|
|
663
|
+
|
|
664
|
+
Parameters
|
|
665
|
+
----------
|
|
666
|
+
value : str
|
|
667
|
+
Raw taxonomy value to sanitize.
|
|
668
|
+
index : int
|
|
669
|
+
Index of the value in the source list.
|
|
670
|
+
existing : dict[str, str]
|
|
671
|
+
Existing enum members to avoid collisions.
|
|
672
|
+
|
|
673
|
+
Returns
|
|
674
|
+
-------
|
|
675
|
+
str
|
|
676
|
+
Sanitized enum member name.
|
|
677
|
+
"""
|
|
678
|
+
normalized_segments: list[str] = []
|
|
679
|
+
for segment in _split_taxonomy_path(value):
|
|
680
|
+
normalized = re.sub(r"[^0-9a-zA-Z]+", "_", segment).strip("_").upper()
|
|
681
|
+
if not normalized:
|
|
682
|
+
normalized = "VALUE"
|
|
683
|
+
if normalized[0].isdigit():
|
|
684
|
+
normalized = f"VALUE_{normalized}"
|
|
685
|
+
normalized_segments.append(normalized)
|
|
686
|
+
normalized_path = "__".join(normalized_segments) or f"VALUE_{index}"
|
|
687
|
+
candidate = normalized_path
|
|
688
|
+
suffix = 1
|
|
689
|
+
while candidate in existing:
|
|
690
|
+
candidate = f"{normalized_path}__{suffix}"
|
|
691
|
+
suffix += 1
|
|
692
|
+
return candidate
|
|
693
|
+
|
|
694
|
+
|
|
695
|
+
def _normalize_step_output(
|
|
696
|
+
step: StructureBase,
|
|
697
|
+
step_structure: type[StructureBase],
|
|
698
|
+
) -> ClassificationStep:
|
|
699
|
+
"""Normalize dynamic step output into a ClassificationStep.
|
|
700
|
+
|
|
701
|
+
Parameters
|
|
702
|
+
----------
|
|
703
|
+
step : StructureBase
|
|
704
|
+
Raw step output returned by the agent.
|
|
705
|
+
step_structure : type[StructureBase]
|
|
706
|
+
Structure definition used to parse the agent output.
|
|
707
|
+
|
|
708
|
+
Returns
|
|
709
|
+
-------
|
|
710
|
+
ClassificationStep
|
|
711
|
+
Normalized classification step instance.
|
|
712
|
+
"""
|
|
713
|
+
if isinstance(step, ClassificationStep):
|
|
714
|
+
return step
|
|
715
|
+
payload = step.to_json()
|
|
716
|
+
return ClassificationStep.from_json(payload)
|
|
717
|
+
|
|
718
|
+
|
|
719
|
+
def _extract_enum_fields(
|
|
720
|
+
step_structure: type[StructureBase],
|
|
721
|
+
) -> dict[str, type[Enum]]:
|
|
722
|
+
"""Return the enum field mapping for a step structure.
|
|
723
|
+
|
|
724
|
+
Parameters
|
|
725
|
+
----------
|
|
726
|
+
step_structure : type[StructureBase]
|
|
727
|
+
Structure definition to inspect.
|
|
728
|
+
|
|
729
|
+
Returns
|
|
730
|
+
-------
|
|
731
|
+
dict[str, type[Enum]]
|
|
732
|
+
Mapping of field names to enum classes.
|
|
733
|
+
"""
|
|
734
|
+
enum_fields: dict[str, type[Enum]] = {}
|
|
735
|
+
for field_name, model_field in step_structure.model_fields.items():
|
|
736
|
+
enum_cls = step_structure._extract_enum_class(model_field.annotation)
|
|
737
|
+
if enum_cls is not None:
|
|
738
|
+
enum_fields[field_name] = enum_cls
|
|
739
|
+
return enum_fields
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
def _normalize_enum_value(value: Any, enum_cls: type[Enum]) -> Any:
|
|
743
|
+
"""Normalize enum values into raw primitives.
|
|
744
|
+
|
|
745
|
+
Parameters
|
|
746
|
+
----------
|
|
747
|
+
value : Any
|
|
748
|
+
Value to normalize.
|
|
749
|
+
enum_cls : type[Enum]
|
|
750
|
+
Enum type used for normalization.
|
|
751
|
+
|
|
752
|
+
Returns
|
|
753
|
+
-------
|
|
754
|
+
Any
|
|
755
|
+
Primitive value suitable for ``ClassificationStep``.
|
|
756
|
+
"""
|
|
757
|
+
if isinstance(value, Enum):
|
|
758
|
+
return value.value
|
|
759
|
+
if isinstance(value, list):
|
|
760
|
+
return [_normalize_enum_value(item, enum_cls) for item in value]
|
|
761
|
+
if isinstance(value, str):
|
|
762
|
+
if value in enum_cls._value2member_map_:
|
|
763
|
+
return enum_cls(value).value
|
|
764
|
+
if value in enum_cls.__members__:
|
|
765
|
+
return enum_cls.__members__[value].value
|
|
766
|
+
return value
|
|
767
|
+
|
|
768
|
+
|
|
769
|
+
def _resolve_nodes(
|
|
770
|
+
node_paths: dict[str, TaxonomyNode],
|
|
771
|
+
step: ClassificationStep,
|
|
772
|
+
) -> list[TaxonomyNode]:
|
|
773
|
+
"""Resolve selected taxonomy nodes for a classification step.
|
|
774
|
+
|
|
775
|
+
Parameters
|
|
776
|
+
----------
|
|
777
|
+
node_paths : dict[str, TaxonomyNode]
|
|
778
|
+
Mapping of path identifiers to nodes at the current level.
|
|
779
|
+
step : ClassificationStep
|
|
780
|
+
Classification step output to resolve.
|
|
781
|
+
|
|
782
|
+
Returns
|
|
783
|
+
-------
|
|
784
|
+
list[TaxonomyNode]
|
|
785
|
+
Matching taxonomy nodes in priority order.
|
|
786
|
+
"""
|
|
787
|
+
resolved: list[TaxonomyNode] = []
|
|
788
|
+
selected_nodes = _selected_nodes(step)
|
|
789
|
+
if selected_nodes:
|
|
790
|
+
for selected_node in selected_nodes:
|
|
791
|
+
node = node_paths.get(selected_node)
|
|
792
|
+
if node:
|
|
793
|
+
resolved.append(node)
|
|
794
|
+
return resolved
|
|
795
|
+
|
|
796
|
+
|
|
797
|
+
def _selected_nodes(step: ClassificationStep) -> list[str]:
|
|
798
|
+
"""Return selected identifiers for a classification step.
|
|
799
|
+
|
|
800
|
+
Parameters
|
|
801
|
+
----------
|
|
802
|
+
step : ClassificationStep
|
|
803
|
+
Classification output to normalize.
|
|
804
|
+
|
|
805
|
+
Returns
|
|
806
|
+
-------
|
|
807
|
+
list[str]
|
|
808
|
+
Selected identifiers in priority order.
|
|
809
|
+
"""
|
|
810
|
+
if step.selected_nodes is not None:
|
|
811
|
+
selected_nodes = [
|
|
812
|
+
str(_normalize_enum_value(selected_node, Enum))
|
|
813
|
+
for selected_node in step.selected_nodes
|
|
814
|
+
if selected_node
|
|
815
|
+
]
|
|
816
|
+
if selected_nodes:
|
|
817
|
+
return selected_nodes
|
|
818
|
+
if step.selected_node:
|
|
819
|
+
return [str(_normalize_enum_value(step.selected_node, Enum))]
|
|
820
|
+
return []
|
|
821
|
+
|
|
822
|
+
|
|
823
|
+
def _max_confidence(
|
|
824
|
+
current: float | None,
|
|
825
|
+
candidate: float | None,
|
|
826
|
+
) -> float | None:
|
|
827
|
+
"""Return the higher confidence value.
|
|
828
|
+
|
|
829
|
+
Parameters
|
|
830
|
+
----------
|
|
831
|
+
current : float or None
|
|
832
|
+
Current best confidence value.
|
|
833
|
+
candidate : float or None
|
|
834
|
+
Candidate confidence value to compare.
|
|
835
|
+
|
|
836
|
+
Returns
|
|
837
|
+
-------
|
|
838
|
+
float or None
|
|
839
|
+
Highest confidence value available.
|
|
840
|
+
"""
|
|
841
|
+
if current is None:
|
|
842
|
+
return candidate
|
|
843
|
+
if candidate is None:
|
|
844
|
+
return current
|
|
845
|
+
return max(current, candidate)
|
|
846
|
+
|
|
847
|
+
|
|
848
|
+
__all__ = ["TaxonomyClassifierAgent"]
|