openai-sdk-helpers 0.5.2__py3-none-any.whl → 0.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,848 @@
1
+ """Recursive agent for taxonomy-driven text classification."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import asyncio
6
+ import re
7
+ from dataclasses import dataclass, field
8
+ from enum import Enum
9
+ from pathlib import Path
10
+ from typing import Any, Awaitable, Dict, Iterable, Optional, Sequence, cast
11
+
12
+ from ..structure import (
13
+ ClassificationResult,
14
+ ClassificationStep,
15
+ ClassificationStopReason,
16
+ StructureBase,
17
+ TaxonomyNode,
18
+ )
19
+ from .base import AgentBase
20
+ from .configuration import AgentConfiguration
21
+
22
+
23
+ class TaxonomyClassifierAgent(AgentBase):
24
+ """Classify text by recursively traversing a taxonomy.
25
+
26
+ Parameters
27
+ ----------
28
+ template_path : Path | str | None, default=None
29
+ Optional template file path for prompt rendering.
30
+ model : str | None, default=None
31
+ Model identifier to use for classification.
32
+
33
+ Methods
34
+ -------
35
+ run_agent(text, taxonomy, context, max_depth)
36
+ Classify text by recursively walking the taxonomy tree.
37
+
38
+ Examples
39
+ --------
40
+ Create a classifier with a flat taxonomy:
41
+
42
+ >>> taxonomy = [
43
+ ... TaxonomyNode(label="Billing"),
44
+ ... TaxonomyNode(label="Support"),
45
+ ... ]
46
+ >>> agent = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=taxonomy)
47
+ """
48
+
49
+ def __init__(
50
+ self,
51
+ *,
52
+ template_path: Path | str | None = None,
53
+ model: str | None = None,
54
+ taxonomy: TaxonomyNode | Sequence[TaxonomyNode],
55
+ ) -> None:
56
+ """Initialize the taxonomy classifier agent configuration.
57
+
58
+ Parameters
59
+ ----------
60
+ template_path : Path | str | None, default=None
61
+ Optional template file path for prompt rendering.
62
+ model : str | None, default=None
63
+ Model identifier to use for classification.
64
+ taxonomy : TaxonomyNode | Sequence[TaxonomyNode]
65
+ Root taxonomy node or list of root nodes.
66
+
67
+ Raises
68
+ ------
69
+ ValueError
70
+ If the taxonomy is empty.
71
+
72
+ Examples
73
+ --------
74
+ >>> classifier = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=[])
75
+ """
76
+ self._taxonomy = taxonomy
77
+ self._root_nodes = _normalize_roots(taxonomy)
78
+ if not self._root_nodes:
79
+ raise ValueError("taxonomy must include at least one node")
80
+ resolved_template_path = template_path or _default_template_path()
81
+ configuration = AgentConfiguration(
82
+ name="taxonomy_classifier",
83
+ instructions="Agent instructions",
84
+ description="Classify text by traversing taxonomy levels recursively.",
85
+ template_path=resolved_template_path,
86
+ output_structure=ClassificationStep,
87
+ model=model,
88
+ )
89
+ super().__init__(configuration=configuration)
90
+
91
+ async def run_agent(
92
+ self,
93
+ text: str,
94
+ *,
95
+ context: Optional[Dict[str, Any]] = None,
96
+ max_depth: Optional[int] = None,
97
+ confidence_threshold: float | None = None,
98
+ single_class: bool = False,
99
+ ) -> ClassificationResult:
100
+ """Classify ``text`` by recursively walking taxonomy levels.
101
+
102
+ Parameters
103
+ ----------
104
+ text : str
105
+ Source text to classify.
106
+ context : dict or None, default=None
107
+ Additional context values to merge into the prompt.
108
+ max_depth : int or None, default=None
109
+ Maximum depth to traverse before stopping.
110
+ confidence_threshold : float or None, default=None
111
+ Minimum confidence required to accept a classification step.
112
+ single_class : bool, default=False
113
+ Whether to keep only the highest-priority selection per step.
114
+
115
+ Returns
116
+ -------
117
+ ClassificationResult
118
+ Structured classification result describing the traversal.
119
+
120
+ Examples
121
+ --------
122
+ >>> taxonomy = TaxonomyNode(label="Finance")
123
+ >>> agent = TaxonomyClassifierAgent(model="gpt-4o-mini", taxonomy=taxonomy)
124
+ >>> isinstance(agent.root_nodes, list)
125
+ True
126
+ """
127
+ state = _TraversalState()
128
+ await self._classify_nodes(
129
+ text=text,
130
+ nodes=list(self._root_nodes),
131
+ depth=0,
132
+ parent_path=[],
133
+ context=context,
134
+ max_depth=max_depth,
135
+ confidence_threshold=confidence_threshold,
136
+ single_class=single_class,
137
+ state=state,
138
+ )
139
+
140
+ final_nodes_value = state.final_nodes or None
141
+ final_node = state.final_nodes[0] if state.final_nodes else None
142
+ stop_reason = _resolve_stop_reason(state)
143
+ return ClassificationResult(
144
+ final_node=final_node,
145
+ final_nodes=final_nodes_value,
146
+ confidence=state.best_confidence,
147
+ stop_reason=stop_reason,
148
+ path=state.path,
149
+ path_nodes=state.path_nodes,
150
+ )
151
+
152
+ async def _classify_nodes(
153
+ self,
154
+ *,
155
+ text: str,
156
+ nodes: list[TaxonomyNode],
157
+ depth: int,
158
+ parent_path: list[str],
159
+ context: Optional[Dict[str, Any]],
160
+ max_depth: Optional[int],
161
+ confidence_threshold: float | None,
162
+ single_class: bool,
163
+ state: "_TraversalState",
164
+ ) -> None:
165
+ """Classify a taxonomy level and recursively traverse children.
166
+
167
+ Parameters
168
+ ----------
169
+ text : str
170
+ Source text to classify.
171
+ nodes : list[TaxonomyNode]
172
+ Candidate taxonomy nodes for the current level.
173
+ depth : int
174
+ Current traversal depth.
175
+ context : dict or None
176
+ Additional context values to merge into the prompt.
177
+ max_depth : int or None
178
+ Maximum traversal depth before stopping.
179
+ confidence_threshold : float or None
180
+ Minimum confidence required to accept a classification step.
181
+ single_class : bool
182
+ Whether to keep only the highest-priority selection per step.
183
+ state : _TraversalState
184
+ Aggregated traversal state.
185
+ """
186
+ if max_depth is not None and depth >= max_depth:
187
+ state.saw_max_depth = True
188
+ return
189
+ if not nodes:
190
+ return
191
+
192
+ node_paths = _build_node_path_map(nodes, parent_path)
193
+ template_context = _build_context(
194
+ node_descriptors=_build_node_descriptors(node_paths),
195
+ path=state.path,
196
+ depth=depth,
197
+ context=context,
198
+ )
199
+ step_structure = _build_step_structure(list(node_paths.keys()))
200
+ raw_step = await self.run_async(
201
+ input=text,
202
+ context=template_context,
203
+ output_structure=step_structure,
204
+ )
205
+ step = _normalize_step_output(raw_step, step_structure)
206
+ state.path.append(step)
207
+
208
+ if (
209
+ confidence_threshold is not None
210
+ and step.confidence is not None
211
+ and step.confidence < confidence_threshold
212
+ ):
213
+ return
214
+
215
+ resolved_nodes = _resolve_nodes(node_paths, step)
216
+ if resolved_nodes:
217
+ if single_class:
218
+ resolved_nodes = resolved_nodes[:1]
219
+ state.path_nodes.extend(resolved_nodes)
220
+
221
+ if step.stop_reason.is_terminal:
222
+ if resolved_nodes:
223
+ state.final_nodes.extend(resolved_nodes)
224
+ state.best_confidence = _max_confidence(
225
+ state.best_confidence, step.confidence
226
+ )
227
+ state.saw_terminal_stop = True
228
+ return
229
+
230
+ if not resolved_nodes:
231
+ return
232
+
233
+ base_path_len = len(state.path)
234
+ base_path_nodes_len = len(state.path_nodes)
235
+ child_tasks: list[tuple[Awaitable["_TraversalState"], int]] = []
236
+ for node in resolved_nodes:
237
+ if node.children:
238
+ sub_agent = self._build_sub_agent(list(node.children))
239
+ sub_state = _copy_traversal_state(state)
240
+ base_final_nodes_len = len(state.final_nodes)
241
+ child_tasks.append(
242
+ (
243
+ self._classify_subtree(
244
+ sub_agent=sub_agent,
245
+ text=text,
246
+ nodes=list(node.children),
247
+ depth=depth + 1,
248
+ parent_path=[*parent_path, node.label],
249
+ context=context,
250
+ max_depth=max_depth,
251
+ confidence_threshold=confidence_threshold,
252
+ single_class=single_class,
253
+ state=sub_state,
254
+ ),
255
+ base_final_nodes_len,
256
+ )
257
+ )
258
+ else:
259
+ state.saw_no_children = True
260
+ state.final_nodes.append(node)
261
+ state.best_confidence = _max_confidence(
262
+ state.best_confidence, step.confidence
263
+ )
264
+ if child_tasks:
265
+ child_states = await asyncio.gather(
266
+ *(child_task for child_task, _ in child_tasks)
267
+ )
268
+ for child_state, (_, base_final_nodes_len) in zip(
269
+ child_states, child_tasks, strict=True
270
+ ):
271
+ state.path.extend(child_state.path[base_path_len:])
272
+ state.path_nodes.extend(child_state.path_nodes[base_path_nodes_len:])
273
+ state.final_nodes.extend(child_state.final_nodes[base_final_nodes_len:])
274
+ state.best_confidence = _max_confidence(
275
+ state.best_confidence, child_state.best_confidence
276
+ )
277
+ state.saw_max_depth = state.saw_max_depth or child_state.saw_max_depth
278
+ state.saw_no_children = (
279
+ state.saw_no_children or child_state.saw_no_children
280
+ )
281
+ state.saw_terminal_stop = (
282
+ state.saw_terminal_stop or child_state.saw_terminal_stop
283
+ )
284
+
285
+ @property
286
+ def taxonomy(self) -> TaxonomyNode | Sequence[TaxonomyNode]:
287
+ """Return the root taxonomy node(s).
288
+
289
+ Returns
290
+ -------
291
+ TaxonomyNode or Sequence[TaxonomyNode]
292
+ Root taxonomy node or list of root nodes.
293
+ """
294
+ return self._taxonomy
295
+
296
+ @property
297
+ def root_nodes(self) -> list[TaxonomyNode]:
298
+ """Return the list of root taxonomy nodes.
299
+
300
+ Returns
301
+ -------
302
+ list[TaxonomyNode]
303
+ List of root taxonomy nodes.
304
+ """
305
+ return self._root_nodes
306
+
307
+ def _build_sub_agent(
308
+ self,
309
+ nodes: Sequence[TaxonomyNode],
310
+ ) -> "TaxonomyClassifierAgent":
311
+ """Build a classifier agent for a taxonomy subtree.
312
+
313
+ Parameters
314
+ ----------
315
+ nodes : Sequence[TaxonomyNode]
316
+ Taxonomy nodes to use as the sub-agent's root taxonomy.
317
+
318
+ Returns
319
+ -------
320
+ TaxonomyClassifierAgent
321
+ Configured classifier agent for the taxonomy slice.
322
+ """
323
+ sub_agent = TaxonomyClassifierAgent(
324
+ template_path=self._template_path,
325
+ model=self._model,
326
+ taxonomy=list(nodes),
327
+ )
328
+ sub_agent.run_async = self.run_async
329
+ return sub_agent
330
+
331
+ async def _classify_subtree(
332
+ self,
333
+ *,
334
+ sub_agent: "TaxonomyClassifierAgent",
335
+ text: str,
336
+ nodes: list[TaxonomyNode],
337
+ depth: int,
338
+ parent_path: list[str],
339
+ context: Optional[Dict[str, Any]],
340
+ max_depth: Optional[int],
341
+ confidence_threshold: float | None,
342
+ single_class: bool,
343
+ state: "_TraversalState",
344
+ ) -> "_TraversalState":
345
+ """Classify a taxonomy subtree and return the traversal state.
346
+
347
+ Parameters
348
+ ----------
349
+ sub_agent : TaxonomyClassifierAgent
350
+ Sub-agent configured for the subtree traversal.
351
+ text : str
352
+ Source text to classify.
353
+ nodes : list[TaxonomyNode]
354
+ Candidate taxonomy nodes for the subtree.
355
+ depth : int
356
+ Current traversal depth.
357
+ parent_path : list[str]
358
+ Path segments leading to the current subtree.
359
+ context : dict or None
360
+ Additional context values to merge into the prompt.
361
+ max_depth : int or None
362
+ Maximum traversal depth before stopping.
363
+ confidence_threshold : float or None
364
+ Minimum confidence required to accept a classification step.
365
+ single_class : bool
366
+ Whether to keep only the highest-priority selection per step.
367
+ state : _TraversalState
368
+ Traversal state to populate for the subtree.
369
+
370
+ Returns
371
+ -------
372
+ _TraversalState
373
+ Populated traversal state for the subtree.
374
+ """
375
+ await sub_agent._classify_nodes(
376
+ text=text,
377
+ nodes=nodes,
378
+ depth=depth,
379
+ parent_path=parent_path,
380
+ context=context,
381
+ max_depth=max_depth,
382
+ confidence_threshold=confidence_threshold,
383
+ single_class=single_class,
384
+ state=state,
385
+ )
386
+ return state
387
+
388
+
389
+ @dataclass
390
+ class _TraversalState:
391
+ """Track recursive traversal state."""
392
+
393
+ path: list[ClassificationStep] = field(default_factory=list)
394
+ path_nodes: list[TaxonomyNode] = field(default_factory=list)
395
+ final_nodes: list[TaxonomyNode] = field(default_factory=list)
396
+ best_confidence: float | None = None
397
+ saw_max_depth: bool = False
398
+ saw_no_children: bool = False
399
+ saw_terminal_stop: bool = False
400
+
401
+
402
+ def _copy_traversal_state(state: _TraversalState) -> _TraversalState:
403
+ """Copy traversal state for parallel subtree execution.
404
+
405
+ Parameters
406
+ ----------
407
+ state : _TraversalState
408
+ Traversal state to clone.
409
+
410
+ Returns
411
+ -------
412
+ _TraversalState
413
+ Cloned traversal state with copied collections.
414
+ """
415
+ return _TraversalState(
416
+ path=list(state.path),
417
+ path_nodes=list(state.path_nodes),
418
+ final_nodes=list(state.final_nodes),
419
+ best_confidence=state.best_confidence,
420
+ saw_max_depth=state.saw_max_depth,
421
+ saw_no_children=state.saw_no_children,
422
+ saw_terminal_stop=state.saw_terminal_stop,
423
+ )
424
+
425
+
426
+ def _resolve_stop_reason(state: _TraversalState) -> ClassificationStopReason:
427
+ """Resolve the final stop reason based on traversal state.
428
+
429
+ Parameters
430
+ ----------
431
+ state : _TraversalState
432
+ Traversal state to inspect.
433
+
434
+ Returns
435
+ -------
436
+ ClassificationStopReason
437
+ Resolved stop reason.
438
+ """
439
+ if state.saw_terminal_stop:
440
+ return ClassificationStopReason.STOP
441
+ if state.final_nodes and state.saw_no_children:
442
+ return ClassificationStopReason.NO_CHILDREN
443
+ if state.final_nodes:
444
+ return ClassificationStopReason.STOP
445
+ if state.saw_max_depth:
446
+ return ClassificationStopReason.MAX_DEPTH
447
+ if state.saw_no_children:
448
+ return ClassificationStopReason.NO_CHILDREN
449
+ return ClassificationStopReason.NO_MATCH
450
+
451
+
452
+ def _normalize_roots(
453
+ taxonomy: TaxonomyNode | Sequence[TaxonomyNode],
454
+ ) -> list[TaxonomyNode]:
455
+ """Normalize taxonomy input into a list of root nodes.
456
+
457
+ Parameters
458
+ ----------
459
+ taxonomy : TaxonomyNode | Sequence[TaxonomyNode]
460
+ Root taxonomy node or list of root nodes.
461
+
462
+ Returns
463
+ -------
464
+ list[TaxonomyNode]
465
+ Normalized list of root nodes.
466
+ """
467
+ if isinstance(taxonomy, TaxonomyNode):
468
+ return [taxonomy]
469
+ return [node for node in taxonomy if node is not None]
470
+
471
+
472
+ def _default_template_path() -> Path:
473
+ """Return the built-in classifier prompt template path.
474
+
475
+ Returns
476
+ -------
477
+ Path
478
+ Path to the bundled classifier Jinja template.
479
+ """
480
+ return Path(__file__).resolve().parents[1] / "prompt" / "classifier.jinja"
481
+
482
+
483
+ def _build_context(
484
+ *,
485
+ node_descriptors: Iterable[dict[str, Any]],
486
+ path: Sequence[ClassificationStep],
487
+ depth: int,
488
+ context: Optional[Dict[str, Any]],
489
+ ) -> Dict[str, Any]:
490
+ """Build the template context for a classification step.
491
+
492
+ Parameters
493
+ ----------
494
+ node_descriptors : Iterable[dict[str, Any]]
495
+ Node descriptors available at the current taxonomy level.
496
+ path : Sequence[ClassificationStep]
497
+ Steps recorded so far in the traversal.
498
+ depth : int
499
+ Current traversal depth.
500
+ context : dict or None
501
+ Optional additional context values.
502
+
503
+ Returns
504
+ -------
505
+ dict[str, Any]
506
+ Context dictionary for prompt rendering.
507
+ """
508
+ template_context: Dict[str, Any] = {
509
+ "taxonomy_nodes": list(node_descriptors),
510
+ "path": [step.as_summary() for step in path],
511
+ "depth": depth,
512
+ }
513
+ if context:
514
+ template_context.update(context)
515
+ return template_context
516
+
517
+
518
+ def _build_step_structure(
519
+ path_identifiers: Sequence[str],
520
+ ) -> type[ClassificationStep]:
521
+ """Build a step output structure constrained to taxonomy paths.
522
+
523
+ Parameters
524
+ ----------
525
+ path_identifiers : Sequence[str]
526
+ Path identifiers for nodes at the current classification step.
527
+
528
+ Returns
529
+ -------
530
+ type[ClassificationStep]
531
+ Dynamic structure class for the classification step output.
532
+ """
533
+ node_enum = _build_taxonomy_enum("TaxonomyPath", path_identifiers)
534
+ return ClassificationStep.build_for_enum(node_enum)
535
+
536
+
537
+ def _build_node_path_map(
538
+ nodes: Sequence[TaxonomyNode],
539
+ parent_path: Sequence[str],
540
+ ) -> dict[str, TaxonomyNode]:
541
+ """Build a mapping of node path identifiers to taxonomy nodes.
542
+
543
+ Parameters
544
+ ----------
545
+ nodes : Sequence[TaxonomyNode]
546
+ Candidate nodes at the current taxonomy level.
547
+ parent_path : Sequence[str]
548
+ Path segments leading to the current taxonomy level.
549
+
550
+ Returns
551
+ -------
552
+ dict[str, TaxonomyNode]
553
+ Mapping of path identifiers to taxonomy nodes.
554
+ """
555
+ path_map: dict[str, TaxonomyNode] = {}
556
+ seen: dict[str, int] = {}
557
+ for node in nodes:
558
+ base_path = _format_path_identifier([*parent_path, node.label])
559
+ count = seen.get(base_path, 0) + 1
560
+ seen[base_path] = count
561
+ path = f"{base_path} ({count})" if count > 1 else base_path
562
+ path_map[path] = node
563
+ return path_map
564
+
565
+
566
+ def _build_node_descriptors(
567
+ node_paths: dict[str, TaxonomyNode],
568
+ ) -> list[dict[str, Any]]:
569
+ """Build node descriptors for prompt rendering.
570
+
571
+ Parameters
572
+ ----------
573
+ node_paths : dict[str, TaxonomyNode]
574
+ Mapping of path identifiers to taxonomy nodes.
575
+
576
+ Returns
577
+ -------
578
+ list[dict[str, Any]]
579
+ Node descriptor dictionaries for prompt rendering.
580
+ """
581
+ descriptors: list[dict[str, Any]] = []
582
+ for path_id, node in node_paths.items():
583
+ descriptors.append(
584
+ {
585
+ "identifier": path_id,
586
+ "label": node.label,
587
+ "description": node.description,
588
+ }
589
+ )
590
+ return descriptors
591
+
592
+
593
+ def _format_path_identifier(path_segments: Sequence[str]) -> str:
594
+ """Format path segments into a safe identifier string.
595
+
596
+ Parameters
597
+ ----------
598
+ path_segments : Sequence[str]
599
+ Path segments to format.
600
+
601
+ Returns
602
+ -------
603
+ str
604
+ Escaped path identifier string.
605
+ """
606
+ delimiter = " > "
607
+ escape_token = "\\>"
608
+ escaped_segments = [
609
+ segment.replace(delimiter, escape_token) for segment in path_segments
610
+ ]
611
+ return delimiter.join(escaped_segments)
612
+
613
+
614
+ def _build_taxonomy_enum(name: str, values: Sequence[str]) -> type[Enum]:
615
+ """Build a safe Enum from taxonomy node values.
616
+
617
+ Parameters
618
+ ----------
619
+ name : str
620
+ Name to use for the enum class.
621
+ values : Sequence[str]
622
+ Taxonomy node values to include as enum members.
623
+
624
+ Returns
625
+ -------
626
+ type[Enum]
627
+ Enum class with sanitized member names.
628
+ """
629
+ members: dict[str, str] = {}
630
+ for index, value in enumerate(values, start=1):
631
+ member_name = _sanitize_enum_member(value, index, members)
632
+ members[member_name] = value
633
+ if not members:
634
+ members["UNSPECIFIED"] = ""
635
+ return cast(type[Enum], Enum(name, members))
636
+
637
+
638
+ def _split_taxonomy_path(value: str) -> list[str]:
639
+ """Split a taxonomy identifier into its path segments.
640
+
641
+ Parameters
642
+ ----------
643
+ value : str
644
+ Taxonomy path identifier to split.
645
+
646
+ Returns
647
+ -------
648
+ list[str]
649
+ Path segments with escaped delimiters restored.
650
+ """
651
+ delimiter = " > "
652
+ escape_token = "\\>"
653
+ segments = value.split(delimiter)
654
+ return [segment.replace(escape_token, delimiter) for segment in segments]
655
+
656
+
657
+ def _sanitize_enum_member(
658
+ value: str,
659
+ index: int,
660
+ existing: dict[str, str],
661
+ ) -> str:
662
+ """Return a valid enum member name for a taxonomy value.
663
+
664
+ Parameters
665
+ ----------
666
+ value : str
667
+ Raw taxonomy value to sanitize.
668
+ index : int
669
+ Index of the value in the source list.
670
+ existing : dict[str, str]
671
+ Existing enum members to avoid collisions.
672
+
673
+ Returns
674
+ -------
675
+ str
676
+ Sanitized enum member name.
677
+ """
678
+ normalized_segments: list[str] = []
679
+ for segment in _split_taxonomy_path(value):
680
+ normalized = re.sub(r"[^0-9a-zA-Z]+", "_", segment).strip("_").upper()
681
+ if not normalized:
682
+ normalized = "VALUE"
683
+ if normalized[0].isdigit():
684
+ normalized = f"VALUE_{normalized}"
685
+ normalized_segments.append(normalized)
686
+ normalized_path = "__".join(normalized_segments) or f"VALUE_{index}"
687
+ candidate = normalized_path
688
+ suffix = 1
689
+ while candidate in existing:
690
+ candidate = f"{normalized_path}__{suffix}"
691
+ suffix += 1
692
+ return candidate
693
+
694
+
695
+ def _normalize_step_output(
696
+ step: StructureBase,
697
+ step_structure: type[StructureBase],
698
+ ) -> ClassificationStep:
699
+ """Normalize dynamic step output into a ClassificationStep.
700
+
701
+ Parameters
702
+ ----------
703
+ step : StructureBase
704
+ Raw step output returned by the agent.
705
+ step_structure : type[StructureBase]
706
+ Structure definition used to parse the agent output.
707
+
708
+ Returns
709
+ -------
710
+ ClassificationStep
711
+ Normalized classification step instance.
712
+ """
713
+ if isinstance(step, ClassificationStep):
714
+ return step
715
+ payload = step.to_json()
716
+ return ClassificationStep.from_json(payload)
717
+
718
+
719
+ def _extract_enum_fields(
720
+ step_structure: type[StructureBase],
721
+ ) -> dict[str, type[Enum]]:
722
+ """Return the enum field mapping for a step structure.
723
+
724
+ Parameters
725
+ ----------
726
+ step_structure : type[StructureBase]
727
+ Structure definition to inspect.
728
+
729
+ Returns
730
+ -------
731
+ dict[str, type[Enum]]
732
+ Mapping of field names to enum classes.
733
+ """
734
+ enum_fields: dict[str, type[Enum]] = {}
735
+ for field_name, model_field in step_structure.model_fields.items():
736
+ enum_cls = step_structure._extract_enum_class(model_field.annotation)
737
+ if enum_cls is not None:
738
+ enum_fields[field_name] = enum_cls
739
+ return enum_fields
740
+
741
+
742
+ def _normalize_enum_value(value: Any, enum_cls: type[Enum]) -> Any:
743
+ """Normalize enum values into raw primitives.
744
+
745
+ Parameters
746
+ ----------
747
+ value : Any
748
+ Value to normalize.
749
+ enum_cls : type[Enum]
750
+ Enum type used for normalization.
751
+
752
+ Returns
753
+ -------
754
+ Any
755
+ Primitive value suitable for ``ClassificationStep``.
756
+ """
757
+ if isinstance(value, Enum):
758
+ return value.value
759
+ if isinstance(value, list):
760
+ return [_normalize_enum_value(item, enum_cls) for item in value]
761
+ if isinstance(value, str):
762
+ if value in enum_cls._value2member_map_:
763
+ return enum_cls(value).value
764
+ if value in enum_cls.__members__:
765
+ return enum_cls.__members__[value].value
766
+ return value
767
+
768
+
769
+ def _resolve_nodes(
770
+ node_paths: dict[str, TaxonomyNode],
771
+ step: ClassificationStep,
772
+ ) -> list[TaxonomyNode]:
773
+ """Resolve selected taxonomy nodes for a classification step.
774
+
775
+ Parameters
776
+ ----------
777
+ node_paths : dict[str, TaxonomyNode]
778
+ Mapping of path identifiers to nodes at the current level.
779
+ step : ClassificationStep
780
+ Classification step output to resolve.
781
+
782
+ Returns
783
+ -------
784
+ list[TaxonomyNode]
785
+ Matching taxonomy nodes in priority order.
786
+ """
787
+ resolved: list[TaxonomyNode] = []
788
+ selected_nodes = _selected_nodes(step)
789
+ if selected_nodes:
790
+ for selected_node in selected_nodes:
791
+ node = node_paths.get(selected_node)
792
+ if node:
793
+ resolved.append(node)
794
+ return resolved
795
+
796
+
797
+ def _selected_nodes(step: ClassificationStep) -> list[str]:
798
+ """Return selected identifiers for a classification step.
799
+
800
+ Parameters
801
+ ----------
802
+ step : ClassificationStep
803
+ Classification output to normalize.
804
+
805
+ Returns
806
+ -------
807
+ list[str]
808
+ Selected identifiers in priority order.
809
+ """
810
+ if step.selected_nodes is not None:
811
+ selected_nodes = [
812
+ str(_normalize_enum_value(selected_node, Enum))
813
+ for selected_node in step.selected_nodes
814
+ if selected_node
815
+ ]
816
+ if selected_nodes:
817
+ return selected_nodes
818
+ if step.selected_node:
819
+ return [str(_normalize_enum_value(step.selected_node, Enum))]
820
+ return []
821
+
822
+
823
+ def _max_confidence(
824
+ current: float | None,
825
+ candidate: float | None,
826
+ ) -> float | None:
827
+ """Return the higher confidence value.
828
+
829
+ Parameters
830
+ ----------
831
+ current : float or None
832
+ Current best confidence value.
833
+ candidate : float or None
834
+ Candidate confidence value to compare.
835
+
836
+ Returns
837
+ -------
838
+ float or None
839
+ Highest confidence value available.
840
+ """
841
+ if current is None:
842
+ return candidate
843
+ if candidate is None:
844
+ return current
845
+ return max(current, candidate)
846
+
847
+
848
+ __all__ = ["TaxonomyClassifierAgent"]