openai-gabriel 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. gabriel/__init__.py +61 -0
  2. gabriel/_version.py +1 -0
  3. gabriel/api.py +2284 -0
  4. gabriel/cli/__main__.py +60 -0
  5. gabriel/core/__init__.py +7 -0
  6. gabriel/core/llm_client.py +34 -0
  7. gabriel/core/pipeline.py +18 -0
  8. gabriel/core/prompt_template.py +152 -0
  9. gabriel/prompts/__init__.py +1 -0
  10. gabriel/prompts/bucket_prompt.jinja2 +113 -0
  11. gabriel/prompts/classification_prompt.jinja2 +50 -0
  12. gabriel/prompts/codify_prompt.jinja2 +95 -0
  13. gabriel/prompts/comparison_prompt.jinja2 +60 -0
  14. gabriel/prompts/deduplicate_prompt.jinja2 +41 -0
  15. gabriel/prompts/deidentification_prompt.jinja2 +112 -0
  16. gabriel/prompts/extraction_prompt.jinja2 +61 -0
  17. gabriel/prompts/filter_prompt.jinja2 +31 -0
  18. gabriel/prompts/ideation_prompt.jinja2 +80 -0
  19. gabriel/prompts/merge_prompt.jinja2 +47 -0
  20. gabriel/prompts/paraphrase_prompt.jinja2 +17 -0
  21. gabriel/prompts/rankings_prompt.jinja2 +49 -0
  22. gabriel/prompts/ratings_prompt.jinja2 +50 -0
  23. gabriel/prompts/regional_analysis_prompt.jinja2 +40 -0
  24. gabriel/prompts/seed.jinja2 +43 -0
  25. gabriel/prompts/snippets.jinja2 +117 -0
  26. gabriel/tasks/__init__.py +63 -0
  27. gabriel/tasks/_attribute_utils.py +69 -0
  28. gabriel/tasks/bucket.py +432 -0
  29. gabriel/tasks/classify.py +562 -0
  30. gabriel/tasks/codify.py +1033 -0
  31. gabriel/tasks/compare.py +235 -0
  32. gabriel/tasks/debias.py +1460 -0
  33. gabriel/tasks/deduplicate.py +341 -0
  34. gabriel/tasks/deidentify.py +316 -0
  35. gabriel/tasks/discover.py +524 -0
  36. gabriel/tasks/extract.py +455 -0
  37. gabriel/tasks/filter.py +169 -0
  38. gabriel/tasks/ideate.py +782 -0
  39. gabriel/tasks/merge.py +464 -0
  40. gabriel/tasks/paraphrase.py +531 -0
  41. gabriel/tasks/rank.py +2041 -0
  42. gabriel/tasks/rate.py +347 -0
  43. gabriel/tasks/seed.py +465 -0
  44. gabriel/tasks/whatever.py +344 -0
  45. gabriel/utils/__init__.py +64 -0
  46. gabriel/utils/audio_utils.py +42 -0
  47. gabriel/utils/file_utils.py +464 -0
  48. gabriel/utils/image_utils.py +22 -0
  49. gabriel/utils/jinja.py +31 -0
  50. gabriel/utils/logging.py +86 -0
  51. gabriel/utils/mapmaker.py +304 -0
  52. gabriel/utils/media_utils.py +78 -0
  53. gabriel/utils/modality_utils.py +148 -0
  54. gabriel/utils/openai_utils.py +5470 -0
  55. gabriel/utils/parsing.py +282 -0
  56. gabriel/utils/passage_viewer.py +2557 -0
  57. gabriel/utils/pdf_utils.py +20 -0
  58. gabriel/utils/plot_utils.py +2881 -0
  59. gabriel/utils/prompt_utils.py +42 -0
  60. gabriel/utils/word_matching.py +158 -0
  61. openai_gabriel-1.0.1.dist-info/METADATA +443 -0
  62. openai_gabriel-1.0.1.dist-info/RECORD +67 -0
  63. openai_gabriel-1.0.1.dist-info/WHEEL +5 -0
  64. openai_gabriel-1.0.1.dist-info/entry_points.txt +2 -0
  65. openai_gabriel-1.0.1.dist-info/licenses/LICENSE +201 -0
  66. openai_gabriel-1.0.1.dist-info/licenses/NOTICE +13 -0
  67. openai_gabriel-1.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,42 @@
1
+ from __future__ import annotations
2
+
3
+ import re
4
+ from typing import Dict
5
+
6
+ _WORD_MAP: Dict[str, str] = {
7
+ "circle": "square",
8
+ "square": "circle",
9
+ "Circle": "Square",
10
+ "Square": "Circle",
11
+ "CIRCLE": "SQUARE",
12
+ "SQUARE": "CIRCLE",
13
+ }
14
+
15
+
16
+ def swap_circle_square(text: str) -> str:
17
+ """Swap occurrences of 'circle' and 'square' in ``text`` while preserving case.
18
+
19
+ The function temporarily masks Jinja variable names like ``entry_circle`` and
20
+ ``entry_square`` to avoid mangling them during the swap.
21
+ """
22
+
23
+ placeholders = {
24
+ "{{ entry_circle }}": "__ENTRY_CIRCLE__",
25
+ "{{ entry_square }}": "__ENTRY_SQUARE__",
26
+ "entry_circle": "__ENTRY_CIRCLE_VAR__",
27
+ "entry_square": "__ENTRY_SQUARE_VAR__",
28
+ }
29
+
30
+ for key, token in placeholders.items():
31
+ text = text.replace(key, token)
32
+
33
+ def repl(match: re.Match[str]) -> str:
34
+ word = match.group(0)
35
+ return _WORD_MAP.get(word, word)
36
+
37
+ text = re.sub(r"\b(circle|square|Circle|Square|CIRCLE|SQUARE)\b", repl, text)
38
+
39
+ for key, token in placeholders.items():
40
+ text = text.replace(token, key)
41
+
42
+ return text
@@ -0,0 +1,158 @@
1
+ import re
2
+ import unicodedata
3
+ from typing import Optional
4
+
5
+
6
+ def normalize_whitespace(text: str) -> str:
7
+ """Collapse all whitespace to single spaces and trim ends."""
8
+ if not text:
9
+ return ""
10
+ return re.sub(r"\s+", " ", text).strip()
11
+
12
+
13
+ def normalize_text_generous(text: str) -> str:
14
+ """Lightweight normalization that preserves most punctuation."""
15
+ if not text:
16
+ return ""
17
+
18
+ text = unicodedata.normalize("NFKC", text)
19
+ return normalize_whitespace(text)
20
+
21
+
22
+ def normalize_text_aggressive(text: str) -> str:
23
+ """Aggressively normalize text for maximum matching flexibility."""
24
+ if not text:
25
+ return ""
26
+
27
+ # First, handle encoding artifacts BEFORE Unicode normalization
28
+ # This is crucial because unicodedata.normalize might change the artifacts
29
+ encoding_fixes = {
30
+ '’': "'", # Main apostrophe artifact
31
+ '’s': "'s", '’t': "'t", '’m': "'m", '’re': "'re",
32
+ '’ve': "'ve", '’ll': "'ll", '’d': "'d",
33
+ '…': ' ', '”': '"', '“': '"', '—': '-', '•': "'",
34
+ '‘': "'", '“a': '"a', # Common patterns
35
+ }
36
+
37
+ for old, new in encoding_fixes.items():
38
+ text = text.replace(old, new)
39
+
40
+ # Unicode normalization after fixing encoding artifacts
41
+ text = unicodedata.normalize('NFKD', text)
42
+
43
+ # Standard Unicode replacements
44
+ unicode_fixes = {
45
+ # Unicode quotes and apostrophes
46
+ '\u2019': "'", '\u2018': "'", '\u201c': '"', '\u201d': '"',
47
+ '\u2013': '-', '\u2014': '-', '\u2026': '...',
48
+ # Common variations
49
+ ''': "'", ''': "'", '"': '"', '"': '"',
50
+ # Remove zero-width characters
51
+ '\u200b': '', '\u200c': '', '\u200d': '', '\ufeff': '',
52
+ }
53
+
54
+ for old, new in unicode_fixes.items():
55
+ text = text.replace(old, new)
56
+
57
+ # Clean up any remaining apostrophe patterns (with length check for safety)
58
+ if len(text) < 100000: # Only apply regex patterns to reasonable-sized text
59
+ try:
60
+ text = re.sub(r"[''’]+s\b", "'s", text) # Possessives
61
+ text = re.sub(r"[''’]+t\b", "'t", text) # Contractions
62
+ text = re.sub(r"[''’]+m\b", "'m", text)
63
+ text = re.sub(r"[''’]+re\b", "'re", text)
64
+ text = re.sub(r"[''’]+ve\b", "'ve", text)
65
+ text = re.sub(r"[''’]+ll\b", "'ll", text)
66
+ text = re.sub(r"[''’]+d\b", "'d", text)
67
+ except Exception:
68
+ # If regex fails, just continue without this cleanup
69
+ pass
70
+
71
+ # Normalize whitespace - convert all whitespace to single spaces
72
+ text = re.sub(r'\s+', ' ', text)
73
+
74
+ return text.strip()
75
+
76
+
77
+ def letters_only(text: str) -> str:
78
+ """Keep only lowercase letters a-z, remove everything else."""
79
+ if not text:
80
+ return ""
81
+ # Convert to lowercase and keep only a-z letters
82
+ return re.sub(r'[^a-z]', '', text.lower())
83
+
84
+
85
+ def robust_find_improved(text: str, excerpt: str) -> Optional[str]:
86
+ """Fast and robust text matching using letters-only approach with fallbacks."""
87
+ if not excerpt.strip():
88
+ return None
89
+
90
+ # Primary strategy: letters-only matching (super fast and robust)
91
+ text_letters = letters_only(text)
92
+ excerpt_letters = letters_only(excerpt)
93
+
94
+ if excerpt_letters and excerpt_letters in text_letters:
95
+ return excerpt # Return original excerpt if letters-only match found
96
+
97
+ # Fallback 1: First 20 characters of letters-only (for partial matches at start)
98
+ if len(excerpt_letters) >= 20:
99
+ excerpt_first_20 = excerpt_letters[:20]
100
+ if excerpt_first_20 in text_letters:
101
+ return excerpt
102
+
103
+ # Fallback 2: Last 20 characters of letters-only (for partial matches at end)
104
+ if len(excerpt_letters) >= 20:
105
+ excerpt_last_20 = excerpt_letters[-20:]
106
+ if excerpt_last_20 in text_letters:
107
+ return excerpt
108
+
109
+ # Fallback 3: First 10 + last 10 characters (for middle truncation issues)
110
+ if len(excerpt_letters) >= 20:
111
+ excerpt_first_10 = excerpt_letters[:10]
112
+ excerpt_last_10 = excerpt_letters[-10:]
113
+ if excerpt_first_10 in text_letters and excerpt_last_10 in text_letters:
114
+ return excerpt
115
+
116
+ # Fallback 4: For shorter excerpts, try partial matching
117
+ if 10 <= len(excerpt_letters) < 20:
118
+ excerpt_first_half = excerpt_letters[:len(excerpt_letters)//2]
119
+ excerpt_second_half = excerpt_letters[len(excerpt_letters)//2:]
120
+ if len(excerpt_first_half) >= 5 and len(excerpt_second_half) >= 5:
121
+ if excerpt_first_half in text_letters and excerpt_second_half in text_letters:
122
+ return excerpt
123
+
124
+ # Fallback 5: Very short excerpts (< 10 letters): try normalized approach
125
+ if len(excerpt_letters) < 10:
126
+ text_norm = normalize_text_aggressive(text).lower()
127
+ excerpt_norm = normalize_text_aggressive(excerpt).lower()
128
+
129
+ if excerpt_norm in text_norm:
130
+ return excerpt
131
+
132
+ return None
133
+
134
+
135
+ def strict_find(text: str, excerpt: str) -> bool:
136
+ """Strict matching for failure analysis - only direct and normalized matching, no fallbacks."""
137
+ if not excerpt.strip():
138
+ return False
139
+
140
+ # Strategy 1: Direct case-insensitive match
141
+ text_lower = text.lower()
142
+ excerpt_lower = excerpt.lower().strip()
143
+ if excerpt_lower in text_lower:
144
+ return True
145
+
146
+ # Strategy 2: Normalized matching (handles encoding issues)
147
+ text_norm = normalize_text_aggressive(text).lower()
148
+ excerpt_norm = normalize_text_aggressive(excerpt).lower()
149
+ if excerpt_norm in text_norm:
150
+ return True
151
+
152
+ # Strategy 3: Letters-only matching (most basic level)
153
+ text_letters = letters_only(text)
154
+ excerpt_letters = letters_only(excerpt)
155
+ if excerpt_letters and excerpt_letters in text_letters:
156
+ return True
157
+
158
+ return False
@@ -0,0 +1,443 @@
1
+ Metadata-Version: 2.4
2
+ Name: openai-gabriel
3
+ Version: 1.0.1
4
+ Summary: LLM-based social-science analysis library
5
+ Author: GABRIEL Contributors
6
+ License: Apache License
7
+ Version 2.0, January 2004
8
+ http://www.apache.org/licenses/
9
+
10
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
11
+
12
+ 1. Definitions.
13
+
14
+ "License" shall mean the terms and conditions for use, reproduction,
15
+ and distribution as defined by Sections 1 through 9 of this document.
16
+
17
+ "Licensor" shall mean the copyright owner or entity authorized by
18
+ the copyright owner that is granting the License.
19
+
20
+ "Legal Entity" shall mean the union of the acting entity and all
21
+ other entities that control, are controlled by, or are under common
22
+ control with that entity. For the purposes of this definition,
23
+ "control" means (i) the power, direct or indirect, to cause the
24
+ direction or management of such entity, whether by contract or
25
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
26
+ outstanding shares, or (iii) beneficial ownership of such entity.
27
+
28
+ "You" (or "Your") shall mean an individual or Legal Entity
29
+ exercising permissions granted by this License.
30
+
31
+ "Source" form shall mean the preferred form for making modifications,
32
+ including but not limited to software source code, documentation
33
+ source, and configuration files.
34
+
35
+ "Object" form shall mean any form resulting from mechanical
36
+ transformation or translation of a Source form, including but
37
+ not limited to compiled object code, generated documentation,
38
+ and conversions to other media types.
39
+
40
+ "Work" shall mean the work of authorship, whether in Source or
41
+ Object form, made available under the License, as indicated by a
42
+ copyright notice that is included in or attached to the work
43
+ (an example is provided in the Appendix below).
44
+
45
+ "Derivative Works" shall mean any work, whether in Source or Object
46
+ form, that is based on (or derived from) the Work and for which the
47
+ editorial revisions, annotations, elaborations, or other modifications
48
+ represent, as a whole, an original work of authorship. For the purposes
49
+ of this License, Derivative Works shall not include works that remain
50
+ separable from, or merely link (or bind by name) to the interfaces of,
51
+ the Work and Derivative Works thereof.
52
+
53
+ "Contribution" shall mean any work of authorship, including
54
+ the original version of the Work and any modifications or additions
55
+ to that Work or Derivative Works thereof, that is intentionally
56
+ submitted to Licensor for inclusion in the Work by the copyright owner
57
+ or by an individual or Legal Entity authorized to submit on behalf of
58
+ the copyright owner. For the purposes of this definition, "submitted"
59
+ means any form of electronic, verbal, or written communication sent
60
+ to the Licensor or its representatives, including but not limited to
61
+ communication on electronic mailing lists, source code control systems,
62
+ and issue tracking systems that are managed by, or on behalf of, the
63
+ Licensor for the purpose of discussing and improving the Work, but
64
+ excluding communication that is conspicuously marked or otherwise
65
+ designated in writing by the copyright owner as "Not a Contribution."
66
+
67
+ "Contributor" shall mean Licensor and any individual or Legal Entity
68
+ on behalf of whom a Contribution has been received by Licensor and
69
+ subsequently incorporated within the Work.
70
+
71
+ 2. Grant of Copyright License. Subject to the terms and conditions of
72
+ this License, each Contributor hereby grants to You a perpetual,
73
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
74
+ copyright license to reproduce, prepare Derivative Works of,
75
+ publicly display, publicly perform, sublicense, and distribute the
76
+ Work and such Derivative Works in Source or Object form.
77
+
78
+ 3. Grant of Patent License. Subject to the terms and conditions of
79
+ this License, each Contributor hereby grants to You a perpetual,
80
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
81
+ (except as stated in this section) patent license to make, have made,
82
+ use, offer to sell, sell, import, and otherwise transfer the Work,
83
+ where such license applies only to those patent claims licensable
84
+ by such Contributor that are necessarily infringed by their
85
+ Contribution(s) alone or by combination of their Contribution(s)
86
+ with the Work to which such Contribution(s) was submitted. If You
87
+ institute patent litigation against any entity (including a
88
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
89
+ or a Contribution incorporated within the Work constitutes direct
90
+ or contributory patent infringement, then any patent licenses
91
+ granted to You under this License for that Work shall terminate
92
+ as of the date such litigation is filed.
93
+
94
+ 4. Redistribution. You may reproduce and distribute copies of the
95
+ Work or Derivative Works thereof in any medium, with or without
96
+ modifications, and in Source or Object form, provided that You
97
+ meet the following conditions:
98
+
99
+ (a) You must give any other recipients of the Work or
100
+ Derivative Works a copy of this License; and
101
+
102
+ (b) You must cause any modified files to carry prominent notices
103
+ stating that You changed the files; and
104
+
105
+ (c) You must retain, in the Source form of any Derivative Works
106
+ that You distribute, all copyright, patent, trademark, and
107
+ attribution notices from the Source form of the Work,
108
+ excluding those notices that do not pertain to any part of
109
+ the Derivative Works; and
110
+
111
+ (d) If the Work includes a "NOTICE" text file as part of its
112
+ distribution, then any Derivative Works that You distribute must
113
+ include a readable copy of the attribution notices contained
114
+ within such NOTICE file, excluding those notices that do not
115
+ pertain to any part of the Derivative Works, in at least one
116
+ of the following places: within a NOTICE text file distributed
117
+ as part of the Derivative Works; within the Source form or
118
+ documentation, if provided along with the Derivative Works; or,
119
+ within a display generated by the Derivative Works, if and
120
+ wherever such third-party notices normally appear. The contents
121
+ of the NOTICE file are for informational purposes only and
122
+ do not modify the License. You may add Your own attribution
123
+ notices within Derivative Works that You distribute, alongside
124
+ or as an addendum to the NOTICE text from the Work, provided
125
+ that such additional attribution notices cannot be construed
126
+ as modifying the License.
127
+
128
+ You may add Your own copyright statement to Your modifications and
129
+ may provide additional or different license terms and conditions
130
+ for use, reproduction, or distribution of Your modifications, or
131
+ for any such Derivative Works as a whole, provided Your use,
132
+ reproduction, and distribution of the Work otherwise complies with
133
+ the conditions stated in this License.
134
+
135
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
136
+ any Contribution intentionally submitted for inclusion in the Work
137
+ by You to the Licensor shall be under the terms and conditions of
138
+ this License, without any additional terms or conditions.
139
+ Notwithstanding the above, nothing herein shall supersede or modify
140
+ the terms of any separate license agreement you may have executed
141
+ with Licensor regarding such Contributions.
142
+
143
+ 6. Trademarks. This License does not grant permission to use the trade
144
+ names, trademarks, service marks, or product names of the Licensor,
145
+ except as required for reasonable and customary use in describing the
146
+ origin of the Work and reproducing the content of the NOTICE file.
147
+
148
+ 7. Disclaimer of Warranty. Unless required by applicable law or
149
+ agreed to in writing, Licensor provides the Work (and each
150
+ Contributor provides its Contributions) on an "AS IS" BASIS,
151
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
152
+ implied, including, without limitation, any warranties or conditions
153
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
154
+ PARTICULAR PURPOSE. You are solely responsible for determining the
155
+ appropriateness of using or redistributing the Work and assume any
156
+ risks associated with Your exercise of permissions under this License.
157
+
158
+ 8. Limitation of Liability. In no event and under no legal theory,
159
+ whether in tort (including negligence), contract, or otherwise,
160
+ unless required by applicable law (such as deliberate and grossly
161
+ negligent acts) or agreed to in writing, shall any Contributor be
162
+ liable to You for damages, including any direct, indirect, special,
163
+ incidental, or consequential damages of any character arising as a
164
+ result of this License or out of the use or inability to use the
165
+ Work (including but not limited to damages for loss of goodwill,
166
+ work stoppage, computer failure or malfunction, or any and all
167
+ other commercial damages or losses), even if such Contributor
168
+ has been advised of the possibility of such damages.
169
+
170
+ 9. Accepting Warranty or Additional Liability. While redistributing
171
+ the Work or Derivative Works thereof, You may choose to offer,
172
+ and charge a fee for, acceptance of support, warranty, indemnity,
173
+ or other liability obligations and/or rights consistent with this
174
+ License. However, in accepting such obligations, You may act only
175
+ on Your own behalf and on Your sole responsibility, not on behalf
176
+ of any other Contributor, and only if You agree to indemnify,
177
+ defend, and hold each Contributor harmless for any liability
178
+ incurred by, or claims asserted against, such Contributor by reason
179
+ of your accepting any such warranty or additional liability.
180
+
181
+ END OF TERMS AND CONDITIONS
182
+
183
+ APPENDIX: How to apply the Apache License to your work.
184
+
185
+ To apply the Apache License to your work, attach the following
186
+ boilerplate notice, with the fields enclosed by brackets "[]"
187
+ replaced with your own identifying information. (Don't include
188
+ the brackets!) The text should be enclosed in the appropriate
189
+ comment syntax for the file format. We also recommend that a
190
+ file or class name and description of purpose be included on the
191
+ same "printed page" as the copyright notice for easier
192
+ identification within third-party archives.
193
+
194
+ Copyright [yyyy] [name of copyright owner]
195
+
196
+ Licensed under the Apache License, Version 2.0 (the "License");
197
+ you may not use this file except in compliance with the License.
198
+ You may obtain a copy of the License at
199
+
200
+ http://www.apache.org/licenses/LICENSE-2.0
201
+
202
+ Unless required by applicable law or agreed to in writing, software
203
+ distributed under the License is distributed on an "AS IS" BASIS,
204
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
205
+ See the License for the specific language governing permissions and
206
+ limitations under the License.
207
+
208
+ Project-URL: Homepage, https://github.com/openai/GABRIEL
209
+ Project-URL: Repository, https://github.com/openai/GABRIEL
210
+ Project-URL: Documentation, https://github.com/openai/GABRIEL/blob/main/README.md
211
+ Project-URL: Issues, https://github.com/openai/GABRIEL/issues
212
+ Keywords: llm,nlp,social-science,machine-learning,research
213
+ Classifier: Development Status :: 5 - Production/Stable
214
+ Classifier: Intended Audience :: Science/Research
215
+ Classifier: License :: OSI Approved :: Apache Software License
216
+ Classifier: Programming Language :: Python
217
+ Classifier: Programming Language :: Python :: 3
218
+ Classifier: Programming Language :: Python :: 3.7
219
+ Classifier: Programming Language :: Python :: 3.8
220
+ Classifier: Programming Language :: Python :: 3.9
221
+ Classifier: Programming Language :: Python :: 3.10
222
+ Classifier: Programming Language :: Python :: 3.11
223
+ Classifier: Programming Language :: Python :: 3.12
224
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
225
+ Classifier: Topic :: Software Development :: Libraries
226
+ Requires-Python: >=3.7
227
+ Description-Content-Type: text/markdown
228
+ License-File: LICENSE
229
+ License-File: NOTICE
230
+ Requires-Dist: openai>=1.0.0
231
+ Requires-Dist: pandas>=1.0.0
232
+ Requires-Dist: numpy>=1.18.0
233
+ Requires-Dist: Jinja2>=3.0.0
234
+ Requires-Dist: tqdm>=4.40.0
235
+ Requires-Dist: aiohttp>=3.7.0
236
+ Requires-Dist: aiolimiter>=1.0.0
237
+ Requires-Dist: plotly>=5.0.0
238
+ Requires-Dist: matplotlib>=3.6.0
239
+ Requires-Dist: requests>=2.0.0
240
+ Requires-Dist: scipy>=1.8.0
241
+ Requires-Dist: tiktoken>=0.2.0
242
+ Requires-Dist: pypdf>=4.0.0
243
+ Requires-Dist: python-docx>=1.1.0
244
+ Provides-Extra: dev
245
+ Requires-Dist: build>=1.0.0; extra == "dev"
246
+ Requires-Dist: pytest>=7.0.0; extra == "dev"
247
+ Requires-Dist: pytest-asyncio>=0.21.0; extra == "dev"
248
+ Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
249
+ Requires-Dist: ruff>=0.4.0; extra == "dev"
250
+ Dynamic: license-file
251
+
252
+ # GABRIEL
253
+
254
+ **GABRIEL** (Generalized Attribute Based Ratings Information Extraction Library) turns messy qualitative corpora into analysis-ready datasets with GPT. It handles prompting, batching, retries, checkpointing, and audit trails so you can treat “ask the model” workflows like any other measurement instrument. From rating rhetoric across a million speeches to matching product catalogs, you focus on the research question while GABRIEL handles the operations.
255
+
256
+ 📓 **Tutorial notebook** (start here!): https://colab.research.google.com/drive/1RMUeAWACpViqiUMlPMMwPTKyGU-OX756?usp=sharing — also available as `gabriel_tutorial_notebook.ipynb` in this repo if you’d like to download and run it locally.
257
+
258
+ You can install the GABRIEL Python library with `pip install openai-gabriel` and then `import gabriel`.
259
+
260
+ ## Table of contents
261
+
262
+ - [Why GABRIEL?](#why-gabriel)
263
+ - [What can you do with GABRIEL?](#what-can-you-do-with-gabriel)
264
+ - [Installation](#installation)
265
+ - [Quick start](#quick-start)
266
+ - [Task highlights](#task-highlights)
267
+ - [Detailed usage](#detailed-usage)
268
+ - [Multimodal data and web search](#multimodal-data-and-web-search)
269
+ - [Custom prompts and model routing](#custom-prompts-and-model-routing)
270
+ - [Saving, logging, and resuming](#saving-logging-and-resuming)
271
+ - [Development and testing](#development-and-testing)
272
+ - [Citation](#citation)
273
+
274
+ ## Why GABRIEL?
275
+
276
+ Most of the evidence social scientists and analysts care about lives in unstructured formats: interviews, speeches, transcripts, product photos, archival scans. Modern GPT models can judge attributes, extract facts, and reason about this material with high fidelity, but building robust pipelines is still tedious. GABRIEL provides:
277
+
278
+ - 🧠 **Human-level comprehension on demand** – express the attribute the way you would brief a human coder; GABRIEL packages the prompt, context, and retries for you.
279
+ - 📊 **Quantitative outputs** – ratings (0–100), grounded comparisons, classifications, and structured extractions return as tidy DataFrames with reproducible settings.
280
+ - ⚙️ **Operational tooling** – automatic parallelism (hundreds of concurrent calls), resumable runs, raw response logs, and helper UIs make it safe to scale to very large corpora.
281
+ - 🧰 **Extensibility** – swap instructions with `additional_instructions`, bring your own templates, or drop down to `gabriel.whatever` + custom `response_fn` for bespoke prompts while still reusing the infrastructure.
282
+
283
+ The tutorial notebook walks through these ideas step-by-step—from setting up an API key to running multimodal analyses—so skim this README, then dive into the notebook for the full guided tour.
284
+
285
+ ## What can you do with GABRIEL?
286
+
287
+ ### A) Measure attributes on qualitative data
288
+
289
+ | Function | Purpose & Output Scale | Example Use |
290
+ | --- | --- | --- |
291
+ | `gabriel.rate` | Asks GPT to score each text / image / audio / item on natural language attributes. Output = 0--100 rating. | Measure “populist rhetoric” in a speech; “toxicity” of tweets; “luxury” in ad images. |
292
+ | `gabriel.rank` | Pairwise comparisons between texts yields ELO-like attribute ratings. Output = grounded, relative z scores for each text. | Rank technologies by “bulkiness” or artworks by “fine brushwork”. |
293
+ | `gabriel.classify` | Classifies texts / images / audio / items on whether provided labels apply. Output = one or more classes per item. | Tag news articles, product photos, or interview clips into topical categories. |
294
+ | `gabriel.extract` | Structured fact extraction on each item. Output = string / numeric values. | For each product, provide the “company”, “CEO”, and “year of invention”. |
295
+ | `gabriel.discover` | Discovers natural language features which discriminate two classes of data. | Identify what distinguishes 5 star vs. 1 star reviews or successful vs. failed startups. |
296
+
297
+ ### B) Clean data
298
+
299
+ | Function | Purpose & Output Scale | Example Use |
300
+ | --- | --- | --- |
301
+ | `gabriel.merge` | Creates crosswalks. Output = merged table with GPT-matched identifiers. | Match two distinct job title directories; link patent titles to product names. |
302
+ | `gabriel.deduplicate` | Detects conceptual duplicates. Maps all duplicates to one representative term. | Collapse “F-18”, “Super Hornet Fighter Jet”, “f-18 hornet” into “F-18”. |
303
+ | `gabriel.filter` | High-throughput boolean screening. Outputs items which meet natural language condition. | Subset 18M Wikipedia titles to only technologies. |
304
+ | `gabriel.deidentify` | Replaces PII with realistic, consistent fake PII. Outputs anonymized text + mapping. | Replace names, employers, addresses before sharing interview corpora. |
305
+
306
+ ### C) Helper tools
307
+
308
+ | Function | Purpose & Output Scale | Example Use |
309
+ | --- | --- | --- |
310
+ | `gabriel.codify` | Passage coding: highlights snippets in text that match qualitative codes. | Flag sentences about “economic insecurity” in speeches; “stressors” mentioned in interview. |
311
+ | `gabriel.compare` | Identifies similarities / differences between paired items. Output = list of differences. | Contrast op-eds from different districts; compare two ad campaigns. |
312
+ | `gabriel.bucket` | Builds taxonomies from many terms. Output = bucket/cluster labels. | Group technologies, artworks, or HR complaints into emergent categories. |
313
+ | `gabriel.seed` | Enforces a representative distribution / diversity of seeds. | Initialize unique personas that match US population distribution. |
314
+ | `gabriel.ideate` | Generates many novel scientific theories and filters the cream of the crop. | Procure novel theories on inflation for potential research. |
315
+ | `gabriel.debias` | Post-process measurements to remove inference bias. | Ensure GPT isn't guessing climate opinions in speeches based on general political lean. |
316
+ | `gabriel.load` | Prepares a folder of text / image / audio files into a spreadsheet for use in GABRIEL. | Image directory converted into spreadsheet of file paths. |
317
+ | `gabriel.view` | UI to view sample texts with ratings / passage coding. | Spot-check classify / rating outputs; view coded passages. |
318
+ | `gabriel.paraphrase` | Rewrites texts consistently per instructions. | Summarize earnings call transcripts to remove company specifics. |
319
+ | `gabriel.whatever` | Run any GPT prompts, but leverage GABRIEL's parallelization / checkpointing. | Any set of prompts; slots into any pipeline. |
320
+
321
+ ## Installation
322
+
323
+ ```bash
324
+ pip install gabriel-openai
325
+
326
+ # or install directly from GitHub
327
+ pip install \
328
+ --force-reinstall \
329
+ git+https://github.com/openai/GABRIEL.git@main
330
+ ```
331
+
332
+ Before running real jobs, point the helpers to your GPT endpoint:
333
+
334
+ ```bash
335
+ export OPENAI_API_KEY="sk-..."
336
+ # or os.environ['OPENAI_API_KEY'] = "sk-..." inside a Jupyter notebook
337
+ ```
338
+
339
+ Every task also accepts `use_dummy=True` for offline dry runs (the tutorial uses this to demonstrate workflows without making API calls).
340
+
341
+ ## Quick start
342
+
343
+ The tutorial notebook walks through many complete projects; here’s the minimal rating flow the notebook starts with. Paste this into Colab or a notebook cell so you can use `await` directly:
344
+
345
+ ```python
346
+ import os
347
+ import pandas as pd
348
+
349
+ import gabriel
350
+
351
+ PATH = os.path.expanduser("~/Documents/gabriel_runs")
352
+ toy_data = pd.DataFrame(
353
+ {
354
+ "entity": [
355
+ "turkey",
356
+ "pumpkin pie",
357
+ "green bean casserole",
358
+ "cornbread",
359
+ ]
360
+ }
361
+ )
362
+
363
+ attributes = {
364
+ "savory taste": "How savory the dish is",
365
+ "sweet taste": "Dessert-like sweetness",
366
+ "tangy taste": "Notes of tartness or acidity",
367
+ }
368
+
369
+ rate_results = await gabriel.rate(
370
+ toy_data,
371
+ column_name="entity",
372
+ attributes=attributes,
373
+ save_dir=os.path.join(PATH, "toy_rate"),
374
+ model="gpt-5-mini",
375
+ n_runs=2,
376
+ modality="entity",
377
+ reset_files=True,
378
+ )
379
+ rate_results.head()
380
+ ```
381
+
382
+ The helper returns a `pandas.DataFrame` with one column per attribute and writes raw model responses + configs to `save_dir`. Running the same code in a plain Python script just requires wrapping the coroutine with `asyncio.run(...)`.
383
+
384
+ ## Task highlights
385
+
386
+ The tutorial notebook covers full projects end-to-end. The list below matches its main use cases so you can jump to the right helper quickly.
387
+
388
+ ### Measurement primitives
389
+ - **`gabriel.rate`** – assign 0–100 scores per attribute across text, entities, images, audio, or web-sourced context.
390
+ - **`gabriel.rank`** – pairwise tournaments that surface relative winners with grounded z-scores.
391
+ - **`gabriel.classify`** – single- or multi-label tagging with label definitions and consensus columns.
392
+ - **`gabriel.extract`** – turn passages or multimodal product cards into tidy tables with optional schemas.
393
+ - **`gabriel.discover`** – contrast two labeled corpora to learn discriminating features.
394
+
395
+ ### Qualitative coding and review
396
+ - **`gabriel.codify`** highlights snippets that match qualitative codes and pairs with **`gabriel.view`** for UI-based auditing.
397
+ - **`gabriel.compare`** contrasts paired items (drafts, policies, campaigns) with concise differences/similarities.
398
+ - **`gabriel.bucket`** groups terms/entities into emergent taxonomies that feed back into rate/classify flows.
399
+
400
+ ### Data prep and cleanup
401
+ - **`gabriel.load`** converts folders of media into spreadsheets with clean IDs and file paths.
402
+ - **`gabriel.merge`** / **`gabriel.deduplicate`** produce fuzzy joins and de-duplicated lists using embeddings plus GPT checks.
403
+ - **`gabriel.filter`** screens large candidate lists with natural-language conditions.
404
+ - **`gabriel.deidentify`** replaces PII with realistic stand-ins to protect privacy.
405
+
406
+ ### Ideation and custom prompts
407
+ - **`gabriel.ideate`** and **`gabriel.seed`** generate diverse candidates before deeper measurement.
408
+ - **`gabriel.whatever`** runs bespoke prompts (with optional web search or custom `response_fn`) while reusing retries, logging, and checkpointing.
409
+
410
+ ## Multimodal data and web search
411
+
412
+ Set `modality` to `text`, `entity`, `image`, `audio`, or `web` on any measurement helper. Pair `gabriel.load` with folders of media to build the right DataFrame, and use `web_search=True` when GPT should gather context before rating or extracting. The tutorial’s county-level example shows how to chain web search → rating → mapping in one flow.
413
+
414
+ ## Custom prompts and model routing
415
+
416
+ - Add clarifications with `additional_instructions` (e.g., mandate mutually exclusive labels).
417
+ - Swap in your own Jinja `template_path` while keeping retries and checkpoints.
418
+ - Drop to `gabriel.whatever` for fully custom prompts, attachments, or routing logic.
419
+
420
+ ## Saving, logging, and resuming
421
+
422
+ Each run expands `save_dir` (tilde and environment variables supported), writes structured outputs (`file_name` CSV/Parquet), and saves raw model payloads under `responses/` with metadata for auditability. Leave `reset_files=False` to resume partially completed runs; delete the folder or pass `reset_files=True` to start fresh. `gabriel.view` reads these outputs for quick spot checks, and helpers like `gabriel.utils.mapmaker.MapMaker` can consume the same files for downstream visualization.
423
+
424
+ ## Development and testing
425
+
426
+ Install development extras and run tests:
427
+
428
+ ```bash
429
+ pip install -e .[dev]
430
+ pytest
431
+ ```
432
+
433
+ Tests rely on the built-in dummy responses, so no API key is necessary. Linting and type checks (`ruff`, `mypy`) are included in the dev extras.
434
+
435
+ ## Citation
436
+
437
+ If you use GABRIEL in your research, please cite:
438
+
439
+ > The Generalized Attribute Based Ratings Information Extraction Library (GABRIEL). Hemanth Asirvatham and Elliott Mokski (2026). <https://github.com/openai/GABRIEL>
440
+
441
+ ## License
442
+
443
+ GABRIEL is released under the Apache 2.0 License. See [LICENSE](LICENSE).