openai-agents 0.2.8__py3-none-any.whl → 0.2.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of openai-agents might be problematic. Click here for more details.

agents/_run_impl.py CHANGED
@@ -961,7 +961,10 @@ class RunImpl:
961
961
  context_wrapper: RunContextWrapper[TContext],
962
962
  config: RunConfig,
963
963
  ) -> ToolsToFinalOutputResult:
964
- """Returns (i, final_output)."""
964
+ """Determine if tool results should produce a final output.
965
+ Returns:
966
+ ToolsToFinalOutputResult: Indicates whether final output is ready, and the output value.
967
+ """
965
968
  if not tool_results:
966
969
  return _NOT_FINAL_OUTPUT
967
970
 
agents/agent.py CHANGED
@@ -17,6 +17,11 @@ from .items import ItemHelpers
17
17
  from .logger import logger
18
18
  from .mcp import MCPUtil
19
19
  from .model_settings import ModelSettings
20
+ from .models.default_models import (
21
+ get_default_model_settings,
22
+ gpt_5_reasoning_settings_required,
23
+ is_gpt_5_default,
24
+ )
20
25
  from .models.interface import Model
21
26
  from .prompts import DynamicPromptFunction, Prompt, PromptUtil
22
27
  from .run_context import RunContextWrapper, TContext
@@ -168,10 +173,10 @@ class Agent(AgentBase, Generic[TContext]):
168
173
  """The model implementation to use when invoking the LLM.
169
174
 
170
175
  By default, if not set, the agent will use the default model configured in
171
- `openai_provider.DEFAULT_MODEL` (currently "gpt-4o").
176
+ `agents.models.get_default_model()` (currently "gpt-4.1").
172
177
  """
173
178
 
174
- model_settings: ModelSettings = field(default_factory=ModelSettings)
179
+ model_settings: ModelSettings = field(default_factory=get_default_model_settings)
175
180
  """Configures model-specific tuning parameters (e.g. temperature, top_p).
176
181
  """
177
182
 
@@ -205,8 +210,9 @@ class Agent(AgentBase, Generic[TContext]):
205
210
  This lets you configure how tool use is handled.
206
211
  - "run_llm_again": The default behavior. Tools are run, and then the LLM receives the results
207
212
  and gets to respond.
208
- - "stop_on_first_tool": The output of the first tool call is used as the final output. This
209
- means that the LLM does not process the result of the tool call.
213
+ - "stop_on_first_tool": The output from the first tool call is treated as the final result.
214
+ In other words, it isn’t sent back to the LLM for further processing but is used directly
215
+ as the final output.
210
216
  - A StopAtTools object: The agent will stop running if any of the tools listed in
211
217
  `stop_at_tool_names` is called.
212
218
  The final output will be the output of the first matching tool call.
@@ -285,6 +291,26 @@ class Agent(AgentBase, Generic[TContext]):
285
291
  f"got {type(self.model_settings).__name__}"
286
292
  )
287
293
 
294
+ if (
295
+ # The user sets a non-default model
296
+ self.model is not None
297
+ and (
298
+ # The default model is gpt-5
299
+ is_gpt_5_default() is True
300
+ # However, the specified model is not a gpt-5 model
301
+ and (
302
+ isinstance(self.model, str) is False
303
+ or gpt_5_reasoning_settings_required(self.model) is False # type: ignore
304
+ )
305
+ # The model settings are not customized for the specified model
306
+ and self.model_settings == get_default_model_settings()
307
+ )
308
+ ):
309
+ # In this scenario, we should use a generic model settings
310
+ # because non-gpt-5 models are not compatible with the default gpt-5 model settings.
311
+ # This is a best-effort attempt to make the agent work with non-gpt-5 models.
312
+ self.model_settings = ModelSettings()
313
+
288
314
  if not isinstance(self.input_guardrails, list):
289
315
  raise TypeError(
290
316
  f"Agent input_guardrails must be a list, got {type(self.input_guardrails).__name__}"
@@ -356,6 +382,8 @@ class Agent(AgentBase, Generic[TContext]):
356
382
  tool_name: str | None,
357
383
  tool_description: str | None,
358
384
  custom_output_extractor: Callable[[RunResult], Awaitable[str]] | None = None,
385
+ is_enabled: bool
386
+ | Callable[[RunContextWrapper[Any], AgentBase[Any]], MaybeAwaitable[bool]] = True,
359
387
  ) -> Tool:
360
388
  """Transform this agent into a tool, callable by other agents.
361
389
 
@@ -371,11 +399,15 @@ class Agent(AgentBase, Generic[TContext]):
371
399
  when to use it.
372
400
  custom_output_extractor: A function that extracts the output from the agent. If not
373
401
  provided, the last message from the agent will be used.
402
+ is_enabled: Whether the tool is enabled. Can be a bool or a callable that takes the run
403
+ context and agent and returns whether the tool is enabled. Disabled tools are hidden
404
+ from the LLM at runtime.
374
405
  """
375
406
 
376
407
  @function_tool(
377
408
  name_override=tool_name or _transforms.transform_string_function_style(self.name),
378
409
  description_override=tool_description or "",
410
+ is_enabled=is_enabled,
379
411
  )
380
412
  async def run_agent(context: RunContextWrapper, input: str) -> str:
381
413
  from .run import Runner
@@ -0,0 +1,15 @@
1
+
2
+ """Session memory backends living in the extensions namespace.
3
+
4
+ This package contains optional, production-grade session implementations that
5
+ introduce extra third-party dependencies (database drivers, ORMs, etc.). They
6
+ conform to the :class:`agents.memory.session.Session` protocol so they can be
7
+ used as a drop-in replacement for :class:`agents.memory.session.SQLiteSession`.
8
+ """
9
+ from __future__ import annotations
10
+
11
+ from .sqlalchemy_session import SQLAlchemySession # noqa: F401
12
+
13
+ __all__: list[str] = [
14
+ "SQLAlchemySession",
15
+ ]
@@ -0,0 +1,298 @@
1
+ """SQLAlchemy-powered Session backend.
2
+
3
+ Usage::
4
+
5
+ from agents.extensions.memory import SQLAlchemySession
6
+
7
+ # Create from SQLAlchemy URL (uses asyncpg driver under the hood for Postgres)
8
+ session = SQLAlchemySession.from_url(
9
+ session_id="user-123",
10
+ url="postgresql+asyncpg://app:secret@db.example.com/agents",
11
+ create_tables=True, # If you want to auto-create tables, set to True.
12
+ )
13
+
14
+ # Or pass an existing AsyncEngine that your application already manages
15
+ session = SQLAlchemySession(
16
+ session_id="user-123",
17
+ engine=my_async_engine,
18
+ create_tables=True, # If you want to auto-create tables, set to True.
19
+ )
20
+
21
+ await Runner.run(agent, "Hello", session=session)
22
+ """
23
+
24
+ from __future__ import annotations
25
+
26
+ import asyncio
27
+ import json
28
+ from typing import Any
29
+
30
+ from sqlalchemy import (
31
+ TIMESTAMP,
32
+ Column,
33
+ ForeignKey,
34
+ Index,
35
+ Integer,
36
+ MetaData,
37
+ String,
38
+ Table,
39
+ Text,
40
+ delete,
41
+ insert,
42
+ select,
43
+ text as sql_text,
44
+ update,
45
+ )
46
+ from sqlalchemy.ext.asyncio import AsyncEngine, async_sessionmaker, create_async_engine
47
+
48
+ from ...items import TResponseInputItem
49
+ from ...memory.session import SessionABC
50
+
51
+
52
+ class SQLAlchemySession(SessionABC):
53
+ """SQLAlchemy implementation of :pyclass:`agents.memory.session.Session`."""
54
+
55
+ _metadata: MetaData
56
+ _sessions: Table
57
+ _messages: Table
58
+
59
+ def __init__(
60
+ self,
61
+ session_id: str,
62
+ *,
63
+ engine: AsyncEngine,
64
+ create_tables: bool = False,
65
+ sessions_table: str = "agent_sessions",
66
+ messages_table: str = "agent_messages",
67
+ ): # noqa: D401 – short description on the class-level docstring
68
+ """Create a new session.
69
+
70
+ Parameters
71
+ ----------
72
+ session_id
73
+ Unique identifier for the conversation.
74
+ engine
75
+ A pre-configured SQLAlchemy *async* engine. The engine **must** be
76
+ created with an async driver (``postgresql+asyncpg://``,
77
+ ``mysql+aiomysql://`` or ``sqlite+aiosqlite://``).
78
+ create_tables
79
+ Whether to automatically create the required tables & indexes.
80
+ Defaults to *False* for production use. Set to *True* for development
81
+ and testing when migrations aren't used.
82
+ sessions_table, messages_table
83
+ Override default table names if needed.
84
+ """
85
+ self.session_id = session_id
86
+ self._engine = engine
87
+ self._lock = asyncio.Lock()
88
+
89
+ self._metadata = MetaData()
90
+ self._sessions = Table(
91
+ sessions_table,
92
+ self._metadata,
93
+ Column("session_id", String, primary_key=True),
94
+ Column(
95
+ "created_at",
96
+ TIMESTAMP(timezone=False),
97
+ server_default=sql_text("CURRENT_TIMESTAMP"),
98
+ nullable=False,
99
+ ),
100
+ Column(
101
+ "updated_at",
102
+ TIMESTAMP(timezone=False),
103
+ server_default=sql_text("CURRENT_TIMESTAMP"),
104
+ onupdate=sql_text("CURRENT_TIMESTAMP"),
105
+ nullable=False,
106
+ ),
107
+ )
108
+
109
+ self._messages = Table(
110
+ messages_table,
111
+ self._metadata,
112
+ Column("id", Integer, primary_key=True, autoincrement=True),
113
+ Column(
114
+ "session_id",
115
+ String,
116
+ ForeignKey(f"{sessions_table}.session_id", ondelete="CASCADE"),
117
+ nullable=False,
118
+ ),
119
+ Column("message_data", Text, nullable=False),
120
+ Column(
121
+ "created_at",
122
+ TIMESTAMP(timezone=False),
123
+ server_default=sql_text("CURRENT_TIMESTAMP"),
124
+ nullable=False,
125
+ ),
126
+ Index(
127
+ f"idx_{messages_table}_session_time",
128
+ "session_id",
129
+ "created_at",
130
+ ),
131
+ sqlite_autoincrement=True,
132
+ )
133
+
134
+ # Async session factory
135
+ self._session_factory = async_sessionmaker(
136
+ self._engine, expire_on_commit=False
137
+ )
138
+
139
+ self._create_tables = create_tables
140
+
141
+ # ---------------------------------------------------------------------
142
+ # Convenience constructors
143
+ # ---------------------------------------------------------------------
144
+ @classmethod
145
+ def from_url(
146
+ cls,
147
+ session_id: str,
148
+ *,
149
+ url: str,
150
+ engine_kwargs: dict[str, Any] | None = None,
151
+ **kwargs: Any,
152
+ ) -> SQLAlchemySession:
153
+ """Create a session from a database URL string.
154
+
155
+ Parameters
156
+ ----------
157
+ session_id
158
+ Conversation ID.
159
+ url
160
+ Any SQLAlchemy async URL – e.g. ``"postgresql+asyncpg://user:pass@host/db"``.
161
+ engine_kwargs
162
+ Additional kwargs forwarded to :pyfunc:`sqlalchemy.ext.asyncio.create_async_engine`.
163
+ kwargs
164
+ Forwarded to the main constructor (``create_tables``, custom table names, …).
165
+ """
166
+ engine_kwargs = engine_kwargs or {}
167
+ engine = create_async_engine(url, **engine_kwargs)
168
+ return cls(session_id, engine=engine, **kwargs)
169
+
170
+ async def _serialize_item(self, item: TResponseInputItem) -> str:
171
+ """Serialize an item to JSON string. Can be overridden by subclasses."""
172
+ return json.dumps(item, separators=(",", ":"))
173
+
174
+ async def _deserialize_item(self, item: str) -> TResponseInputItem:
175
+ """Deserialize a JSON string to an item. Can be overridden by subclasses."""
176
+ return json.loads(item) # type: ignore[no-any-return]
177
+
178
+ # ------------------------------------------------------------------
179
+ # Session protocol implementation
180
+ # ------------------------------------------------------------------
181
+ async def _ensure_tables(self) -> None:
182
+ """Ensure tables are created before any database operations."""
183
+ if self._create_tables:
184
+ async with self._engine.begin() as conn:
185
+ await conn.run_sync(self._metadata.create_all)
186
+ self._create_tables = False # Only create once
187
+
188
+ async def get_items(self, limit: int | None = None) -> list[TResponseInputItem]:
189
+ await self._ensure_tables()
190
+ async with self._session_factory() as sess:
191
+ if limit is None:
192
+ stmt = (
193
+ select(self._messages.c.message_data)
194
+ .where(self._messages.c.session_id == self.session_id)
195
+ .order_by(self._messages.c.created_at.asc())
196
+ )
197
+ else:
198
+ stmt = (
199
+ select(self._messages.c.message_data)
200
+ .where(self._messages.c.session_id == self.session_id)
201
+ # Use DESC + LIMIT to get the latest N
202
+ # then reverse later for chronological order.
203
+ .order_by(self._messages.c.created_at.desc())
204
+ .limit(limit)
205
+ )
206
+
207
+ result = await sess.execute(stmt)
208
+ rows: list[str] = [row[0] for row in result.all()]
209
+
210
+ if limit is not None:
211
+ rows.reverse()
212
+
213
+ items: list[TResponseInputItem] = []
214
+ for raw in rows:
215
+ try:
216
+ items.append(await self._deserialize_item(raw))
217
+ except json.JSONDecodeError:
218
+ # Skip corrupted rows
219
+ continue
220
+ return items
221
+
222
+ async def add_items(self, items: list[TResponseInputItem]) -> None:
223
+ if not items:
224
+ return
225
+
226
+ await self._ensure_tables()
227
+ payload = [
228
+ {
229
+ "session_id": self.session_id,
230
+ "message_data": await self._serialize_item(item),
231
+ }
232
+ for item in items
233
+ ]
234
+
235
+ async with self._session_factory() as sess:
236
+ async with sess.begin():
237
+ # Ensure the parent session row exists - use merge for cross-DB compatibility
238
+ # Check if session exists
239
+ existing = await sess.execute(
240
+ select(self._sessions.c.session_id).where(
241
+ self._sessions.c.session_id == self.session_id
242
+ )
243
+ )
244
+ if not existing.scalar_one_or_none():
245
+ # Session doesn't exist, create it
246
+ await sess.execute(
247
+ insert(self._sessions).values({"session_id": self.session_id})
248
+ )
249
+
250
+ # Insert messages in bulk
251
+ await sess.execute(insert(self._messages), payload)
252
+
253
+ # Touch updated_at column
254
+ await sess.execute(
255
+ update(self._sessions)
256
+ .where(self._sessions.c.session_id == self.session_id)
257
+ .values(updated_at=sql_text("CURRENT_TIMESTAMP"))
258
+ )
259
+
260
+ async def pop_item(self) -> TResponseInputItem | None:
261
+ await self._ensure_tables()
262
+ async with self._session_factory() as sess:
263
+ async with sess.begin():
264
+ # Fallback for all dialects - get ID first, then delete
265
+ subq = (
266
+ select(self._messages.c.id)
267
+ .where(self._messages.c.session_id == self.session_id)
268
+ .order_by(self._messages.c.created_at.desc())
269
+ .limit(1)
270
+ )
271
+ res = await sess.execute(subq)
272
+ row_id = res.scalar_one_or_none()
273
+ if row_id is None:
274
+ return None
275
+ # Fetch data before deleting
276
+ res_data = await sess.execute(
277
+ select(self._messages.c.message_data).where(self._messages.c.id == row_id)
278
+ )
279
+ row = res_data.scalar_one_or_none()
280
+ await sess.execute(delete(self._messages).where(self._messages.c.id == row_id))
281
+
282
+ if row is None:
283
+ return None
284
+ try:
285
+ return await self._deserialize_item(row)
286
+ except json.JSONDecodeError:
287
+ return None
288
+
289
+ async def clear_session(self) -> None: # noqa: D401 – imperative mood is fine
290
+ await self._ensure_tables()
291
+ async with self._session_factory() as sess:
292
+ async with sess.begin():
293
+ await sess.execute(
294
+ delete(self._messages).where(self._messages.c.session_id == self.session_id)
295
+ )
296
+ await sess.execute(
297
+ delete(self._sessions).where(self._sessions.c.session_id == self.session_id)
298
+ )
@@ -20,6 +20,7 @@ except ImportError as _e:
20
20
  from openai import NOT_GIVEN, AsyncStream, NotGiven
21
21
  from openai.types.chat import (
22
22
  ChatCompletionChunk,
23
+ ChatCompletionMessageCustomToolCall,
23
24
  ChatCompletionMessageFunctionToolCall,
24
25
  )
25
26
  from openai.types.chat.chat_completion_message import (
@@ -28,7 +29,6 @@ from openai.types.chat.chat_completion_message import (
28
29
  ChatCompletionMessage,
29
30
  )
30
31
  from openai.types.chat.chat_completion_message_function_tool_call import Function
31
- from openai.types.chat.chat_completion_message_tool_call import ChatCompletionMessageToolCall
32
32
  from openai.types.responses import Response
33
33
 
34
34
  from ... import _debug
@@ -366,7 +366,9 @@ class LitellmConverter:
366
366
  if message.role != "assistant":
367
367
  raise ModelBehaviorError(f"Unsupported role: {message.role}")
368
368
 
369
- tool_calls: list[ChatCompletionMessageToolCall] | None = (
369
+ tool_calls: list[
370
+ ChatCompletionMessageFunctionToolCall | ChatCompletionMessageCustomToolCall
371
+ ] | None = (
370
372
  [LitellmConverter.convert_tool_call_to_openai(tool) for tool in message.tool_calls]
371
373
  if message.tool_calls
372
374
  else None
@@ -1,6 +1,8 @@
1
+ from ...models.default_models import get_default_model
1
2
  from ...models.interface import Model, ModelProvider
2
3
  from .litellm_model import LitellmModel
3
4
 
5
+ # This is kept for backward compatiblity but using get_default_model() method is recommended.
4
6
  DEFAULT_MODEL: str = "gpt-4.1"
5
7
 
6
8
 
@@ -18,4 +20,4 @@ class LitellmProvider(ModelProvider):
18
20
  """
19
21
 
20
22
  def get_model(self, model_name: str | None) -> Model:
21
- return LitellmModel(model_name or DEFAULT_MODEL)
23
+ return LitellmModel(model_name or get_default_model())
agents/function_schema.py CHANGED
@@ -291,7 +291,7 @@ def function_schema(
291
291
  # Default factory to empty list
292
292
  fields[name] = (
293
293
  ann,
294
- Field(default_factory=list, description=field_description), # type: ignore
294
+ Field(default_factory=list, description=field_description),
295
295
  )
296
296
 
297
297
  elif param.kind == param.VAR_KEYWORD:
@@ -309,7 +309,7 @@ def function_schema(
309
309
 
310
310
  fields[name] = (
311
311
  ann,
312
- Field(default_factory=dict, description=field_description), # type: ignore
312
+ Field(default_factory=dict, description=field_description),
313
313
  )
314
314
 
315
315
  else:
agents/lifecycle.py CHANGED
@@ -1,8 +1,9 @@
1
- from typing import Any, Generic
1
+ from typing import Any, Generic, Optional
2
2
 
3
3
  from typing_extensions import TypeVar
4
4
 
5
5
  from .agent import Agent, AgentBase
6
+ from .items import ModelResponse, TResponseInputItem
6
7
  from .run_context import RunContextWrapper, TContext
7
8
  from .tool import Tool
8
9
 
@@ -14,6 +15,25 @@ class RunHooksBase(Generic[TContext, TAgent]):
14
15
  override the methods you need.
15
16
  """
16
17
 
18
+ async def on_llm_start(
19
+ self,
20
+ context: RunContextWrapper[TContext],
21
+ agent: Agent[TContext],
22
+ system_prompt: Optional[str],
23
+ input_items: list[TResponseInputItem],
24
+ ) -> None:
25
+ """Called just before invoking the LLM for this agent."""
26
+ pass
27
+
28
+ async def on_llm_end(
29
+ self,
30
+ context: RunContextWrapper[TContext],
31
+ agent: Agent[TContext],
32
+ response: ModelResponse,
33
+ ) -> None:
34
+ """Called immediately after the LLM call returns for this agent."""
35
+ pass
36
+
17
37
  async def on_agent_start(self, context: RunContextWrapper[TContext], agent: TAgent) -> None:
18
38
  """Called before the agent is invoked. Called each time the current agent changes."""
19
39
  pass
@@ -106,6 +126,25 @@ class AgentHooksBase(Generic[TContext, TAgent]):
106
126
  """Called after a tool is invoked."""
107
127
  pass
108
128
 
129
+ async def on_llm_start(
130
+ self,
131
+ context: RunContextWrapper[TContext],
132
+ agent: Agent[TContext],
133
+ system_prompt: Optional[str],
134
+ input_items: list[TResponseInputItem],
135
+ ) -> None:
136
+ """Called immediately before the agent issues an LLM call."""
137
+ pass
138
+
139
+ async def on_llm_end(
140
+ self,
141
+ context: RunContextWrapper[TContext],
142
+ agent: Agent[TContext],
143
+ response: ModelResponse,
144
+ ) -> None:
145
+ """Called immediately after the agent receives the LLM response."""
146
+ pass
147
+
109
148
 
110
149
  RunHooks = RunHooksBase[TContext, Agent]
111
150
  """Run hooks when using `Agent`."""
agents/mcp/server.py CHANGED
@@ -3,10 +3,11 @@ from __future__ import annotations
3
3
  import abc
4
4
  import asyncio
5
5
  import inspect
6
+ from collections.abc import Awaitable
6
7
  from contextlib import AbstractAsyncContextManager, AsyncExitStack
7
8
  from datetime import timedelta
8
9
  from pathlib import Path
9
- from typing import TYPE_CHECKING, Any, Literal, cast
10
+ from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar
10
11
 
11
12
  from anyio.streams.memory import MemoryObjectReceiveStream, MemoryObjectSendStream
12
13
  from mcp import ClientSession, StdioServerParameters, Tool as MCPTool, stdio_client
@@ -19,7 +20,9 @@ from typing_extensions import NotRequired, TypedDict
19
20
  from ..exceptions import UserError
20
21
  from ..logger import logger
21
22
  from ..run_context import RunContextWrapper
22
- from .util import ToolFilter, ToolFilterCallable, ToolFilterContext, ToolFilterStatic
23
+ from .util import ToolFilter, ToolFilterContext, ToolFilterStatic
24
+
25
+ T = TypeVar("T")
23
26
 
24
27
  if TYPE_CHECKING:
25
28
  from ..agent import AgentBase
@@ -98,6 +101,8 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
98
101
  client_session_timeout_seconds: float | None,
99
102
  tool_filter: ToolFilter = None,
100
103
  use_structured_content: bool = False,
104
+ max_retry_attempts: int = 0,
105
+ retry_backoff_seconds_base: float = 1.0,
101
106
  ):
102
107
  """
103
108
  Args:
@@ -115,6 +120,10 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
115
120
  include the structured content in the `tool_result.content`, and using it by
116
121
  default will cause duplicate content. You can set this to True if you know the
117
122
  server will not duplicate the structured content in the `tool_result.content`.
123
+ max_retry_attempts: Number of times to retry failed list_tools/call_tool calls.
124
+ Defaults to no retries.
125
+ retry_backoff_seconds_base: The base delay, in seconds, used for exponential
126
+ backoff between retries.
118
127
  """
119
128
  super().__init__(use_structured_content=use_structured_content)
120
129
  self.session: ClientSession | None = None
@@ -124,6 +133,8 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
124
133
  self.server_initialize_result: InitializeResult | None = None
125
134
 
126
135
  self.client_session_timeout_seconds = client_session_timeout_seconds
136
+ self.max_retry_attempts = max_retry_attempts
137
+ self.retry_backoff_seconds_base = retry_backoff_seconds_base
127
138
 
128
139
  # The cache is always dirty at startup, so that we fetch tools at least once
129
140
  self._cache_dirty = True
@@ -175,10 +186,10 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
175
186
  ) -> list[MCPTool]:
176
187
  """Apply dynamic tool filtering using a callable filter function."""
177
188
 
178
- # Ensure we have a callable filter and cast to help mypy
189
+ # Ensure we have a callable filter
179
190
  if not callable(self.tool_filter):
180
191
  raise ValueError("Tool filter must be callable for dynamic filtering")
181
- tool_filter_func = cast(ToolFilterCallable, self.tool_filter)
192
+ tool_filter_func = self.tool_filter
182
193
 
183
194
  # Create filter context
184
195
  filter_context = ToolFilterContext(
@@ -233,6 +244,18 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
233
244
  """Invalidate the tools cache."""
234
245
  self._cache_dirty = True
235
246
 
247
+ async def _run_with_retries(self, func: Callable[[], Awaitable[T]]) -> T:
248
+ attempts = 0
249
+ while True:
250
+ try:
251
+ return await func()
252
+ except Exception:
253
+ attempts += 1
254
+ if self.max_retry_attempts != -1 and attempts > self.max_retry_attempts:
255
+ raise
256
+ backoff = self.retry_backoff_seconds_base * (2 ** (attempts - 1))
257
+ await asyncio.sleep(backoff)
258
+
236
259
  async def connect(self):
237
260
  """Connect to the server."""
238
261
  try:
@@ -267,15 +290,17 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
267
290
  """List the tools available on the server."""
268
291
  if not self.session:
269
292
  raise UserError("Server not initialized. Make sure you call `connect()` first.")
293
+ session = self.session
294
+ assert session is not None
270
295
 
271
296
  # Return from cache if caching is enabled, we have tools, and the cache is not dirty
272
297
  if self.cache_tools_list and not self._cache_dirty and self._tools_list:
273
298
  tools = self._tools_list
274
299
  else:
275
- # Reset the cache dirty to False
276
- self._cache_dirty = False
277
300
  # Fetch the tools from the server
278
- self._tools_list = (await self.session.list_tools()).tools
301
+ result = await self._run_with_retries(lambda: session.list_tools())
302
+ self._tools_list = result.tools
303
+ self._cache_dirty = False
279
304
  tools = self._tools_list
280
305
 
281
306
  # Filter tools based on tool_filter
@@ -290,8 +315,10 @@ class _MCPServerWithClientSession(MCPServer, abc.ABC):
290
315
  """Invoke a tool on the server."""
291
316
  if not self.session:
292
317
  raise UserError("Server not initialized. Make sure you call `connect()` first.")
318
+ session = self.session
319
+ assert session is not None
293
320
 
294
- return await self.session.call_tool(tool_name, arguments)
321
+ return await self._run_with_retries(lambda: session.call_tool(tool_name, arguments))
295
322
 
296
323
  async def list_prompts(
297
324
  self,
@@ -365,6 +392,8 @@ class MCPServerStdio(_MCPServerWithClientSession):
365
392
  client_session_timeout_seconds: float | None = 5,
366
393
  tool_filter: ToolFilter = None,
367
394
  use_structured_content: bool = False,
395
+ max_retry_attempts: int = 0,
396
+ retry_backoff_seconds_base: float = 1.0,
368
397
  ):
369
398
  """Create a new MCP server based on the stdio transport.
370
399
 
@@ -388,12 +417,18 @@ class MCPServerStdio(_MCPServerWithClientSession):
388
417
  include the structured content in the `tool_result.content`, and using it by
389
418
  default will cause duplicate content. You can set this to True if you know the
390
419
  server will not duplicate the structured content in the `tool_result.content`.
420
+ max_retry_attempts: Number of times to retry failed list_tools/call_tool calls.
421
+ Defaults to no retries.
422
+ retry_backoff_seconds_base: The base delay, in seconds, for exponential
423
+ backoff between retries.
391
424
  """
392
425
  super().__init__(
393
426
  cache_tools_list,
394
427
  client_session_timeout_seconds,
395
428
  tool_filter,
396
429
  use_structured_content,
430
+ max_retry_attempts,
431
+ retry_backoff_seconds_base,
397
432
  )
398
433
 
399
434
  self.params = StdioServerParameters(
@@ -455,6 +490,8 @@ class MCPServerSse(_MCPServerWithClientSession):
455
490
  client_session_timeout_seconds: float | None = 5,
456
491
  tool_filter: ToolFilter = None,
457
492
  use_structured_content: bool = False,
493
+ max_retry_attempts: int = 0,
494
+ retry_backoff_seconds_base: float = 1.0,
458
495
  ):
459
496
  """Create a new MCP server based on the HTTP with SSE transport.
460
497
 
@@ -480,12 +517,18 @@ class MCPServerSse(_MCPServerWithClientSession):
480
517
  include the structured content in the `tool_result.content`, and using it by
481
518
  default will cause duplicate content. You can set this to True if you know the
482
519
  server will not duplicate the structured content in the `tool_result.content`.
520
+ max_retry_attempts: Number of times to retry failed list_tools/call_tool calls.
521
+ Defaults to no retries.
522
+ retry_backoff_seconds_base: The base delay, in seconds, for exponential
523
+ backoff between retries.
483
524
  """
484
525
  super().__init__(
485
526
  cache_tools_list,
486
527
  client_session_timeout_seconds,
487
528
  tool_filter,
488
529
  use_structured_content,
530
+ max_retry_attempts,
531
+ retry_backoff_seconds_base,
489
532
  )
490
533
 
491
534
  self.params = params
@@ -547,6 +590,8 @@ class MCPServerStreamableHttp(_MCPServerWithClientSession):
547
590
  client_session_timeout_seconds: float | None = 5,
548
591
  tool_filter: ToolFilter = None,
549
592
  use_structured_content: bool = False,
593
+ max_retry_attempts: int = 0,
594
+ retry_backoff_seconds_base: float = 1.0,
550
595
  ):
551
596
  """Create a new MCP server based on the Streamable HTTP transport.
552
597
 
@@ -573,12 +618,18 @@ class MCPServerStreamableHttp(_MCPServerWithClientSession):
573
618
  include the structured content in the `tool_result.content`, and using it by
574
619
  default will cause duplicate content. You can set this to True if you know the
575
620
  server will not duplicate the structured content in the `tool_result.content`.
621
+ max_retry_attempts: Number of times to retry failed list_tools/call_tool calls.
622
+ Defaults to no retries.
623
+ retry_backoff_seconds_base: The base delay, in seconds, for exponential
624
+ backoff between retries.
576
625
  """
577
626
  super().__init__(
578
627
  cache_tools_list,
579
628
  client_session_timeout_seconds,
580
629
  tool_filter,
581
630
  use_structured_content,
631
+ max_retry_attempts,
632
+ retry_backoff_seconds_base,
582
633
  )
583
634
 
584
635
  self.params = params
agents/model_settings.py CHANGED
@@ -92,7 +92,10 @@ class ModelSettings:
92
92
  """
93
93
 
94
94
  truncation: Literal["auto", "disabled"] | None = None
95
- """The truncation strategy to use when calling the model."""
95
+ """The truncation strategy to use when calling the model.
96
+ See [Responses API documentation](https://platform.openai.com/docs/api-reference/responses/create#responses_create-truncation)
97
+ for more details.
98
+ """
96
99
 
97
100
  max_tokens: int | None = None
98
101
  """The maximum number of output tokens to generate."""
agents/models/__init__.py CHANGED
@@ -0,0 +1,13 @@
1
+ from .default_models import (
2
+ get_default_model,
3
+ get_default_model_settings,
4
+ gpt_5_reasoning_settings_required,
5
+ is_gpt_5_default,
6
+ )
7
+
8
+ __all__ = [
9
+ "get_default_model",
10
+ "get_default_model_settings",
11
+ "gpt_5_reasoning_settings_required",
12
+ "is_gpt_5_default",
13
+ ]
@@ -271,11 +271,16 @@ class Converter:
271
271
  raise UserError(
272
272
  f"Only file_data is supported for input_file {casted_file_param}"
273
273
  )
274
+ if "filename" not in casted_file_param or not casted_file_param["filename"]:
275
+ raise UserError(
276
+ f"filename must be provided for input_file {casted_file_param}"
277
+ )
274
278
  out.append(
275
279
  File(
276
280
  type="file",
277
281
  file=FileFile(
278
282
  file_data=casted_file_param["file_data"],
283
+ filename=casted_file_param["filename"],
279
284
  ),
280
285
  )
281
286
  )
@@ -0,0 +1,58 @@
1
+ import copy
2
+ import os
3
+ from typing import Optional
4
+
5
+ from openai.types.shared.reasoning import Reasoning
6
+
7
+ from agents.model_settings import ModelSettings
8
+
9
+ OPENAI_DEFAULT_MODEL_ENV_VARIABLE_NAME = "OPENAI_DEFAULT_MODEL"
10
+
11
+ # discourage directly accessing this constant
12
+ # use the get_default_model and get_default_model_settings() functions instead
13
+ _GPT_5_DEFAULT_MODEL_SETTINGS: ModelSettings = ModelSettings(
14
+ # We chose "low" instead of "minimal" because some of the built-in tools
15
+ # (e.g., file search, image generation, etc.) do not support "minimal"
16
+ # If you want to use "minimal" reasoning effort, you can pass your own model settings
17
+ reasoning=Reasoning(effort="low"),
18
+ verbosity="low",
19
+ )
20
+
21
+
22
+ def gpt_5_reasoning_settings_required(model_name: str) -> bool:
23
+ """
24
+ Returns True if the model name is a GPT-5 model and reasoning settings are required.
25
+ """
26
+ if model_name.startswith("gpt-5-chat"):
27
+ # gpt-5-chat-latest does not require reasoning settings
28
+ return False
29
+ # matches any of gpt-5 models
30
+ return model_name.startswith("gpt-5")
31
+
32
+
33
+ def is_gpt_5_default() -> bool:
34
+ """
35
+ Returns True if the default model is a GPT-5 model.
36
+ This is used to determine if the default model settings are compatible with GPT-5 models.
37
+ If the default model is not a GPT-5 model, the model settings are compatible with other models.
38
+ """
39
+ return gpt_5_reasoning_settings_required(get_default_model())
40
+
41
+
42
+ def get_default_model() -> str:
43
+ """
44
+ Returns the default model name.
45
+ """
46
+ return os.getenv(OPENAI_DEFAULT_MODEL_ENV_VARIABLE_NAME, "gpt-4.1").lower()
47
+
48
+
49
+ def get_default_model_settings(model: Optional[str] = None) -> ModelSettings:
50
+ """
51
+ Returns the default model settings.
52
+ If the default model is a GPT-5 model, returns the GPT-5 default model settings.
53
+ Otherwise, returns the legacy default model settings.
54
+ """
55
+ _model = model if model is not None else get_default_model()
56
+ if gpt_5_reasoning_settings_required(_model):
57
+ return copy.deepcopy(_GPT_5_DEFAULT_MODEL_SETTINGS)
58
+ return ModelSettings()
@@ -4,10 +4,12 @@ import httpx
4
4
  from openai import AsyncOpenAI, DefaultAsyncHttpxClient
5
5
 
6
6
  from . import _openai_shared
7
+ from .default_models import get_default_model
7
8
  from .interface import Model, ModelProvider
8
9
  from .openai_chatcompletions import OpenAIChatCompletionsModel
9
10
  from .openai_responses import OpenAIResponsesModel
10
11
 
12
+ # This is kept for backward compatiblity but using get_default_model() method is recommended.
11
13
  DEFAULT_MODEL: str = "gpt-4o"
12
14
 
13
15
 
@@ -80,7 +82,7 @@ class OpenAIProvider(ModelProvider):
80
82
 
81
83
  def get_model(self, model_name: str | None) -> Model:
82
84
  if model_name is None:
83
- model_name = DEFAULT_MODEL
85
+ model_name = get_default_model()
84
86
 
85
87
  client = self._get_client()
86
88
 
agents/realtime/config.py CHANGED
@@ -78,6 +78,9 @@ class RealtimeTurnDetectionConfig(TypedDict):
78
78
  threshold: NotRequired[float]
79
79
  """The threshold for voice activity detection."""
80
80
 
81
+ idle_timeout_ms: NotRequired[int]
82
+ """Threshold for server-vad to trigger a response if the user is idle for this duration."""
83
+
81
84
 
82
85
  class RealtimeSessionModelSettings(TypedDict):
83
86
  """Model settings for a realtime model session."""
agents/realtime/events.py CHANGED
@@ -216,6 +216,16 @@ class RealtimeGuardrailTripped:
216
216
  type: Literal["guardrail_tripped"] = "guardrail_tripped"
217
217
 
218
218
 
219
+ @dataclass
220
+ class RealtimeInputAudioTimeoutTriggered:
221
+ """Called when the model detects a period of inactivity/silence from the user."""
222
+
223
+ info: RealtimeEventInfo
224
+ """Common info for all events, such as the context."""
225
+
226
+ type: Literal["input_audio_timeout_triggered"] = "input_audio_timeout_triggered"
227
+
228
+
219
229
  RealtimeSessionEvent: TypeAlias = Union[
220
230
  RealtimeAgentStartEvent,
221
231
  RealtimeAgentEndEvent,
@@ -230,5 +240,6 @@ RealtimeSessionEvent: TypeAlias = Union[
230
240
  RealtimeHistoryUpdated,
231
241
  RealtimeHistoryAdded,
232
242
  RealtimeGuardrailTripped,
243
+ RealtimeInputAudioTimeoutTriggered,
233
244
  ]
234
245
  """An event emitted by the realtime session."""
@@ -84,6 +84,15 @@ class RealtimeModelInputAudioTranscriptionCompletedEvent:
84
84
 
85
85
  type: Literal["input_audio_transcription_completed"] = "input_audio_transcription_completed"
86
86
 
87
+ @dataclass
88
+ class RealtimeModelInputAudioTimeoutTriggeredEvent:
89
+ """Input audio timeout triggered."""
90
+
91
+ item_id: str
92
+ audio_start_ms: int
93
+ audio_end_ms: int
94
+
95
+ type: Literal["input_audio_timeout_triggered"] = "input_audio_timeout_triggered"
87
96
 
88
97
  @dataclass
89
98
  class RealtimeModelTranscriptDeltaEvent:
@@ -174,6 +183,7 @@ RealtimeModelEvent: TypeAlias = Union[
174
183
  RealtimeModelAudioEvent,
175
184
  RealtimeModelAudioInterruptedEvent,
176
185
  RealtimeModelAudioDoneEvent,
186
+ RealtimeModelInputAudioTimeoutTriggeredEvent,
177
187
  RealtimeModelInputAudioTranscriptionCompletedEvent,
178
188
  RealtimeModelTranscriptDeltaEvent,
179
189
  RealtimeModelItemUpdatedEvent,
@@ -6,7 +6,7 @@ import inspect
6
6
  import json
7
7
  import os
8
8
  from datetime import datetime
9
- from typing import Any, Callable, Literal
9
+ from typing import Annotated, Any, Callable, Literal, Union
10
10
 
11
11
  import pydantic
12
12
  import websockets
@@ -52,7 +52,7 @@ from openai.types.beta.realtime.session_update_event import (
52
52
  SessionTracingTracingConfiguration as OpenAISessionTracingConfiguration,
53
53
  SessionUpdateEvent as OpenAISessionUpdateEvent,
54
54
  )
55
- from pydantic import TypeAdapter
55
+ from pydantic import BaseModel, Field, TypeAdapter
56
56
  from typing_extensions import assert_never
57
57
  from websockets.asyncio.client import ClientConnection
58
58
 
@@ -83,6 +83,7 @@ from .model_events import (
83
83
  RealtimeModelErrorEvent,
84
84
  RealtimeModelEvent,
85
85
  RealtimeModelExceptionEvent,
86
+ RealtimeModelInputAudioTimeoutTriggeredEvent,
86
87
  RealtimeModelInputAudioTranscriptionCompletedEvent,
87
88
  RealtimeModelItemDeletedEvent,
88
89
  RealtimeModelItemUpdatedEvent,
@@ -128,6 +129,22 @@ async def get_api_key(key: str | Callable[[], MaybeAwaitable[str]] | None) -> st
128
129
  return os.getenv("OPENAI_API_KEY")
129
130
 
130
131
 
132
+ class _InputAudioBufferTimeoutTriggeredEvent(BaseModel):
133
+ type: Literal["input_audio_buffer.timeout_triggered"]
134
+ event_id: str
135
+ audio_start_ms: int
136
+ audio_end_ms: int
137
+ item_id: str
138
+
139
+ AllRealtimeServerEvents = Annotated[
140
+ Union[
141
+ OpenAIRealtimeServerEvent,
142
+ _InputAudioBufferTimeoutTriggeredEvent,
143
+ ],
144
+ Field(discriminator="type"),
145
+ ]
146
+
147
+
131
148
  class OpenAIRealtimeWebSocketModel(RealtimeModel):
132
149
  """A model that uses OpenAI's WebSocket API."""
133
150
 
@@ -462,8 +479,8 @@ class OpenAIRealtimeWebSocketModel(RealtimeModel):
462
479
  try:
463
480
  if "previous_item_id" in event and event["previous_item_id"] is None:
464
481
  event["previous_item_id"] = "" # TODO (rm) remove
465
- parsed: OpenAIRealtimeServerEvent = TypeAdapter(
466
- OpenAIRealtimeServerEvent
482
+ parsed: AllRealtimeServerEvents = TypeAdapter(
483
+ AllRealtimeServerEvents
467
484
  ).validate_python(event)
468
485
  except pydantic.ValidationError as e:
469
486
  logger.error(f"Failed to validate server event: {event}", exc_info=True)
@@ -554,6 +571,12 @@ class OpenAIRealtimeWebSocketModel(RealtimeModel):
554
571
  or parsed.type == "response.output_item.done"
555
572
  ):
556
573
  await self._handle_output_item(parsed.item)
574
+ elif parsed.type == "input_audio_buffer.timeout_triggered":
575
+ await self._emit_event(RealtimeModelInputAudioTimeoutTriggeredEvent(
576
+ item_id=parsed.item_id,
577
+ audio_start_ms=parsed.audio_start_ms,
578
+ audio_end_ms=parsed.audio_end_ms,
579
+ ))
557
580
 
558
581
  def _update_created_session(self, session: OpenAISessionObject) -> None:
559
582
  self._created_session = session
@@ -28,6 +28,7 @@ from .events import (
28
28
  RealtimeHandoffEvent,
29
29
  RealtimeHistoryAdded,
30
30
  RealtimeHistoryUpdated,
31
+ RealtimeInputAudioTimeoutTriggered,
31
32
  RealtimeRawModelEvent,
32
33
  RealtimeSessionEvent,
33
34
  RealtimeToolEnd,
@@ -227,6 +228,12 @@ class RealtimeSession(RealtimeModelListener):
227
228
  await self._put_event(
228
229
  RealtimeHistoryUpdated(info=self._event_info, history=self._history)
229
230
  )
231
+ elif event.type == "input_audio_timeout_triggered":
232
+ await self._put_event(
233
+ RealtimeInputAudioTimeoutTriggered(
234
+ info=self._event_info,
235
+ )
236
+ )
230
237
  elif event.type == "transcript_delta":
231
238
  # Accumulate transcript text for guardrail debouncing per item_id
232
239
  item_id = event.item_id
agents/repl.py CHANGED
@@ -8,10 +8,13 @@ from .agent import Agent
8
8
  from .items import TResponseInputItem
9
9
  from .result import RunResultBase
10
10
  from .run import Runner
11
+ from .run_context import TContext
11
12
  from .stream_events import AgentUpdatedStreamEvent, RawResponsesStreamEvent, RunItemStreamEvent
12
13
 
13
14
 
14
- async def run_demo_loop(agent: Agent[Any], *, stream: bool = True) -> None:
15
+ async def run_demo_loop(
16
+ agent: Agent[Any], *, stream: bool = True, context: TContext | None = None
17
+ ) -> None:
15
18
  """Run a simple REPL loop with the given agent.
16
19
 
17
20
  This utility allows quick manual testing and debugging of an agent from the
@@ -21,6 +24,7 @@ async def run_demo_loop(agent: Agent[Any], *, stream: bool = True) -> None:
21
24
  Args:
22
25
  agent: The starting agent to run.
23
26
  stream: Whether to stream the agent output.
27
+ context: Additional context information to pass to the runner.
24
28
  """
25
29
 
26
30
  current_agent = agent
@@ -40,7 +44,7 @@ async def run_demo_loop(agent: Agent[Any], *, stream: bool = True) -> None:
40
44
 
41
45
  result: RunResultBase
42
46
  if stream:
43
- result = Runner.run_streamed(current_agent, input=input_items)
47
+ result = Runner.run_streamed(current_agent, input=input_items, context=context)
44
48
  async for event in result.stream_events():
45
49
  if isinstance(event, RawResponsesStreamEvent):
46
50
  if isinstance(event.data, ResponseTextDeltaEvent):
@@ -54,7 +58,7 @@ async def run_demo_loop(agent: Agent[Any], *, stream: bool = True) -> None:
54
58
  print(f"\n[Agent updated: {event.new_agent.name}]", flush=True)
55
59
  print()
56
60
  else:
57
- result = await Runner.run(current_agent, input_items)
61
+ result = await Runner.run(current_agent, input_items, context=context)
58
62
  if result.final_output is not None:
59
63
  print(result.final_output)
60
64
 
agents/run.py CHANGED
@@ -935,6 +935,7 @@ class AgentRunner:
935
935
  input = ItemHelpers.input_to_new_input_list(streamed_result.input)
936
936
  input.extend([item.to_input_item() for item in streamed_result.new_items])
937
937
 
938
+ # THIS IS THE RESOLVED CONFLICT BLOCK
938
939
  filtered = await cls._maybe_filter_model_input(
939
940
  agent=agent,
940
941
  run_config=run_config,
@@ -943,6 +944,12 @@ class AgentRunner:
943
944
  system_instructions=system_prompt,
944
945
  )
945
946
 
947
+ # Call hook just before the model is invoked, with the correct system_prompt.
948
+ if agent.hooks:
949
+ await agent.hooks.on_llm_start(
950
+ context_wrapper, agent, filtered.instructions, filtered.input
951
+ )
952
+
946
953
  # 1. Stream the output events
947
954
  async for event in model.stream_response(
948
955
  filtered.instructions,
@@ -979,6 +986,10 @@ class AgentRunner:
979
986
 
980
987
  streamed_result._event_queue.put_nowait(RawResponsesStreamEvent(data=event))
981
988
 
989
+ # Call hook just after the model response is finalized.
990
+ if agent.hooks and final_response is not None:
991
+ await agent.hooks.on_llm_end(context_wrapper, agent, final_response)
992
+
982
993
  # 2. At this point, the streaming is complete for this turn of the agent loop.
983
994
  if not final_response:
984
995
  raise ModelBehaviorError("Model did not produce a final response!")
@@ -1252,6 +1263,14 @@ class AgentRunner:
1252
1263
  model = cls._get_model(agent, run_config)
1253
1264
  model_settings = agent.model_settings.resolve(run_config.model_settings)
1254
1265
  model_settings = RunImpl.maybe_reset_tool_choice(agent, tool_use_tracker, model_settings)
1266
+ # If the agent has hooks, we need to call them before and after the LLM call
1267
+ if agent.hooks:
1268
+ await agent.hooks.on_llm_start(
1269
+ context_wrapper,
1270
+ agent,
1271
+ filtered.instructions, # Use filtered instructions
1272
+ filtered.input, # Use filtered input
1273
+ )
1255
1274
 
1256
1275
  new_response = await model.get_response(
1257
1276
  system_instructions=filtered.instructions,
@@ -1266,6 +1285,9 @@ class AgentRunner:
1266
1285
  previous_response_id=previous_response_id,
1267
1286
  prompt=prompt_config,
1268
1287
  )
1288
+ # If the agent has hooks, we need to call them after the LLM call
1289
+ if agent.hooks:
1290
+ await agent.hooks.on_llm_end(context_wrapper, agent, new_response)
1269
1291
 
1270
1292
  context_wrapper.usage.add(new_response.usage)
1271
1293
 
agents/tool.py CHANGED
@@ -264,7 +264,11 @@ LocalShellExecutor = Callable[[LocalShellCommandRequest], MaybeAwaitable[str]]
264
264
 
265
265
  @dataclass
266
266
  class LocalShellTool:
267
- """A tool that allows the LLM to execute commands on a shell."""
267
+ """A tool that allows the LLM to execute commands on a shell.
268
+
269
+ For more details, see:
270
+ https://platform.openai.com/docs/guides/tools-local-shell
271
+ """
268
272
 
269
273
  executor: LocalShellExecutor
270
274
  """A function that executes a command on a shell."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: openai-agents
3
- Version: 0.2.8
3
+ Version: 0.2.9
4
4
  Summary: OpenAI Agents SDK
5
5
  Project-URL: Homepage, https://openai.github.io/openai-agents-python/
6
6
  Project-URL: Repository, https://github.com/openai/openai-agents-python
@@ -30,6 +30,9 @@ Provides-Extra: litellm
30
30
  Requires-Dist: litellm<2,>=1.67.4.post1; extra == 'litellm'
31
31
  Provides-Extra: realtime
32
32
  Requires-Dist: websockets<16,>=15.0; extra == 'realtime'
33
+ Provides-Extra: sqlalchemy
34
+ Requires-Dist: asyncpg>=0.29.0; extra == 'sqlalchemy'
35
+ Requires-Dist: sqlalchemy>=2.0; extra == 'sqlalchemy'
33
36
  Provides-Extra: viz
34
37
  Requires-Dist: graphviz>=0.17; extra == 'viz'
35
38
  Provides-Extra: voice
@@ -58,29 +61,28 @@ Explore the [examples](examples) directory to see the SDK in action, and read ou
58
61
 
59
62
  ## Get started
60
63
 
61
- 1. Set up your Python environment
64
+ To get started, set up your Python environment (Python 3.9 or newer required), and then install OpenAI Agents SDK package.
62
65
 
63
- - Option A: Using venv (traditional method)
66
+ ### venv
64
67
 
65
68
  ```bash
66
- python -m venv env
67
- source env/bin/activate # On Windows: env\Scripts\activate
69
+ python -m venv .venv
70
+ source .venv/bin/activate # On Windows: .venv\Scripts\activate
71
+ pip install openai-agents
68
72
  ```
69
73
 
70
- - Option B: Using uv (recommended)
74
+ For voice support, install with the optional `voice` group: `pip install 'openai-agents[voice]'`.
71
75
 
72
- ```bash
73
- uv venv
74
- source .venv/bin/activate # On Windows: .venv\Scripts\activate
75
- ```
76
+ ### uv
76
77
 
77
- 2. Install Agents SDK
78
+ If you're familiar with [uv](https://docs.astral.sh/uv/), using the tool would be even similar:
78
79
 
79
80
  ```bash
80
- pip install openai-agents
81
+ uv init
82
+ uv add openai-agents
81
83
  ```
82
84
 
83
- For voice support, install with the optional `voice` group: `pip install 'openai-agents[voice]'`.
85
+ For voice support, install with the optional `voice` group: `uv add 'openai-agents[voice]'`.
84
86
 
85
87
  ## Hello world example
86
88
 
@@ -1,27 +1,27 @@
1
1
  agents/__init__.py,sha256=YXcfllpLrUjafU_5KwIZvVEdUzcjZYhatqCS5tb03UQ,7908
2
2
  agents/_config.py,sha256=ANrM7GP2VSQehDkMc9qocxkUlPwqU-i5sieMJyEwxpM,796
3
3
  agents/_debug.py,sha256=7OKys2lDjeCtGggTkM53m_8vw0WIr3yt-_JPBDAnsw0,608
4
- agents/_run_impl.py,sha256=8Bc8YIHzv8Qf40tUAcHV5qqUkGSUxSraNkV0Y5xLFFQ,44894
5
- agents/agent.py,sha256=jn_nV38eVLK3QYh7dUmKO1AocQOCCPaHEERaSVt0l8g,17574
4
+ agents/_run_impl.py,sha256=bd3zWFgNlOye92SQSNrB1OZCvgOkabnup7SEYuayijE,45051
5
+ agents/agent.py,sha256=IINVHZyO5iFTN3rf94YB9Hv3hUIOouVUFt9cagSJwvQ,19120
6
6
  agents/agent_output.py,sha256=teTFK8unUN3esXhmEBO0bQGYQm1Axd5rYleDt9TFDgw,7153
7
7
  agents/computer.py,sha256=XD44UgiUWSfniv-xKwwDP6wFKVwBiZkpaL1hO-0-7ZA,2516
8
8
  agents/exceptions.py,sha256=NHMdHE0cZ6AdA6UgUylTzVHAX05Ol1CkO814a0FdZcs,2862
9
- agents/function_schema.py,sha256=yZ3PEOmfy836Me_W4QlItMeFq2j4BtpuI2FmQswbIcQ,13590
9
+ agents/function_schema.py,sha256=jXdpjl90lODRzdoOR_kUmEbfA3T8Dfa7kkSV8xWQDDo,13558
10
10
  agents/guardrail.py,sha256=7P-kd9rKPhgB8rtI31MCV5ho4ZrEaNCQxHvE8IK3EOk,9582
11
11
  agents/handoffs.py,sha256=31-rQ-iMWlWNd93ivgTTSMGkqlariXrNfWI_udMWt7s,11409
12
12
  agents/items.py,sha256=aHo7KTXZLBcHSrKHWDaBB6L7XmBCAIekG5e0xOIhkyM,9828
13
- agents/lifecycle.py,sha256=sJwESHBHbml7rSYH360-P6x1bLyENcQWm4bT4rQcbuo,3129
13
+ agents/lifecycle.py,sha256=hGsqzumOSaal6oAjTqTfvBXl-ShAOkC42sthJigB5Fg,4308
14
14
  agents/logger.py,sha256=p_ef7vWKpBev5FFybPJjhrCCQizK08Yy1A2EDO1SNNg,60
15
- agents/model_settings.py,sha256=7zGEGxfXtRHlst9qYngYJc5mkr2l_mi5YuQDGiQ-qXM,6485
15
+ agents/model_settings.py,sha256=rqoIZe_sGm6_0hCCZlsVE29qln8yOmZr0dkpiV_cEpQ,6643
16
16
  agents/prompts.py,sha256=Ss5y_7s2HFcRAOAKu4WTxQszs5ybI8TfbxgEYdnj9sg,2231
17
17
  agents/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
18
- agents/repl.py,sha256=FKZlkGfw6QxItTkjFkCAQwXuV_pn69DIamGd3PiKQFk,2361
18
+ agents/repl.py,sha256=NX0BE5YDnmGQ2rdQsmLm3CKkQZ5m4GC95xXmUsAXJVs,2539
19
19
  agents/result.py,sha256=YCGYHoc5X1_vLKu5QiK6F8C1ZXI3tTfLXaZoqbYgUMA,10753
20
- agents/run.py,sha256=lPp-nZWKA0gg0E2ace94zwFo-FmQK7Fj_cXcrvAoFlQ,55978
20
+ agents/run.py,sha256=Q8nu906IwmgIUpMbxCXnAGYeFDbw1KspSh9a74PJGGc,56994
21
21
  agents/run_context.py,sha256=vuSUQM8O4CLensQY27-22fOqECnw7yvwL9U3WO8b_bk,851
22
22
  agents/stream_events.py,sha256=VFyTu-DT3ZMnHLtMbg-X_lxec0doQxNfx-hVxLB0BpI,1700
23
23
  agents/strict_schema.py,sha256=_KuEJkglmq-Fj3HSeYP4WqTvqrxbSKu6gezfz5Brhh0,5775
24
- agents/tool.py,sha256=CWjwssw4TSnvvQaxo42mUkA2Y5sZzM_h3QTq8zJwIRs,16750
24
+ agents/tool.py,sha256=poPA6wvHMpcbDW5VwXCbVLDDz5-6-c5ahDxb8xXMync,16845
25
25
  agents/tool_context.py,sha256=lbnctijZeanXAThddkklF7vDrXK1Ie2_wx6JZPCOihI,1434
26
26
  agents/usage.py,sha256=Tb5udGd3DPgD0JBdRD8fDctTE4M-zKML5uRn8ZG1yBc,1675
27
27
  agents/version.py,sha256=_1knUwzSK-HUeZTpRUkk6Z-CIcurqXuEplbV5TLJ08E,230
@@ -29,40 +29,43 @@ agents/extensions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
29
29
  agents/extensions/handoff_filters.py,sha256=Bzkjb1SmIHoibgO26oesNO2Qdx2avfDGkHrSTb-XAr0,2029
30
30
  agents/extensions/handoff_prompt.py,sha256=oGWN0uNh3Z1L7E-Ev2up8W084fFrDNOsLDy7P6bcmic,1006
31
31
  agents/extensions/visualization.py,sha256=sf9D_C-HMwkbWdZccTZvvMPRy_NSiwbm48tRJlESQBI,5144
32
+ agents/extensions/memory/__init__.py,sha256=Yionp3G3pj53zenHPZUHhR9aIDVEpu0d_PcvdytBRes,534
33
+ agents/extensions/memory/sqlalchemy_session.py,sha256=EkzgCiagfWpjrFbzZCaJC50DUN3RLteT85YueNt6KY8,10711
32
34
  agents/extensions/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- agents/extensions/models/litellm_model.py,sha256=4m6MVYaa-pJzXuBNRZGv0vw2R73R32B0EAZ1kXanVVw,15692
34
- agents/extensions/models/litellm_provider.py,sha256=wTm00Anq8YoNb9AnyT0JOunDG-HCDm_98ORNy7aNJdw,928
35
+ agents/extensions/models/litellm_model.py,sha256=PF2xnWQRAaTVE38Q2TSFva17pz3McfUE_sZISeREHDw,15707
36
+ agents/extensions/models/litellm_provider.py,sha256=ZHgh1nMoEvA7NpawkzLh3JDuDFtwXUV94Rs7UrwWqAk,1083
35
37
  agents/mcp/__init__.py,sha256=yHmmYlrmEHzUas1inRLKL2iPqbb_-107G3gKe_tyg4I,750
36
- agents/mcp/server.py,sha256=mTXQL4om5oA2fYevk63SUlwDri-RcUleUH_4hFrA0QM,24266
38
+ agents/mcp/server.py,sha256=4T58xiWCLiCm6JoUy_3jYWz5A8ZNsHiV1hIxjahoedU,26624
37
39
  agents/mcp/util.py,sha256=YVdPst1wWkTwbeshs-FYbr_MtrYJwO_4NzhSwj5aE5c,8239
38
40
  agents/memory/__init__.py,sha256=bo2Rb3PqwSCo9PhBVVJOjvjMM1TfytuDPAFEDADYwwA,84
39
41
  agents/memory/session.py,sha256=9RQ1I7qGh_9DzsyUd9srSPrxRBlw7jks-67NxYqKvvs,13060
40
- agents/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
+ agents/models/__init__.py,sha256=E0XVqWayVAsFqxucDLBW30siaqfNQsVrAnfidG_C3ok,287
41
43
  agents/models/_openai_shared.py,sha256=4Ngwo2Fv2RXY61Pqck1cYPkSln2tDnb8Ai-ao4QG-iE,836
42
- agents/models/chatcmpl_converter.py,sha256=fdA-4_O7GabTCFZJOrtI6TdxFvjS4Bn4vf2RwVC9yNA,20012
44
+ agents/models/chatcmpl_converter.py,sha256=fZHui5V0KwTr27L_Io-4iQxPXr0ZoEMOv1_kJNxW-y8,20320
43
45
  agents/models/chatcmpl_helpers.py,sha256=eIWySobaH7I0AQijAz5i-_rtsXrSvmEHD567s_8Zw1o,1318
44
46
  agents/models/chatcmpl_stream_handler.py,sha256=XUoMnNEcSqK6IRMI6GPH8CwMCXi6NhbfHfpCY3SXJOM,24124
47
+ agents/models/default_models.py,sha256=mlvBePn8H4UkHo7lN-wh7A3k2ciLgBUFKpROQxzdTfs,2098
45
48
  agents/models/fake_id.py,sha256=lbXjUUSMeAQ8eFx4V5QLUnBClHE6adJlYYav55RlG5w,268
46
49
  agents/models/interface.py,sha256=TpY_GEk3LLMozCcYAEcC-Y_VRpI3pwE7A7ZM317mk7M,3839
47
50
  agents/models/multi_provider.py,sha256=aiDbls5G4YomPfN6qH1pGlj41WS5jlDp2T82zm6qcnM,5578
48
51
  agents/models/openai_chatcompletions.py,sha256=lJJZCdWiZ0jTUp77OD1Zs6tSLZ7k8v1j_D2gB2Nw12Y,13179
49
- agents/models/openai_provider.py,sha256=NMxTNaoTa329GrA7jj51LC02pb_e2eFh-PCvWADJrkY,3478
52
+ agents/models/openai_provider.py,sha256=vBu3mlgDBrI_cZVVmfnWBHoPlJlsmld3lfdX8sNQQAM,3624
50
53
  agents/models/openai_responses.py,sha256=BnlN9hH6J4LKWBuM0lDfhvRgAb8IjQJuk5Hfd3OJ8G0,17330
51
54
  agents/realtime/README.md,sha256=5YCYXH5ULmlWoWo1PE9TlbHjeYgjnp-xY8ZssSFY2Vk,126
52
55
  agents/realtime/__init__.py,sha256=7qvzK8QJuHRnPHxDgDj21v8-lnSN4Uurg9znwJv_Tqg,4923
53
56
  agents/realtime/_default_tracker.py,sha256=4OMxBvD1MnZmMn6JZYKL42uWhVzvK6NdDLDfPP54d78,1765
54
57
  agents/realtime/_util.py,sha256=uawurhWKi3_twNFcZ5Yn1mVvv0RKl4IoyCSag8hGxrE,313
55
58
  agents/realtime/agent.py,sha256=yZDgycnLFtJcfl7UHak5GEyL2vdBGxegfqEiuuzGPEk,4027
56
- agents/realtime/config.py,sha256=FMLT2BdxjOCHmBnvd35sZk68U4jEXypngMRAPkm-irk,5828
57
- agents/realtime/events.py,sha256=YnyXmkc2rkIAcCDoW5yxylMYeXeaq_QTlyRR5u5VsaM,5534
59
+ agents/realtime/config.py,sha256=49ZsKY9ySBFRfiL3RGWW1aVNhahzmoNATb3Buj2npJk,5963
60
+ agents/realtime/events.py,sha256=eANiNNyYlp_1Ybdl-MOwXRVTDtrK9hfgn6iw0xNxnaY,5889
58
61
  agents/realtime/handoffs.py,sha256=avLFix5kEutel57IRcddssGiVHzGptOzWL9OqPaLVh8,6702
59
62
  agents/realtime/items.py,sha256=psT6AH65qmngmPsgwk6CXacVo5tEDYq0Za3EitHFpTA,5052
60
63
  agents/realtime/model.py,sha256=RJBA8-Dkd2JTqGzbKacoX4dN_qTWn_p7npL73To3ymw,6143
61
- agents/realtime/model_events.py,sha256=X7UrUU_g4u5gWaf2mUesJJ-Ik1Z1QE0Z-ZP7kDmX1t0,4034
64
+ agents/realtime/model_events.py,sha256=YixBKmzlCrhtzCosj0SysyZpyHbZ90455gDr4Kr7Ey8,4338
62
65
  agents/realtime/model_inputs.py,sha256=OW2bn3wD5_pXLunDUf35jhG2q_bTKbC_D7Qu-83aOEA,2243
63
- agents/realtime/openai_realtime.py,sha256=20yHhG-KAGeXY0M0ucty0wpRqXSUVLvoL5cs663NGrI,30201
66
+ agents/realtime/openai_realtime.py,sha256=zwbyy3dkP4jmacQE-kVjFVbRWzWAHQEnf5VqQt7BZc0,30963
64
67
  agents/realtime/runner.py,sha256=KfU7utmc9QFH2htIKN2IN9H-5EnB0qN9ezmvlRTnOm4,2511
65
- agents/realtime/session.py,sha256=aGifsl_4LYGZBwXneaOo-H_46fdQs-CAtQD6DmJY2Uo,26560
68
+ agents/realtime/session.py,sha256=hPIxQSsVh5whkgYnEpxk_AgvG3suuDVnpPyqVoPJBRM,26822
66
69
  agents/tracing/__init__.py,sha256=5HO_6na5S6EwICgwl50OMtxiIIosUrqalhvldlYvSVc,2991
67
70
  agents/tracing/create.py,sha256=xpJ4ZRnGyUDPKoVVkA_8hmdhtwOKGhSkwRco2AQIhAo,18003
68
71
  agents/tracing/logger.py,sha256=J4KUDRSGa7x5UVfUwWe-gbKwoaq8AeETRqkPt3QvtGg,68
@@ -97,7 +100,7 @@ agents/voice/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
97
100
  agents/voice/models/openai_model_provider.py,sha256=Khn0uT-VhsEbe7_OhBMGFQzXNwL80gcWZyTHl3CaBII,3587
98
101
  agents/voice/models/openai_stt.py,sha256=LcVDS7f1pmbm--PWX-IaV9uLg9uv5_L3vSCbVnTJeGs,16864
99
102
  agents/voice/models/openai_tts.py,sha256=4KoLQuFDHKu5a1VTJlu9Nj3MHwMlrn9wfT_liJDJ2dw,1477
100
- openai_agents-0.2.8.dist-info/METADATA,sha256=MqNemwQZlvUlnyqVHU1Bxor4liYOsBa4VcE_UJllEas,12104
101
- openai_agents-0.2.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
102
- openai_agents-0.2.8.dist-info/licenses/LICENSE,sha256=E994EspT7Krhy0qGiES7WYNzBHrh1YDk3r--8d1baRU,1063
103
- openai_agents-0.2.8.dist-info/RECORD,,
103
+ openai_agents-0.2.9.dist-info/METADATA,sha256=oooDN4gwI_UfIxMfr9-uW4KPGpWhyazoNStz43iBD3Y,12379
104
+ openai_agents-0.2.9.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
105
+ openai_agents-0.2.9.dist-info/licenses/LICENSE,sha256=E994EspT7Krhy0qGiES7WYNzBHrh1YDk3r--8d1baRU,1063
106
+ openai_agents-0.2.9.dist-info/RECORD,,