open-space-toolkit-astrodynamics 17.2.0__py312-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- open_space_toolkit_astrodynamics-17.2.0.dist-info/METADATA +30 -0
- open_space_toolkit_astrodynamics-17.2.0.dist-info/RECORD +151 -0
- open_space_toolkit_astrodynamics-17.2.0.dist-info/WHEEL +5 -0
- open_space_toolkit_astrodynamics-17.2.0.dist-info/top_level.txt +1 -0
- open_space_toolkit_astrodynamics-17.2.0.dist-info/zip-safe +1 -0
- ostk/__init__.py +1 -0
- ostk/astrodynamics/OpenSpaceToolkitAstrodynamicsPy.cpython-312-x86_64-linux-gnu.so +0 -0
- ostk/astrodynamics/__init__.py +11 -0
- ostk/astrodynamics/__init__.pyi +720 -0
- ostk/astrodynamics/access.pyi +577 -0
- ostk/astrodynamics/conjunction/__init__.pyi +121 -0
- ostk/astrodynamics/conjunction/close_approach.pyi +89 -0
- ostk/astrodynamics/conjunction/message/__init__.pyi +3 -0
- ostk/astrodynamics/conjunction/message/ccsds.pyi +705 -0
- ostk/astrodynamics/converters.py +130 -0
- ostk/astrodynamics/converters.pyi +58 -0
- ostk/astrodynamics/data/__init__.pyi +3 -0
- ostk/astrodynamics/data/provider.pyi +22 -0
- ostk/astrodynamics/dataframe.py +597 -0
- ostk/astrodynamics/display.py +281 -0
- ostk/astrodynamics/dynamics.pyi +311 -0
- ostk/astrodynamics/eclipse.pyi +70 -0
- ostk/astrodynamics/estimator.pyi +268 -0
- ostk/astrodynamics/event_condition.pyi +910 -0
- ostk/astrodynamics/flight/__init__.pyi +626 -0
- ostk/astrodynamics/flight/profile/__init__.pyi +99 -0
- ostk/astrodynamics/flight/profile/model.pyi +179 -0
- ostk/astrodynamics/flight/system.pyi +268 -0
- ostk/astrodynamics/guidance_law.pyi +416 -0
- ostk/astrodynamics/libopen-space-toolkit-astrodynamics.so.17 +0 -0
- ostk/astrodynamics/pytrajectory/__init__.py +1 -0
- ostk/astrodynamics/pytrajectory/__init__.pyi +3 -0
- ostk/astrodynamics/pytrajectory/pystate.py +263 -0
- ostk/astrodynamics/pytrajectory/pystate.pyi +66 -0
- ostk/astrodynamics/solver.pyi +432 -0
- ostk/astrodynamics/test/__init__.py +1 -0
- ostk/astrodynamics/test/access/__init__.py +1 -0
- ostk/astrodynamics/test/access/test_generator.py +319 -0
- ostk/astrodynamics/test/access/test_visibility_criterion.py +201 -0
- ostk/astrodynamics/test/conftest.py +119 -0
- ostk/astrodynamics/test/conjunction/close_approach/__init__.py +0 -0
- ostk/astrodynamics/test/conjunction/close_approach/test_generator.py +228 -0
- ostk/astrodynamics/test/conjunction/message/ccsds/__init__.py +1 -0
- ostk/astrodynamics/test/conjunction/message/ccsds/conftest.py +325 -0
- ostk/astrodynamics/test/conjunction/message/ccsds/data/cdm.json +303 -0
- ostk/astrodynamics/test/conjunction/message/ccsds/test_cdm.py +416 -0
- ostk/astrodynamics/test/conjunction/test_close_approach.py +244 -0
- ostk/astrodynamics/test/data/provider/test_off_nadir.py +58 -0
- ostk/astrodynamics/test/dynamics/__init__.py +1 -0
- ostk/astrodynamics/test/dynamics/data/Tabulated_Earth_Gravity.csv +565 -0
- ostk/astrodynamics/test/dynamics/data/Tabulated_Earth_Gravity_Truth.csv +100 -0
- ostk/astrodynamics/test/dynamics/test_atmospheric_drag.py +128 -0
- ostk/astrodynamics/test/dynamics/test_central_body_gravity.py +58 -0
- ostk/astrodynamics/test/dynamics/test_dynamics.py +50 -0
- ostk/astrodynamics/test/dynamics/test_position_derivative.py +51 -0
- ostk/astrodynamics/test/dynamics/test_tabulated.py +138 -0
- ostk/astrodynamics/test/dynamics/test_third_body_gravity.py +67 -0
- ostk/astrodynamics/test/dynamics/test_thruster.py +157 -0
- ostk/astrodynamics/test/eclipse/__init__.py +1 -0
- ostk/astrodynamics/test/eclipse/test_generator.py +138 -0
- ostk/astrodynamics/test/estimator/test_orbit_determination_solver.py +261 -0
- ostk/astrodynamics/test/estimator/test_tle_solver.py +216 -0
- ostk/astrodynamics/test/event_condition/test_angular_condition.py +113 -0
- ostk/astrodynamics/test/event_condition/test_boolean_condition.py +55 -0
- ostk/astrodynamics/test/event_condition/test_brouwer_lyddane_mean_long_condition.py +135 -0
- ostk/astrodynamics/test/event_condition/test_coe_condition.py +135 -0
- ostk/astrodynamics/test/event_condition/test_instant_condition.py +48 -0
- ostk/astrodynamics/test/event_condition/test_logical_condition.py +120 -0
- ostk/astrodynamics/test/event_condition/test_real_condition.py +50 -0
- ostk/astrodynamics/test/flight/__init__.py +1 -0
- ostk/astrodynamics/test/flight/profile/model/test_tabulated_profile.py +115 -0
- ostk/astrodynamics/test/flight/system/__init__.py +1 -0
- ostk/astrodynamics/test/flight/system/test_propulsion_system.py +64 -0
- ostk/astrodynamics/test/flight/system/test_satellite_system.py +83 -0
- ostk/astrodynamics/test/flight/system/test_satellite_system_builder.py +71 -0
- ostk/astrodynamics/test/flight/test_maneuver.py +231 -0
- ostk/astrodynamics/test/flight/test_profile.py +293 -0
- ostk/astrodynamics/test/flight/test_system.py +45 -0
- ostk/astrodynamics/test/guidance_law/test_constant_thrust.py +177 -0
- ostk/astrodynamics/test/guidance_law/test_guidance_law.py +60 -0
- ostk/astrodynamics/test/guidance_law/test_heterogeneous_guidance_law.py +164 -0
- ostk/astrodynamics/test/guidance_law/test_qlaw.py +209 -0
- ostk/astrodynamics/test/solvers/__init__.py +1 -0
- ostk/astrodynamics/test/solvers/test_finite_difference_solver.py +196 -0
- ostk/astrodynamics/test/solvers/test_least_squares_solver.py +334 -0
- ostk/astrodynamics/test/solvers/test_temporal_condition_solver.py +161 -0
- ostk/astrodynamics/test/test_access.py +128 -0
- ostk/astrodynamics/test/test_converters.py +290 -0
- ostk/astrodynamics/test/test_dataframe.py +1355 -0
- ostk/astrodynamics/test/test_display.py +184 -0
- ostk/astrodynamics/test/test_event_condition.py +80 -0
- ostk/astrodynamics/test/test_import.py +26 -0
- ostk/astrodynamics/test/test_root_solver.py +70 -0
- ostk/astrodynamics/test/test_trajectory.py +126 -0
- ostk/astrodynamics/test/test_utilities.py +338 -0
- ostk/astrodynamics/test/test_viewer.py +318 -0
- ostk/astrodynamics/test/trajectory/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/model/test_nadir_trajectory.py +87 -0
- ostk/astrodynamics/test/trajectory/model/test_tabulated_trajectory.py +303 -0
- ostk/astrodynamics/test/trajectory/model/test_target_scan_trajectory.py +126 -0
- ostk/astrodynamics/test/trajectory/orbit/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/message/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/message/spacex/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/message/spacex/conftest.py +18 -0
- ostk/astrodynamics/test/trajectory/orbit/message/spacex/data/opm_1.yaml +44 -0
- ostk/astrodynamics/test/trajectory/orbit/message/spacex/test_opm.py +108 -0
- ostk/astrodynamics/test/trajectory/orbit/models/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/models/kepler/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/models/kepler/test_brouwer_lyddane_mean.py +65 -0
- ostk/astrodynamics/test/trajectory/orbit/models/kepler/test_brouwer_lyddane_mean_long.py +102 -0
- ostk/astrodynamics/test/trajectory/orbit/models/kepler/test_brouwer_lyddane_mean_short.py +102 -0
- ostk/astrodynamics/test/trajectory/orbit/models/kepler/test_coe.py +305 -0
- ostk/astrodynamics/test/trajectory/orbit/models/sgp4/__init__.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/models/sgp4/test_tle.py +337 -0
- ostk/astrodynamics/test/trajectory/orbit/models/test_kepler.py +130 -0
- ostk/astrodynamics/test/trajectory/orbit/models/test_modified_equinoctial.py +142 -0
- ostk/astrodynamics/test/trajectory/orbit/models/test_propagated.py +234 -0
- ostk/astrodynamics/test/trajectory/orbit/models/test_sgp4.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/models/test_tabulated.py +380 -0
- ostk/astrodynamics/test/trajectory/orbit/test_model.py +1 -0
- ostk/astrodynamics/test/trajectory/orbit/test_pass.py +75 -0
- ostk/astrodynamics/test/trajectory/state/coordinate_subset/test_angular_velocity.py +30 -0
- ostk/astrodynamics/test/trajectory/state/coordinate_subset/test_attitude_quaternion.py +18 -0
- ostk/astrodynamics/test/trajectory/state/coordinate_subset/test_cartesian_acceleration.py +136 -0
- ostk/astrodynamics/test/trajectory/state/coordinate_subset/test_cartesian_position.py +107 -0
- ostk/astrodynamics/test/trajectory/state/coordinate_subset/test_cartesian_velocity.py +115 -0
- ostk/astrodynamics/test/trajectory/state/test_coordinate_broker.py +84 -0
- ostk/astrodynamics/test/trajectory/state/test_coordinate_subset.py +58 -0
- ostk/astrodynamics/test/trajectory/state/test_numerical_solver.py +316 -0
- ostk/astrodynamics/test/trajectory/test_local_orbital_frame_direction.py +81 -0
- ostk/astrodynamics/test/trajectory/test_local_orbital_frame_factory.py +119 -0
- ostk/astrodynamics/test/trajectory/test_model.py +1 -0
- ostk/astrodynamics/test/trajectory/test_orbit.py +212 -0
- ostk/astrodynamics/test/trajectory/test_propagator.py +452 -0
- ostk/astrodynamics/test/trajectory/test_segment.py +694 -0
- ostk/astrodynamics/test/trajectory/test_sequence.py +550 -0
- ostk/astrodynamics/test/trajectory/test_state.py +629 -0
- ostk/astrodynamics/test/trajectory/test_state_builder.py +172 -0
- ostk/astrodynamics/trajectory/__init__.pyi +1982 -0
- ostk/astrodynamics/trajectory/model.pyi +259 -0
- ostk/astrodynamics/trajectory/orbit/__init__.pyi +349 -0
- ostk/astrodynamics/trajectory/orbit/message/__init__.pyi +3 -0
- ostk/astrodynamics/trajectory/orbit/message/spacex.pyi +264 -0
- ostk/astrodynamics/trajectory/orbit/model/__init__.pyi +648 -0
- ostk/astrodynamics/trajectory/orbit/model/brouwerLyddaneMean.pyi +121 -0
- ostk/astrodynamics/trajectory/orbit/model/kepler.pyi +709 -0
- ostk/astrodynamics/trajectory/orbit/model/sgp4.pyi +330 -0
- ostk/astrodynamics/trajectory/state/__init__.pyi +402 -0
- ostk/astrodynamics/trajectory/state/coordinate_subset.pyi +208 -0
- ostk/astrodynamics/utilities.py +396 -0
- ostk/astrodynamics/viewer.py +851 -0
|
@@ -0,0 +1,1355 @@
|
|
|
1
|
+
# Copyright © Loft Orbital Solutions Inc.
|
|
2
|
+
|
|
3
|
+
import pytest
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
import pandas as pd
|
|
8
|
+
|
|
9
|
+
from ostk.mathematics.geometry.d3.transformation.rotation import Quaternion
|
|
10
|
+
|
|
11
|
+
from ostk.physics import Environment
|
|
12
|
+
from ostk.physics.time import Instant
|
|
13
|
+
from ostk.physics.time import DateTime
|
|
14
|
+
from ostk.physics.time import Duration
|
|
15
|
+
from ostk.physics.time import Scale
|
|
16
|
+
from ostk.physics.coordinate import Frame
|
|
17
|
+
from ostk.physics.coordinate import Position
|
|
18
|
+
from ostk.physics.coordinate import Velocity
|
|
19
|
+
from ostk.physics.coordinate.frame.provider.iau import Theory
|
|
20
|
+
|
|
21
|
+
from ostk.astrodynamics.converters import coerce_to_datetime
|
|
22
|
+
from ostk.astrodynamics.trajectory import State
|
|
23
|
+
from ostk.astrodynamics.trajectory.state import CoordinateSubset
|
|
24
|
+
from ostk.astrodynamics.trajectory.state.coordinate_subset import CartesianPosition
|
|
25
|
+
from ostk.astrodynamics.trajectory.state.coordinate_subset import CartesianVelocity
|
|
26
|
+
from ostk.astrodynamics.trajectory import StateBuilder
|
|
27
|
+
from ostk.astrodynamics.flight import Profile
|
|
28
|
+
|
|
29
|
+
from ostk.astrodynamics.dataframe import generate_states_from_dataframe
|
|
30
|
+
from ostk.astrodynamics.dataframe import generate_dataframe_from_states
|
|
31
|
+
from ostk.astrodynamics.dataframe import generate_profile_from_dataframe
|
|
32
|
+
from ostk.astrodynamics.dataframe import generate_dataframe_from_profile
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class TestOrbitDataframe:
|
|
36
|
+
@pytest.fixture
|
|
37
|
+
def instant(self) -> Instant:
|
|
38
|
+
return Instant.date_time(DateTime.parse("2024-01-29T00:00:00"), Scale.UTC)
|
|
39
|
+
|
|
40
|
+
@pytest.fixture
|
|
41
|
+
def frame(self) -> Frame:
|
|
42
|
+
return Frame.GCRF()
|
|
43
|
+
|
|
44
|
+
@pytest.fixture
|
|
45
|
+
def position(self, frame: Frame) -> Position:
|
|
46
|
+
return Position.meters(
|
|
47
|
+
[755972.142139276024, -3390511.949699319433, 5955672.751532567665],
|
|
48
|
+
frame,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
@pytest.fixture
|
|
52
|
+
def velocity(self, frame: Frame) -> Velocity:
|
|
53
|
+
return Velocity.meters_per_second(
|
|
54
|
+
[-563.764594800880, -6619.592151780337, -3685.668514834143],
|
|
55
|
+
frame,
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
@pytest.fixture
|
|
59
|
+
def attitude(self) -> Quaternion:
|
|
60
|
+
return Quaternion.xyzs(
|
|
61
|
+
-0.638160707740, -0.163520830523, 0.726693549038, 0.194751982966
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
@pytest.fixture
|
|
65
|
+
def angular_velocity(self) -> np.ndarray:
|
|
66
|
+
return np.array([0.0, 0.0, 0.0])
|
|
67
|
+
|
|
68
|
+
@pytest.fixture
|
|
69
|
+
def orbit_state(
|
|
70
|
+
self,
|
|
71
|
+
instant: Instant,
|
|
72
|
+
position: Position,
|
|
73
|
+
velocity: Velocity,
|
|
74
|
+
) -> State:
|
|
75
|
+
return State(
|
|
76
|
+
instant=instant,
|
|
77
|
+
position=position,
|
|
78
|
+
velocity=velocity,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
@pytest.fixture
|
|
82
|
+
def orbit_states(self, orbit_state: State) -> list[State]:
|
|
83
|
+
return [orbit_state, orbit_state, orbit_state, orbit_state, orbit_state]
|
|
84
|
+
|
|
85
|
+
@pytest.fixture
|
|
86
|
+
def profile_state(
|
|
87
|
+
self,
|
|
88
|
+
instant: Instant,
|
|
89
|
+
position: Position,
|
|
90
|
+
velocity: Velocity,
|
|
91
|
+
attitude: Quaternion,
|
|
92
|
+
angular_velocity: np.ndarray,
|
|
93
|
+
frame: Frame,
|
|
94
|
+
) -> State:
|
|
95
|
+
return State(instant, position, velocity, attitude, angular_velocity, frame)
|
|
96
|
+
|
|
97
|
+
@pytest.fixture
|
|
98
|
+
def profile_states(self, profile_state: State) -> list[State]:
|
|
99
|
+
return [profile_state, profile_state, profile_state, profile_state, profile_state]
|
|
100
|
+
|
|
101
|
+
@pytest.fixture
|
|
102
|
+
def profile_dataframe_position_columns(self) -> list[str]:
|
|
103
|
+
return ["r_J2000 (IAU 2006)_x", "r_J2000 (IAU 2006)_y", "r_J2000 (IAU 2006)_z"]
|
|
104
|
+
|
|
105
|
+
@pytest.fixture
|
|
106
|
+
def profile_dataframe_velocity_columns(self) -> list[str]:
|
|
107
|
+
return ["v_J2000 (IAU 2006)_x", "v_J2000 (IAU 2006)_y", "v_J2000 (IAU 2006)_z"]
|
|
108
|
+
|
|
109
|
+
@pytest.fixture
|
|
110
|
+
def profile_dataframe_attitude_columns(self) -> list[str]:
|
|
111
|
+
return [
|
|
112
|
+
"q_B_J2000 (IAU 2006)_x",
|
|
113
|
+
"q_B_J2000 (IAU 2006)_y",
|
|
114
|
+
"q_B_J2000 (IAU 2006)_z",
|
|
115
|
+
"q_B_J2000 (IAU 2006)_s",
|
|
116
|
+
]
|
|
117
|
+
|
|
118
|
+
@pytest.fixture
|
|
119
|
+
def profile_dataframe_angular_velocity_columns(self) -> list[str]:
|
|
120
|
+
return [
|
|
121
|
+
"w_B_J2000 (IAU 2006)_in_B_x",
|
|
122
|
+
"w_B_J2000 (IAU 2006)_in_B_y",
|
|
123
|
+
"w_B_J2000 (IAU 2006)_in_B_z",
|
|
124
|
+
]
|
|
125
|
+
|
|
126
|
+
@pytest.fixture
|
|
127
|
+
def profile_dataframe(
|
|
128
|
+
self,
|
|
129
|
+
instant: Instant,
|
|
130
|
+
profile_dataframe_position_columns: list[str],
|
|
131
|
+
profile_dataframe_velocity_columns: list[str],
|
|
132
|
+
profile_dataframe_attitude_columns: list[str],
|
|
133
|
+
profile_dataframe_angular_velocity_columns: list[str],
|
|
134
|
+
) -> pd.DataFrame:
|
|
135
|
+
return pd.DataFrame(
|
|
136
|
+
[
|
|
137
|
+
{
|
|
138
|
+
"Timestamp": coerce_to_datetime(instant),
|
|
139
|
+
**dict(zip(profile_dataframe_position_columns, [1.0, 2.0, 3.0])),
|
|
140
|
+
**dict(zip(profile_dataframe_velocity_columns, [4.0, 5.0, 6.0])),
|
|
141
|
+
**dict(zip(profile_dataframe_attitude_columns, [0.0, 0.0, 0.0, 1.0])),
|
|
142
|
+
**dict(
|
|
143
|
+
zip(profile_dataframe_angular_velocity_columns, [0.0, 0.0, 0.0])
|
|
144
|
+
),
|
|
145
|
+
},
|
|
146
|
+
{
|
|
147
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(1.0)),
|
|
148
|
+
**dict(zip(profile_dataframe_position_columns, [11.0, 12.0, 13.0])),
|
|
149
|
+
**dict(zip(profile_dataframe_velocity_columns, [14.0, 15.0, 16.0])),
|
|
150
|
+
**dict(zip(profile_dataframe_attitude_columns, [0.0, 0.0, 1.0, 0.0])),
|
|
151
|
+
**dict(
|
|
152
|
+
zip(profile_dataframe_angular_velocity_columns, [1.0, 1.0, 1.0])
|
|
153
|
+
),
|
|
154
|
+
},
|
|
155
|
+
{
|
|
156
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(2.0)),
|
|
157
|
+
**dict(zip(profile_dataframe_position_columns, [21.0, 22.0, 23.0])),
|
|
158
|
+
**dict(zip(profile_dataframe_velocity_columns, [24.0, 25.0, 26.0])),
|
|
159
|
+
**dict(zip(profile_dataframe_attitude_columns, [0.0, 0.0, 1.0, 0.0])),
|
|
160
|
+
**dict(
|
|
161
|
+
zip(profile_dataframe_angular_velocity_columns, [1.0, 1.0, 1.0])
|
|
162
|
+
),
|
|
163
|
+
},
|
|
164
|
+
{
|
|
165
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(3.0)),
|
|
166
|
+
**dict(zip(profile_dataframe_position_columns, [31.0, 32.0, 33.0])),
|
|
167
|
+
**dict(zip(profile_dataframe_velocity_columns, [34.0, 35.0, 36.0])),
|
|
168
|
+
**dict(zip(profile_dataframe_attitude_columns, [0.0, 0.0, 1.0, 0.0])),
|
|
169
|
+
**dict(
|
|
170
|
+
zip(profile_dataframe_angular_velocity_columns, [1.0, 1.0, 1.0])
|
|
171
|
+
),
|
|
172
|
+
},
|
|
173
|
+
{
|
|
174
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(4.0)),
|
|
175
|
+
**dict(zip(profile_dataframe_position_columns, [41.0, 42.0, 43.0])),
|
|
176
|
+
**dict(zip(profile_dataframe_velocity_columns, [44.0, 45.0, 46.0])),
|
|
177
|
+
**dict(zip(profile_dataframe_attitude_columns, [0.0, 0.0, 1.0, 0.0])),
|
|
178
|
+
**dict(
|
|
179
|
+
zip(profile_dataframe_angular_velocity_columns, [1.0, 1.0, 1.0])
|
|
180
|
+
),
|
|
181
|
+
},
|
|
182
|
+
]
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
@pytest.fixture
|
|
186
|
+
def profile_dataframe_indexed_timestamp(
|
|
187
|
+
self,
|
|
188
|
+
profile_dataframe: pd.DataFrame,
|
|
189
|
+
) -> pd.DataFrame:
|
|
190
|
+
profile_dataframe.set_index("Timestamp", inplace=True)
|
|
191
|
+
return profile_dataframe
|
|
192
|
+
|
|
193
|
+
@pytest.fixture
|
|
194
|
+
def orbit_dataframe(self, instant: Instant) -> pd.DataFrame:
|
|
195
|
+
return pd.DataFrame(
|
|
196
|
+
[
|
|
197
|
+
{
|
|
198
|
+
"Timestamp": coerce_to_datetime(instant),
|
|
199
|
+
"r_GCRF_x": 1.0,
|
|
200
|
+
"r_GCRF_y": 2.0,
|
|
201
|
+
"r_GCRF_z": 3.0,
|
|
202
|
+
"v_GCRF_x": 4.0,
|
|
203
|
+
"v_GCRF_y": 5.0,
|
|
204
|
+
"v_GCRF_z": 6.0,
|
|
205
|
+
},
|
|
206
|
+
{
|
|
207
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(1.0)),
|
|
208
|
+
"r_GCRF_x": 11.0,
|
|
209
|
+
"r_GCRF_y": 12.0,
|
|
210
|
+
"r_GCRF_z": 13.0,
|
|
211
|
+
"v_GCRF_x": 14.0,
|
|
212
|
+
"v_GCRF_y": 15.0,
|
|
213
|
+
"v_GCRF_z": 16.0,
|
|
214
|
+
},
|
|
215
|
+
{
|
|
216
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(2.0)),
|
|
217
|
+
"r_GCRF_x": 21.0,
|
|
218
|
+
"r_GCRF_y": 22.0,
|
|
219
|
+
"r_GCRF_z": 23.0,
|
|
220
|
+
"v_GCRF_x": 24.0,
|
|
221
|
+
"v_GCRF_y": 25.0,
|
|
222
|
+
"v_GCRF_z": 26.0,
|
|
223
|
+
},
|
|
224
|
+
{
|
|
225
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(3.0)),
|
|
226
|
+
"r_GCRF_x": 31.0,
|
|
227
|
+
"r_GCRF_y": 32.0,
|
|
228
|
+
"r_GCRF_z": 33.0,
|
|
229
|
+
"v_GCRF_x": 34.0,
|
|
230
|
+
"v_GCRF_y": 35.0,
|
|
231
|
+
"v_GCRF_z": 36.0,
|
|
232
|
+
},
|
|
233
|
+
{
|
|
234
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(4.0)),
|
|
235
|
+
"r_GCRF_x": 41.0,
|
|
236
|
+
"r_GCRF_y": 42.0,
|
|
237
|
+
"r_GCRF_z": 43.0,
|
|
238
|
+
"v_GCRF_x": 44.0,
|
|
239
|
+
"v_GCRF_y": 45.0,
|
|
240
|
+
"v_GCRF_z": 46.0,
|
|
241
|
+
},
|
|
242
|
+
]
|
|
243
|
+
)
|
|
244
|
+
|
|
245
|
+
@pytest.fixture
|
|
246
|
+
def orbit_dataframe_indexed_timestamp(
|
|
247
|
+
self, orbit_dataframe: pd.DataFrame
|
|
248
|
+
) -> pd.DataFrame:
|
|
249
|
+
orbit_dataframe.set_index("Timestamp", inplace=True)
|
|
250
|
+
return orbit_dataframe
|
|
251
|
+
|
|
252
|
+
@pytest.fixture
|
|
253
|
+
def orbit_state_with_properties(
|
|
254
|
+
self,
|
|
255
|
+
instant: Instant,
|
|
256
|
+
position: Position,
|
|
257
|
+
velocity: Velocity,
|
|
258
|
+
) -> State:
|
|
259
|
+
state_builder = StateBuilder(
|
|
260
|
+
frame=Frame.GCRF(),
|
|
261
|
+
coordinate_subsets=[
|
|
262
|
+
CartesianPosition.default(),
|
|
263
|
+
CartesianVelocity.default(),
|
|
264
|
+
CoordinateSubset.mass(),
|
|
265
|
+
CoordinateSubset.drag_coefficient(),
|
|
266
|
+
CoordinateSubset.surface_area(),
|
|
267
|
+
],
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
return state_builder.build(
|
|
271
|
+
instant=instant,
|
|
272
|
+
coordinates=[
|
|
273
|
+
*position.get_coordinates(),
|
|
274
|
+
*velocity.get_coordinates(),
|
|
275
|
+
100.0, # mass in kg
|
|
276
|
+
2.2, # drag coefficient
|
|
277
|
+
10.5, # surface area in m²
|
|
278
|
+
],
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
@pytest.fixture
|
|
282
|
+
def orbit_states_with_properties(
|
|
283
|
+
self, orbit_state_with_properties: State
|
|
284
|
+
) -> list[State]:
|
|
285
|
+
return [
|
|
286
|
+
orbit_state_with_properties,
|
|
287
|
+
orbit_state_with_properties,
|
|
288
|
+
orbit_state_with_properties,
|
|
289
|
+
orbit_state_with_properties,
|
|
290
|
+
orbit_state_with_properties,
|
|
291
|
+
]
|
|
292
|
+
|
|
293
|
+
@pytest.fixture
|
|
294
|
+
def orbit_dataframe_with_properties(self, instant: Instant) -> pd.DataFrame:
|
|
295
|
+
return pd.DataFrame(
|
|
296
|
+
[
|
|
297
|
+
{
|
|
298
|
+
"Timestamp": coerce_to_datetime(instant),
|
|
299
|
+
"r_GCRF_x": 1.0,
|
|
300
|
+
"r_GCRF_y": 2.0,
|
|
301
|
+
"r_GCRF_z": 3.0,
|
|
302
|
+
"v_GCRF_x": 4.0,
|
|
303
|
+
"v_GCRF_y": 5.0,
|
|
304
|
+
"v_GCRF_z": 6.0,
|
|
305
|
+
"mass": 100.0,
|
|
306
|
+
"drag_coefficient": 2.2,
|
|
307
|
+
"surface_area": 10.5,
|
|
308
|
+
},
|
|
309
|
+
{
|
|
310
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(1.0)),
|
|
311
|
+
"r_GCRF_x": 11.0,
|
|
312
|
+
"r_GCRF_y": 12.0,
|
|
313
|
+
"r_GCRF_z": 13.0,
|
|
314
|
+
"v_GCRF_x": 14.0,
|
|
315
|
+
"v_GCRF_y": 15.0,
|
|
316
|
+
"v_GCRF_z": 16.0,
|
|
317
|
+
"mass": 99.5,
|
|
318
|
+
"drag_coefficient": 2.2,
|
|
319
|
+
"surface_area": 10.5,
|
|
320
|
+
},
|
|
321
|
+
{
|
|
322
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(2.0)),
|
|
323
|
+
"r_GCRF_x": 21.0,
|
|
324
|
+
"r_GCRF_y": 22.0,
|
|
325
|
+
"r_GCRF_z": 23.0,
|
|
326
|
+
"v_GCRF_x": 24.0,
|
|
327
|
+
"v_GCRF_y": 25.0,
|
|
328
|
+
"v_GCRF_z": 26.0,
|
|
329
|
+
"mass": 99.5,
|
|
330
|
+
"drag_coefficient": 2.2,
|
|
331
|
+
"surface_area": 10.5,
|
|
332
|
+
},
|
|
333
|
+
{
|
|
334
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(3.0)),
|
|
335
|
+
"r_GCRF_x": 31.0,
|
|
336
|
+
"r_GCRF_y": 32.0,
|
|
337
|
+
"r_GCRF_z": 33.0,
|
|
338
|
+
"v_GCRF_x": 34.0,
|
|
339
|
+
"v_GCRF_y": 35.0,
|
|
340
|
+
"v_GCRF_z": 36.0,
|
|
341
|
+
"mass": 99.5,
|
|
342
|
+
"drag_coefficient": 2.2,
|
|
343
|
+
"surface_area": 10.5,
|
|
344
|
+
},
|
|
345
|
+
{
|
|
346
|
+
"Timestamp": coerce_to_datetime(instant + Duration.minutes(4.0)),
|
|
347
|
+
"r_GCRF_x": 41.0,
|
|
348
|
+
"r_GCRF_y": 42.0,
|
|
349
|
+
"r_GCRF_z": 43.0,
|
|
350
|
+
"v_GCRF_x": 44.0,
|
|
351
|
+
"v_GCRF_y": 45.0,
|
|
352
|
+
"v_GCRF_z": 46.0,
|
|
353
|
+
"mass": 99.5,
|
|
354
|
+
"drag_coefficient": 2.2,
|
|
355
|
+
"surface_area": 10.5,
|
|
356
|
+
},
|
|
357
|
+
]
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
def test_generate_orbit_states_from_dataframe_defaults_success(
|
|
361
|
+
self,
|
|
362
|
+
orbit_dataframe: pd.DataFrame,
|
|
363
|
+
):
|
|
364
|
+
states: list[State] = generate_states_from_dataframe(orbit_dataframe)
|
|
365
|
+
|
|
366
|
+
for state in states:
|
|
367
|
+
assert len(state.get_coordinates()) == len(orbit_dataframe.columns) - 1
|
|
368
|
+
|
|
369
|
+
def test_generate_profile_states_from_dataframe_defaults_success(
|
|
370
|
+
self,
|
|
371
|
+
profile_dataframe: pd.DataFrame,
|
|
372
|
+
):
|
|
373
|
+
states: list[State] = generate_states_from_dataframe(
|
|
374
|
+
profile_dataframe,
|
|
375
|
+
reference_frame=Frame.J2000(Theory.IAU_2006),
|
|
376
|
+
)
|
|
377
|
+
|
|
378
|
+
for state in states:
|
|
379
|
+
assert len(state.get_coordinates()) == len(profile_dataframe.columns) - 1
|
|
380
|
+
|
|
381
|
+
def test_generate_states_from_profile_dataframe_success(
|
|
382
|
+
self,
|
|
383
|
+
profile_dataframe: pd.DataFrame,
|
|
384
|
+
profile_dataframe_position_columns: list[str],
|
|
385
|
+
profile_dataframe_velocity_columns: list[str],
|
|
386
|
+
profile_dataframe_attitude_columns: list[str],
|
|
387
|
+
profile_dataframe_angular_velocity_columns: list[str],
|
|
388
|
+
):
|
|
389
|
+
states: list[State] = generate_states_from_dataframe(
|
|
390
|
+
dataframe=profile_dataframe,
|
|
391
|
+
reference_frame=Frame.J2000(Theory.IAU_2006),
|
|
392
|
+
time_column="Timestamp",
|
|
393
|
+
position_columns=profile_dataframe_position_columns,
|
|
394
|
+
velocity_columns=profile_dataframe_velocity_columns,
|
|
395
|
+
attitude_columns=profile_dataframe_attitude_columns,
|
|
396
|
+
angular_velocity_columns=profile_dataframe_angular_velocity_columns,
|
|
397
|
+
)
|
|
398
|
+
|
|
399
|
+
for state in states:
|
|
400
|
+
assert len(state.get_coordinates()) == len(profile_dataframe.columns) - 1
|
|
401
|
+
|
|
402
|
+
def test_generate_states_from_orbit_dataframe_success(
|
|
403
|
+
self,
|
|
404
|
+
orbit_dataframe: pd.DataFrame,
|
|
405
|
+
):
|
|
406
|
+
states: list[State] = generate_states_from_dataframe(
|
|
407
|
+
dataframe=orbit_dataframe,
|
|
408
|
+
reference_frame=Frame.GCRF(),
|
|
409
|
+
time_column="Timestamp",
|
|
410
|
+
position_columns=["r_GCRF_x", "r_GCRF_y", "r_GCRF_z"],
|
|
411
|
+
velocity_columns=["v_GCRF_x", "v_GCRF_y", "v_GCRF_z"],
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
for state in states:
|
|
415
|
+
assert len(state.get_coordinates()) == len(orbit_dataframe.columns) - 1
|
|
416
|
+
|
|
417
|
+
def test_generate_states_from_profile_dataframe_success_defined_columns_without_time(
|
|
418
|
+
self,
|
|
419
|
+
profile_dataframe_indexed_timestamp: pd.DataFrame,
|
|
420
|
+
profile_dataframe_position_columns: list[str],
|
|
421
|
+
profile_dataframe_velocity_columns: list[str],
|
|
422
|
+
profile_dataframe_attitude_columns: list[str],
|
|
423
|
+
profile_dataframe_angular_velocity_columns: list[str],
|
|
424
|
+
):
|
|
425
|
+
states: list[State] = generate_states_from_dataframe(
|
|
426
|
+
dataframe=profile_dataframe_indexed_timestamp,
|
|
427
|
+
reference_frame=Frame.J2000(Theory.IAU_2006),
|
|
428
|
+
position_columns=profile_dataframe_position_columns,
|
|
429
|
+
velocity_columns=profile_dataframe_velocity_columns,
|
|
430
|
+
attitude_columns=profile_dataframe_attitude_columns,
|
|
431
|
+
angular_velocity_columns=profile_dataframe_angular_velocity_columns,
|
|
432
|
+
)
|
|
433
|
+
|
|
434
|
+
for state in states:
|
|
435
|
+
assert len(state.get_coordinates()) == len(
|
|
436
|
+
profile_dataframe_indexed_timestamp.columns
|
|
437
|
+
)
|
|
438
|
+
|
|
439
|
+
def test_generate_states_from_orbit_dataframe_success_defined_columnsout_with_time(
|
|
440
|
+
self,
|
|
441
|
+
orbit_dataframe_indexed_timestamp: pd.DataFrame,
|
|
442
|
+
):
|
|
443
|
+
states: list[State] = generate_states_from_dataframe(
|
|
444
|
+
dataframe=orbit_dataframe_indexed_timestamp,
|
|
445
|
+
reference_frame=Frame.GCRF(),
|
|
446
|
+
position_columns=["r_GCRF_x", "r_GCRF_y", "r_GCRF_z"],
|
|
447
|
+
velocity_columns=["v_GCRF_x", "v_GCRF_y", "v_GCRF_z"],
|
|
448
|
+
)
|
|
449
|
+
|
|
450
|
+
for state in states:
|
|
451
|
+
assert len(state.get_coordinates()) == len(
|
|
452
|
+
orbit_dataframe_indexed_timestamp.columns
|
|
453
|
+
)
|
|
454
|
+
|
|
455
|
+
def test_generate_dataframe_from_profile_states_success_custom_columns(
|
|
456
|
+
self,
|
|
457
|
+
profile_states: list[State],
|
|
458
|
+
):
|
|
459
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
460
|
+
states=profile_states,
|
|
461
|
+
time_column="t",
|
|
462
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
463
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
464
|
+
attitude_columns=["q_1", "q_2", "q_3", "q_4"],
|
|
465
|
+
angular_velocity_columns=["w_1", "w_2", "w_3"],
|
|
466
|
+
)
|
|
467
|
+
|
|
468
|
+
assert list(generated_dataframe.columns) == [
|
|
469
|
+
"r_1",
|
|
470
|
+
"r_2",
|
|
471
|
+
"r_3",
|
|
472
|
+
"v_1",
|
|
473
|
+
"v_2",
|
|
474
|
+
"v_3",
|
|
475
|
+
"q_1",
|
|
476
|
+
"q_2",
|
|
477
|
+
"q_3",
|
|
478
|
+
"q_4",
|
|
479
|
+
"w_1",
|
|
480
|
+
"w_2",
|
|
481
|
+
"w_3",
|
|
482
|
+
]
|
|
483
|
+
|
|
484
|
+
def test_generate_dataframe_from_orbit_states_success_custom_columns(
|
|
485
|
+
self,
|
|
486
|
+
orbit_states: list[State],
|
|
487
|
+
):
|
|
488
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
489
|
+
states=orbit_states,
|
|
490
|
+
time_column="t",
|
|
491
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
492
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
493
|
+
)
|
|
494
|
+
|
|
495
|
+
assert list(generated_dataframe.columns) == [
|
|
496
|
+
"r_1",
|
|
497
|
+
"r_2",
|
|
498
|
+
"r_3",
|
|
499
|
+
"v_1",
|
|
500
|
+
"v_2",
|
|
501
|
+
"v_3",
|
|
502
|
+
]
|
|
503
|
+
|
|
504
|
+
def test_generate_dataframe_from_profile_states_success_custom_reference_frame(
|
|
505
|
+
self,
|
|
506
|
+
profile_states: list[State],
|
|
507
|
+
):
|
|
508
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
509
|
+
states=profile_states,
|
|
510
|
+
reference_frame=Frame.ITRF(),
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
assert list(generated_dataframe.columns) == [
|
|
514
|
+
"r_ITRF_x",
|
|
515
|
+
"r_ITRF_y",
|
|
516
|
+
"r_ITRF_z",
|
|
517
|
+
"v_ITRF_x",
|
|
518
|
+
"v_ITRF_y",
|
|
519
|
+
"v_ITRF_z",
|
|
520
|
+
"q_B_ITRF_x",
|
|
521
|
+
"q_B_ITRF_y",
|
|
522
|
+
"q_B_ITRF_z",
|
|
523
|
+
"q_B_ITRF_s",
|
|
524
|
+
"w_B_ITRF_in_B_x",
|
|
525
|
+
"w_B_ITRF_in_B_y",
|
|
526
|
+
"w_B_ITRF_in_B_z",
|
|
527
|
+
]
|
|
528
|
+
|
|
529
|
+
def test_generate_dataframe_from_orbit_states_success_set_time_index_disabled(
|
|
530
|
+
self,
|
|
531
|
+
orbit_states: list[State],
|
|
532
|
+
):
|
|
533
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
534
|
+
states=orbit_states,
|
|
535
|
+
time_column="t",
|
|
536
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
537
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
538
|
+
set_time_index=False,
|
|
539
|
+
)
|
|
540
|
+
|
|
541
|
+
assert list(generated_dataframe.columns) == [
|
|
542
|
+
"t",
|
|
543
|
+
"r_1",
|
|
544
|
+
"r_2",
|
|
545
|
+
"r_3",
|
|
546
|
+
"v_1",
|
|
547
|
+
"v_2",
|
|
548
|
+
"v_3",
|
|
549
|
+
]
|
|
550
|
+
|
|
551
|
+
def test_generate_dataframe_from_profile_states_success_set_time_index_disabled(
|
|
552
|
+
self,
|
|
553
|
+
profile_states: list[State],
|
|
554
|
+
):
|
|
555
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
556
|
+
states=profile_states,
|
|
557
|
+
time_column="t",
|
|
558
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
559
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
560
|
+
attitude_columns=["q_1", "q_2", "q_3", "q_4"],
|
|
561
|
+
angular_velocity_columns=["w_1", "w_2", "w_3"],
|
|
562
|
+
set_time_index=False,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
assert list(generated_dataframe.columns) == [
|
|
566
|
+
"t",
|
|
567
|
+
"r_1",
|
|
568
|
+
"r_2",
|
|
569
|
+
"r_3",
|
|
570
|
+
"v_1",
|
|
571
|
+
"v_2",
|
|
572
|
+
"v_3",
|
|
573
|
+
"q_1",
|
|
574
|
+
"q_2",
|
|
575
|
+
"q_3",
|
|
576
|
+
"q_4",
|
|
577
|
+
"w_1",
|
|
578
|
+
"w_2",
|
|
579
|
+
"w_3",
|
|
580
|
+
]
|
|
581
|
+
|
|
582
|
+
def test_generate_states_from_dataframe_with_properties_success(
|
|
583
|
+
self,
|
|
584
|
+
orbit_dataframe_with_properties: pd.DataFrame,
|
|
585
|
+
):
|
|
586
|
+
states: list[State] = generate_states_from_dataframe(
|
|
587
|
+
dataframe=orbit_dataframe_with_properties,
|
|
588
|
+
reference_frame=Frame.GCRF(),
|
|
589
|
+
)
|
|
590
|
+
|
|
591
|
+
for state in states:
|
|
592
|
+
assert (
|
|
593
|
+
len(state.get_coordinates()) == 9
|
|
594
|
+
) # 3 position + 3 velocity + mass + drag_coefficient + surface_area
|
|
595
|
+
assert state.has_subset(CoordinateSubset.mass())
|
|
596
|
+
assert state.has_subset(CoordinateSubset.drag_coefficient())
|
|
597
|
+
assert state.has_subset(CoordinateSubset.surface_area())
|
|
598
|
+
|
|
599
|
+
def test_generate_dataframe_from_states_with_properties_success(
|
|
600
|
+
self,
|
|
601
|
+
orbit_states_with_properties: list[State],
|
|
602
|
+
):
|
|
603
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
604
|
+
states=orbit_states_with_properties,
|
|
605
|
+
)
|
|
606
|
+
|
|
607
|
+
assert "mass" in generated_dataframe.columns
|
|
608
|
+
assert "drag_coefficient" in generated_dataframe.columns
|
|
609
|
+
assert "surface_area" in generated_dataframe.columns
|
|
610
|
+
|
|
611
|
+
# Verify the values are correct
|
|
612
|
+
assert generated_dataframe["mass"].iloc[0] == 100.0
|
|
613
|
+
assert generated_dataframe["drag_coefficient"].iloc[0] == 2.2
|
|
614
|
+
assert generated_dataframe["surface_area"].iloc[0] == 10.5
|
|
615
|
+
|
|
616
|
+
def test_generate_dataframe_from_states_with_custom_property_columns(
|
|
617
|
+
self,
|
|
618
|
+
orbit_states_with_properties: list[State],
|
|
619
|
+
):
|
|
620
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_states(
|
|
621
|
+
states=orbit_states_with_properties,
|
|
622
|
+
time_column="t",
|
|
623
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
624
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
625
|
+
mass_column="spacecraft_mass",
|
|
626
|
+
drag_coefficient_column="cd",
|
|
627
|
+
surface_area_column="area",
|
|
628
|
+
)
|
|
629
|
+
|
|
630
|
+
assert "spacecraft_mass" in generated_dataframe.columns
|
|
631
|
+
assert "cd" in generated_dataframe.columns
|
|
632
|
+
assert "area" in generated_dataframe.columns
|
|
633
|
+
|
|
634
|
+
# Verify the values are correct
|
|
635
|
+
assert generated_dataframe["spacecraft_mass"].iloc[0] == 100.0
|
|
636
|
+
assert generated_dataframe["cd"].iloc[0] == 2.2
|
|
637
|
+
assert generated_dataframe["area"].iloc[0] == 10.5
|
|
638
|
+
|
|
639
|
+
|
|
640
|
+
class TestProfileDataframe:
|
|
641
|
+
@pytest.fixture
|
|
642
|
+
def environment(self) -> Environment:
|
|
643
|
+
return Environment.default()
|
|
644
|
+
|
|
645
|
+
@pytest.fixture
|
|
646
|
+
def epoch(self) -> Instant:
|
|
647
|
+
return Instant.date_time(DateTime(2020, 1, 1, 0, 0, 0), Scale.UTC)
|
|
648
|
+
|
|
649
|
+
@pytest.fixture
|
|
650
|
+
def dataframe(
|
|
651
|
+
self,
|
|
652
|
+
epoch: Instant,
|
|
653
|
+
) -> pd.DataFrame:
|
|
654
|
+
return pd.DataFrame(
|
|
655
|
+
[
|
|
656
|
+
{
|
|
657
|
+
"Timestamp": coerce_to_datetime(epoch),
|
|
658
|
+
"r_GCRF_x": 1.0,
|
|
659
|
+
"r_GCRF_y": 2.0,
|
|
660
|
+
"r_GCRF_z": 3.0,
|
|
661
|
+
"v_GCRF_x": 4.0,
|
|
662
|
+
"v_GCRF_y": 5.0,
|
|
663
|
+
"v_GCRF_z": 6.0,
|
|
664
|
+
"q_B_GCRF_x": 0.0,
|
|
665
|
+
"q_B_GCRF_y": 0.0,
|
|
666
|
+
"q_B_GCRF_z": 0.0,
|
|
667
|
+
"q_B_GCRF_s": 1.0,
|
|
668
|
+
"w_B_GCRF_in_B_x": 0.0,
|
|
669
|
+
"w_B_GCRF_in_B_y": 0.0,
|
|
670
|
+
"w_B_GCRF_in_B_z": 0.0,
|
|
671
|
+
},
|
|
672
|
+
{
|
|
673
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(1.0)),
|
|
674
|
+
"r_GCRF_x": 11.0,
|
|
675
|
+
"r_GCRF_y": 12.0,
|
|
676
|
+
"r_GCRF_z": 13.0,
|
|
677
|
+
"v_GCRF_x": 14.0,
|
|
678
|
+
"v_GCRF_y": 15.0,
|
|
679
|
+
"v_GCRF_z": 16.0,
|
|
680
|
+
"q_B_GCRF_x": 0.0,
|
|
681
|
+
"q_B_GCRF_y": 0.0,
|
|
682
|
+
"q_B_GCRF_z": 1.0,
|
|
683
|
+
"q_B_GCRF_s": 0.0,
|
|
684
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
685
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
686
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
687
|
+
},
|
|
688
|
+
{
|
|
689
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(2.0)),
|
|
690
|
+
"r_GCRF_x": 21.0,
|
|
691
|
+
"r_GCRF_y": 22.0,
|
|
692
|
+
"r_GCRF_z": 23.0,
|
|
693
|
+
"v_GCRF_x": 24.0,
|
|
694
|
+
"v_GCRF_y": 25.0,
|
|
695
|
+
"v_GCRF_z": 26.0,
|
|
696
|
+
"q_B_GCRF_x": 0.0,
|
|
697
|
+
"q_B_GCRF_y": 0.0,
|
|
698
|
+
"q_B_GCRF_z": 1.0,
|
|
699
|
+
"q_B_GCRF_s": 0.0,
|
|
700
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
701
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
702
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
703
|
+
},
|
|
704
|
+
{
|
|
705
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(3.0)),
|
|
706
|
+
"r_GCRF_x": 31.0,
|
|
707
|
+
"r_GCRF_y": 32.0,
|
|
708
|
+
"r_GCRF_z": 33.0,
|
|
709
|
+
"v_GCRF_x": 34.0,
|
|
710
|
+
"v_GCRF_y": 35.0,
|
|
711
|
+
"v_GCRF_z": 36.0,
|
|
712
|
+
"q_B_GCRF_x": 0.0,
|
|
713
|
+
"q_B_GCRF_y": 0.0,
|
|
714
|
+
"q_B_GCRF_z": 1.0,
|
|
715
|
+
"q_B_GCRF_s": 0.0,
|
|
716
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
717
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
718
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
719
|
+
},
|
|
720
|
+
{
|
|
721
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(4.0)),
|
|
722
|
+
"r_GCRF_x": 41.0,
|
|
723
|
+
"r_GCRF_y": 42.0,
|
|
724
|
+
"r_GCRF_z": 43.0,
|
|
725
|
+
"v_GCRF_x": 44.0,
|
|
726
|
+
"v_GCRF_y": 45.0,
|
|
727
|
+
"v_GCRF_z": 46.0,
|
|
728
|
+
"q_B_GCRF_x": 0.0,
|
|
729
|
+
"q_B_GCRF_y": 0.0,
|
|
730
|
+
"q_B_GCRF_z": 1.0,
|
|
731
|
+
"q_B_GCRF_s": 0.0,
|
|
732
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
733
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
734
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
735
|
+
},
|
|
736
|
+
]
|
|
737
|
+
)
|
|
738
|
+
|
|
739
|
+
@pytest.fixture
|
|
740
|
+
def profile(
|
|
741
|
+
self,
|
|
742
|
+
dataframe: pd.DataFrame,
|
|
743
|
+
) -> Profile:
|
|
744
|
+
return generate_profile_from_dataframe(
|
|
745
|
+
dataframe=dataframe,
|
|
746
|
+
)
|
|
747
|
+
|
|
748
|
+
@pytest.fixture
|
|
749
|
+
def dataframe_indexed_timestamp(
|
|
750
|
+
self,
|
|
751
|
+
dataframe: pd.DataFrame,
|
|
752
|
+
) -> pd.DataFrame:
|
|
753
|
+
dataframe.set_index("Timestamp", inplace=True)
|
|
754
|
+
return dataframe
|
|
755
|
+
|
|
756
|
+
@pytest.fixture
|
|
757
|
+
def dataframe_with_properties(
|
|
758
|
+
self,
|
|
759
|
+
epoch: Instant,
|
|
760
|
+
) -> pd.DataFrame:
|
|
761
|
+
return pd.DataFrame(
|
|
762
|
+
[
|
|
763
|
+
{
|
|
764
|
+
"Timestamp": coerce_to_datetime(epoch),
|
|
765
|
+
"r_GCRF_x": 1.0,
|
|
766
|
+
"r_GCRF_y": 2.0,
|
|
767
|
+
"r_GCRF_z": 3.0,
|
|
768
|
+
"v_GCRF_x": 4.0,
|
|
769
|
+
"v_GCRF_y": 5.0,
|
|
770
|
+
"v_GCRF_z": 6.0,
|
|
771
|
+
"q_B_GCRF_x": 0.0,
|
|
772
|
+
"q_B_GCRF_y": 0.0,
|
|
773
|
+
"q_B_GCRF_z": 0.0,
|
|
774
|
+
"q_B_GCRF_s": 1.0,
|
|
775
|
+
"w_B_GCRF_in_B_x": 0.0,
|
|
776
|
+
"w_B_GCRF_in_B_y": 0.0,
|
|
777
|
+
"w_B_GCRF_in_B_z": 0.0,
|
|
778
|
+
"mass": 100.0,
|
|
779
|
+
"drag_coefficient": 2.2,
|
|
780
|
+
"surface_area": 10.5,
|
|
781
|
+
},
|
|
782
|
+
{
|
|
783
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(1.0)),
|
|
784
|
+
"r_GCRF_x": 11.0,
|
|
785
|
+
"r_GCRF_y": 12.0,
|
|
786
|
+
"r_GCRF_z": 13.0,
|
|
787
|
+
"v_GCRF_x": 14.0,
|
|
788
|
+
"v_GCRF_y": 15.0,
|
|
789
|
+
"v_GCRF_z": 16.0,
|
|
790
|
+
"q_B_GCRF_x": 0.0,
|
|
791
|
+
"q_B_GCRF_y": 0.0,
|
|
792
|
+
"q_B_GCRF_z": 1.0,
|
|
793
|
+
"q_B_GCRF_s": 0.0,
|
|
794
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
795
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
796
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
797
|
+
"mass": 99.5,
|
|
798
|
+
"drag_coefficient": 2.2,
|
|
799
|
+
"surface_area": 10.5,
|
|
800
|
+
},
|
|
801
|
+
{
|
|
802
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(2.0)),
|
|
803
|
+
"r_GCRF_x": 21.0,
|
|
804
|
+
"r_GCRF_y": 22.0,
|
|
805
|
+
"r_GCRF_z": 23.0,
|
|
806
|
+
"v_GCRF_x": 24.0,
|
|
807
|
+
"v_GCRF_y": 25.0,
|
|
808
|
+
"v_GCRF_z": 26.0,
|
|
809
|
+
"q_B_GCRF_x": 0.0,
|
|
810
|
+
"q_B_GCRF_y": 0.0,
|
|
811
|
+
"q_B_GCRF_z": 1.0,
|
|
812
|
+
"q_B_GCRF_s": 0.0,
|
|
813
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
814
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
815
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
816
|
+
"mass": 99.5,
|
|
817
|
+
"drag_coefficient": 2.2,
|
|
818
|
+
"surface_area": 10.5,
|
|
819
|
+
},
|
|
820
|
+
{
|
|
821
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(3.0)),
|
|
822
|
+
"r_GCRF_x": 31.0,
|
|
823
|
+
"r_GCRF_y": 32.0,
|
|
824
|
+
"r_GCRF_z": 33.0,
|
|
825
|
+
"v_GCRF_x": 34.0,
|
|
826
|
+
"v_GCRF_y": 35.0,
|
|
827
|
+
"v_GCRF_z": 36.0,
|
|
828
|
+
"q_B_GCRF_x": 0.0,
|
|
829
|
+
"q_B_GCRF_y": 0.0,
|
|
830
|
+
"q_B_GCRF_z": 1.0,
|
|
831
|
+
"q_B_GCRF_s": 0.0,
|
|
832
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
833
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
834
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
835
|
+
"mass": 99.5,
|
|
836
|
+
"drag_coefficient": 2.2,
|
|
837
|
+
"surface_area": 10.5,
|
|
838
|
+
},
|
|
839
|
+
{
|
|
840
|
+
"Timestamp": coerce_to_datetime(epoch + Duration.minutes(4.0)),
|
|
841
|
+
"r_GCRF_x": 41.0,
|
|
842
|
+
"r_GCRF_y": 42.0,
|
|
843
|
+
"r_GCRF_z": 43.0,
|
|
844
|
+
"v_GCRF_x": 44.0,
|
|
845
|
+
"v_GCRF_y": 45.0,
|
|
846
|
+
"v_GCRF_z": 46.0,
|
|
847
|
+
"q_B_GCRF_x": 0.0,
|
|
848
|
+
"q_B_GCRF_y": 0.0,
|
|
849
|
+
"q_B_GCRF_z": 1.0,
|
|
850
|
+
"q_B_GCRF_s": 0.0,
|
|
851
|
+
"w_B_GCRF_in_B_x": 1.0,
|
|
852
|
+
"w_B_GCRF_in_B_y": 1.0,
|
|
853
|
+
"w_B_GCRF_in_B_z": 1.0,
|
|
854
|
+
"mass": 99.5,
|
|
855
|
+
"drag_coefficient": 2.2,
|
|
856
|
+
"surface_area": 10.5,
|
|
857
|
+
},
|
|
858
|
+
]
|
|
859
|
+
)
|
|
860
|
+
|
|
861
|
+
@pytest.fixture
|
|
862
|
+
def dataframe_with_properties_indexed_timestamp(
|
|
863
|
+
self,
|
|
864
|
+
dataframe_with_properties: pd.DataFrame,
|
|
865
|
+
) -> pd.DataFrame:
|
|
866
|
+
dataframe_with_properties.set_index("Timestamp", inplace=True)
|
|
867
|
+
return dataframe_with_properties
|
|
868
|
+
|
|
869
|
+
def test_generate_profile_from_dataframe_success(
|
|
870
|
+
self,
|
|
871
|
+
epoch: Instant,
|
|
872
|
+
dataframe: pd.DataFrame,
|
|
873
|
+
):
|
|
874
|
+
profile: Profile = generate_profile_from_dataframe(
|
|
875
|
+
dataframe=dataframe,
|
|
876
|
+
)
|
|
877
|
+
|
|
878
|
+
assert profile is not None
|
|
879
|
+
|
|
880
|
+
np.testing.assert_allclose(
|
|
881
|
+
profile.get_state_at(epoch).get_position().get_coordinates(),
|
|
882
|
+
np.array((1.0, 2.0, 3.0)),
|
|
883
|
+
atol=1e-8,
|
|
884
|
+
)
|
|
885
|
+
|
|
886
|
+
np.testing.assert_allclose(
|
|
887
|
+
profile.get_state_at(epoch).get_velocity().get_coordinates(),
|
|
888
|
+
np.array((4.0, 5.0, 6.0)),
|
|
889
|
+
atol=1e-8,
|
|
890
|
+
)
|
|
891
|
+
|
|
892
|
+
np.testing.assert_allclose(
|
|
893
|
+
profile.get_state_at(epoch).get_attitude().to_vector(Quaternion.Format.XYZS),
|
|
894
|
+
np.array((0.0, 0.0, 0.0, 1.0)),
|
|
895
|
+
atol=1e-8,
|
|
896
|
+
)
|
|
897
|
+
|
|
898
|
+
np.testing.assert_allclose(
|
|
899
|
+
profile.get_state_at(epoch).get_angular_velocity(),
|
|
900
|
+
np.array((0.0, 0.0, 0.0)),
|
|
901
|
+
atol=1e-8,
|
|
902
|
+
)
|
|
903
|
+
|
|
904
|
+
np.testing.assert_allclose(
|
|
905
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
906
|
+
.get_position()
|
|
907
|
+
.get_coordinates(),
|
|
908
|
+
np.array((11.0, 12.0, 13.0)),
|
|
909
|
+
atol=1e-8,
|
|
910
|
+
)
|
|
911
|
+
|
|
912
|
+
np.testing.assert_allclose(
|
|
913
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
914
|
+
.get_velocity()
|
|
915
|
+
.get_coordinates(),
|
|
916
|
+
np.array((14.0, 15.0, 16.0)),
|
|
917
|
+
atol=1e-8,
|
|
918
|
+
)
|
|
919
|
+
|
|
920
|
+
np.testing.assert_allclose(
|
|
921
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
922
|
+
.get_attitude()
|
|
923
|
+
.to_vector(Quaternion.Format.XYZS),
|
|
924
|
+
np.array((0.0, 0.0, 1.0, 0.0)),
|
|
925
|
+
atol=1e-8,
|
|
926
|
+
)
|
|
927
|
+
|
|
928
|
+
np.testing.assert_allclose(
|
|
929
|
+
profile.get_state_at(epoch + Duration.minutes(1.0)).get_angular_velocity(),
|
|
930
|
+
np.array((1.0, 1.0, 1.0)),
|
|
931
|
+
atol=1e-8,
|
|
932
|
+
)
|
|
933
|
+
|
|
934
|
+
assert profile.get_state_at(epoch).get_frame() == Frame.GCRF()
|
|
935
|
+
|
|
936
|
+
def test_generate_profile_from_dataframe_success_defined_columns_with_time(
|
|
937
|
+
self,
|
|
938
|
+
epoch: Instant,
|
|
939
|
+
dataframe: pd.DataFrame,
|
|
940
|
+
):
|
|
941
|
+
profile: Profile = generate_profile_from_dataframe(
|
|
942
|
+
dataframe=dataframe,
|
|
943
|
+
time_column="Timestamp",
|
|
944
|
+
position_columns=["r_GCRF_x", "r_GCRF_y", "r_GCRF_z"],
|
|
945
|
+
velocity_columns=["v_GCRF_x", "v_GCRF_y", "v_GCRF_z"],
|
|
946
|
+
attitude_columns=["q_B_GCRF_x", "q_B_GCRF_y", "q_B_GCRF_z", "q_B_GCRF_s"],
|
|
947
|
+
angular_velocity_columns=[
|
|
948
|
+
"w_B_GCRF_in_B_x",
|
|
949
|
+
"w_B_GCRF_in_B_y",
|
|
950
|
+
"w_B_GCRF_in_B_z",
|
|
951
|
+
],
|
|
952
|
+
)
|
|
953
|
+
|
|
954
|
+
assert profile is not None
|
|
955
|
+
|
|
956
|
+
np.testing.assert_allclose(
|
|
957
|
+
profile.get_state_at(epoch).get_position().get_coordinates(),
|
|
958
|
+
np.array((1.0, 2.0, 3.0)),
|
|
959
|
+
atol=1e-8,
|
|
960
|
+
)
|
|
961
|
+
|
|
962
|
+
np.testing.assert_allclose(
|
|
963
|
+
profile.get_state_at(epoch).get_velocity().get_coordinates(),
|
|
964
|
+
np.array((4.0, 5.0, 6.0)),
|
|
965
|
+
atol=1e-8,
|
|
966
|
+
)
|
|
967
|
+
|
|
968
|
+
np.testing.assert_allclose(
|
|
969
|
+
profile.get_state_at(epoch).get_attitude().to_vector(Quaternion.Format.XYZS),
|
|
970
|
+
np.array((0.0, 0.0, 0.0, 1.0)),
|
|
971
|
+
atol=1e-8,
|
|
972
|
+
)
|
|
973
|
+
|
|
974
|
+
np.testing.assert_allclose(
|
|
975
|
+
profile.get_state_at(epoch).get_angular_velocity(),
|
|
976
|
+
np.array((0.0, 0.0, 0.0)),
|
|
977
|
+
atol=1e-8,
|
|
978
|
+
)
|
|
979
|
+
|
|
980
|
+
np.testing.assert_allclose(
|
|
981
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
982
|
+
.get_position()
|
|
983
|
+
.get_coordinates(),
|
|
984
|
+
np.array((11.0, 12.0, 13.0)),
|
|
985
|
+
atol=1e-8,
|
|
986
|
+
)
|
|
987
|
+
|
|
988
|
+
np.testing.assert_allclose(
|
|
989
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
990
|
+
.get_velocity()
|
|
991
|
+
.get_coordinates(),
|
|
992
|
+
np.array((14.0, 15.0, 16.0)),
|
|
993
|
+
atol=1e-8,
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
np.testing.assert_allclose(
|
|
997
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
998
|
+
.get_attitude()
|
|
999
|
+
.to_vector(Quaternion.Format.XYZS),
|
|
1000
|
+
np.array((0.0, 0.0, 1.0, 0.0)),
|
|
1001
|
+
atol=1e-8,
|
|
1002
|
+
)
|
|
1003
|
+
|
|
1004
|
+
np.testing.assert_allclose(
|
|
1005
|
+
profile.get_state_at(epoch + Duration.minutes(1.0)).get_angular_velocity(),
|
|
1006
|
+
np.array((1.0, 1.0, 1.0)),
|
|
1007
|
+
atol=1e-8,
|
|
1008
|
+
)
|
|
1009
|
+
|
|
1010
|
+
assert profile.get_state_at(epoch).get_frame() == Frame.GCRF()
|
|
1011
|
+
|
|
1012
|
+
def test_generate_profile_from_dataframe_success_defined_columns_without_time(
|
|
1013
|
+
self,
|
|
1014
|
+
epoch: Instant,
|
|
1015
|
+
dataframe_indexed_timestamp: pd.DataFrame,
|
|
1016
|
+
):
|
|
1017
|
+
profile: Profile = generate_profile_from_dataframe(
|
|
1018
|
+
dataframe=dataframe_indexed_timestamp,
|
|
1019
|
+
position_columns=["r_GCRF_x", "r_GCRF_y", "r_GCRF_z"],
|
|
1020
|
+
velocity_columns=["v_GCRF_x", "v_GCRF_y", "v_GCRF_z"],
|
|
1021
|
+
attitude_columns=["q_B_GCRF_x", "q_B_GCRF_y", "q_B_GCRF_z", "q_B_GCRF_s"],
|
|
1022
|
+
angular_velocity_columns=[
|
|
1023
|
+
"w_B_GCRF_in_B_x",
|
|
1024
|
+
"w_B_GCRF_in_B_y",
|
|
1025
|
+
"w_B_GCRF_in_B_z",
|
|
1026
|
+
],
|
|
1027
|
+
)
|
|
1028
|
+
|
|
1029
|
+
assert profile is not None
|
|
1030
|
+
|
|
1031
|
+
np.testing.assert_allclose(
|
|
1032
|
+
profile.get_state_at(epoch).get_position().get_coordinates(),
|
|
1033
|
+
np.array((1.0, 2.0, 3.0)),
|
|
1034
|
+
atol=1e-8,
|
|
1035
|
+
)
|
|
1036
|
+
|
|
1037
|
+
np.testing.assert_allclose(
|
|
1038
|
+
profile.get_state_at(epoch).get_velocity().get_coordinates(),
|
|
1039
|
+
np.array((4.0, 5.0, 6.0)),
|
|
1040
|
+
atol=1e-8,
|
|
1041
|
+
)
|
|
1042
|
+
|
|
1043
|
+
np.testing.assert_allclose(
|
|
1044
|
+
profile.get_state_at(epoch).get_attitude().to_vector(Quaternion.Format.XYZS),
|
|
1045
|
+
np.array((0.0, 0.0, 0.0, 1.0)),
|
|
1046
|
+
atol=1e-8,
|
|
1047
|
+
)
|
|
1048
|
+
|
|
1049
|
+
np.testing.assert_allclose(
|
|
1050
|
+
profile.get_state_at(epoch).get_angular_velocity(),
|
|
1051
|
+
np.array((0.0, 0.0, 0.0)),
|
|
1052
|
+
atol=1e-8,
|
|
1053
|
+
)
|
|
1054
|
+
|
|
1055
|
+
np.testing.assert_allclose(
|
|
1056
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1057
|
+
.get_position()
|
|
1058
|
+
.get_coordinates(),
|
|
1059
|
+
np.array((11.0, 12.0, 13.0)),
|
|
1060
|
+
atol=1e-8,
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
np.testing.assert_allclose(
|
|
1064
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1065
|
+
.get_velocity()
|
|
1066
|
+
.get_coordinates(),
|
|
1067
|
+
np.array((14.0, 15.0, 16.0)),
|
|
1068
|
+
atol=1e-8,
|
|
1069
|
+
)
|
|
1070
|
+
|
|
1071
|
+
np.testing.assert_allclose(
|
|
1072
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1073
|
+
.get_attitude()
|
|
1074
|
+
.to_vector(Quaternion.Format.XYZS),
|
|
1075
|
+
np.array((0.0, 0.0, 1.0, 0.0)),
|
|
1076
|
+
atol=1e-8,
|
|
1077
|
+
)
|
|
1078
|
+
|
|
1079
|
+
np.testing.assert_allclose(
|
|
1080
|
+
profile.get_state_at(epoch + Duration.minutes(1.0)).get_angular_velocity(),
|
|
1081
|
+
np.array((1.0, 1.0, 1.0)),
|
|
1082
|
+
atol=1e-8,
|
|
1083
|
+
)
|
|
1084
|
+
|
|
1085
|
+
assert profile.get_state_at(epoch).get_frame() == Frame.GCRF()
|
|
1086
|
+
|
|
1087
|
+
def test_generate_profile_from_dataframe_success_no_angular_velocity_columns(
|
|
1088
|
+
self,
|
|
1089
|
+
epoch: Instant,
|
|
1090
|
+
dataframe_indexed_timestamp: pd.DataFrame,
|
|
1091
|
+
):
|
|
1092
|
+
dataframe_indexed_timestamp.drop(
|
|
1093
|
+
["w_B_GCRF_in_B_x", "w_B_GCRF_in_B_y", "w_B_GCRF_in_B_z"],
|
|
1094
|
+
axis=1,
|
|
1095
|
+
inplace=True,
|
|
1096
|
+
)
|
|
1097
|
+
|
|
1098
|
+
profile: Profile = generate_profile_from_dataframe(
|
|
1099
|
+
dataframe=dataframe_indexed_timestamp,
|
|
1100
|
+
position_columns=["r_GCRF_x", "r_GCRF_y", "r_GCRF_z"],
|
|
1101
|
+
velocity_columns=["v_GCRF_x", "v_GCRF_y", "v_GCRF_z"],
|
|
1102
|
+
attitude_columns=["q_B_GCRF_x", "q_B_GCRF_y", "q_B_GCRF_z", "q_B_GCRF_s"],
|
|
1103
|
+
)
|
|
1104
|
+
|
|
1105
|
+
assert profile is not None
|
|
1106
|
+
|
|
1107
|
+
np.testing.assert_allclose(
|
|
1108
|
+
profile.get_state_at(epoch).get_position().get_coordinates(),
|
|
1109
|
+
np.array((1.0, 2.0, 3.0)),
|
|
1110
|
+
atol=1e-8,
|
|
1111
|
+
)
|
|
1112
|
+
|
|
1113
|
+
np.testing.assert_allclose(
|
|
1114
|
+
profile.get_state_at(epoch).get_velocity().get_coordinates(),
|
|
1115
|
+
np.array((4.0, 5.0, 6.0)),
|
|
1116
|
+
atol=1e-8,
|
|
1117
|
+
)
|
|
1118
|
+
|
|
1119
|
+
np.testing.assert_allclose(
|
|
1120
|
+
profile.get_state_at(epoch).get_attitude().to_vector(Quaternion.Format.XYZS),
|
|
1121
|
+
np.array((0.0, 0.0, 0.0, 1.0)),
|
|
1122
|
+
atol=1e-8,
|
|
1123
|
+
)
|
|
1124
|
+
|
|
1125
|
+
np.testing.assert_allclose(
|
|
1126
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1127
|
+
.get_position()
|
|
1128
|
+
.get_coordinates(),
|
|
1129
|
+
np.array((11.0, 12.0, 13.0)),
|
|
1130
|
+
atol=1e-8,
|
|
1131
|
+
)
|
|
1132
|
+
|
|
1133
|
+
np.testing.assert_allclose(
|
|
1134
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1135
|
+
.get_velocity()
|
|
1136
|
+
.get_coordinates(),
|
|
1137
|
+
np.array((14.0, 15.0, 16.0)),
|
|
1138
|
+
atol=1e-8,
|
|
1139
|
+
)
|
|
1140
|
+
|
|
1141
|
+
np.testing.assert_allclose(
|
|
1142
|
+
profile.get_state_at(epoch + Duration.minutes(1.0))
|
|
1143
|
+
.get_attitude()
|
|
1144
|
+
.to_vector(Quaternion.Format.XYZS),
|
|
1145
|
+
np.array((0.0, 0.0, 1.0, 0.0)),
|
|
1146
|
+
atol=1e-8,
|
|
1147
|
+
)
|
|
1148
|
+
|
|
1149
|
+
assert profile.get_state_at(epoch).get_frame() == Frame.GCRF()
|
|
1150
|
+
|
|
1151
|
+
def test_generate_dataframe_from_profile_success(
|
|
1152
|
+
self,
|
|
1153
|
+
epoch: Instant,
|
|
1154
|
+
profile: Profile,
|
|
1155
|
+
dataframe_indexed_timestamp: pd.DataFrame,
|
|
1156
|
+
):
|
|
1157
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1158
|
+
profile=profile,
|
|
1159
|
+
instants=[
|
|
1160
|
+
epoch,
|
|
1161
|
+
epoch + Duration.minutes(1.0),
|
|
1162
|
+
epoch + Duration.minutes(2.0),
|
|
1163
|
+
epoch + Duration.minutes(3.0),
|
|
1164
|
+
epoch + Duration.minutes(4.0),
|
|
1165
|
+
],
|
|
1166
|
+
)
|
|
1167
|
+
|
|
1168
|
+
pd.testing.assert_frame_equal(generated_dataframe, dataframe_indexed_timestamp)
|
|
1169
|
+
|
|
1170
|
+
def test_generate_dataframe_from_profile_success_custom_columns(
|
|
1171
|
+
self,
|
|
1172
|
+
epoch: Instant,
|
|
1173
|
+
profile: Profile,
|
|
1174
|
+
):
|
|
1175
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1176
|
+
profile=profile,
|
|
1177
|
+
instants=[
|
|
1178
|
+
epoch,
|
|
1179
|
+
epoch + Duration.minutes(1.0),
|
|
1180
|
+
epoch + Duration.minutes(2.0),
|
|
1181
|
+
epoch + Duration.minutes(3.0),
|
|
1182
|
+
epoch + Duration.minutes(4.0),
|
|
1183
|
+
],
|
|
1184
|
+
time_column="t",
|
|
1185
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
1186
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
1187
|
+
attitude_columns=["q_1", "q_2", "q_3", "q_4"],
|
|
1188
|
+
angular_velocity_columns=["w_1", "w_2", "w_3"],
|
|
1189
|
+
)
|
|
1190
|
+
|
|
1191
|
+
assert list(generated_dataframe.columns) == [
|
|
1192
|
+
"r_1",
|
|
1193
|
+
"r_2",
|
|
1194
|
+
"r_3",
|
|
1195
|
+
"v_1",
|
|
1196
|
+
"v_2",
|
|
1197
|
+
"v_3",
|
|
1198
|
+
"q_1",
|
|
1199
|
+
"q_2",
|
|
1200
|
+
"q_3",
|
|
1201
|
+
"q_4",
|
|
1202
|
+
"w_1",
|
|
1203
|
+
"w_2",
|
|
1204
|
+
"w_3",
|
|
1205
|
+
]
|
|
1206
|
+
|
|
1207
|
+
def test_generate_dataframe_from_profile_success_custom_reference_frame(
|
|
1208
|
+
self,
|
|
1209
|
+
epoch: Instant,
|
|
1210
|
+
profile: Profile,
|
|
1211
|
+
):
|
|
1212
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1213
|
+
profile=profile,
|
|
1214
|
+
instants=[
|
|
1215
|
+
epoch,
|
|
1216
|
+
epoch + Duration.minutes(1.0),
|
|
1217
|
+
],
|
|
1218
|
+
reference_frame=Frame.ITRF(),
|
|
1219
|
+
)
|
|
1220
|
+
|
|
1221
|
+
assert list(generated_dataframe.columns) == [
|
|
1222
|
+
"r_ITRF_x",
|
|
1223
|
+
"r_ITRF_y",
|
|
1224
|
+
"r_ITRF_z",
|
|
1225
|
+
"v_ITRF_x",
|
|
1226
|
+
"v_ITRF_y",
|
|
1227
|
+
"v_ITRF_z",
|
|
1228
|
+
"q_B_ITRF_x",
|
|
1229
|
+
"q_B_ITRF_y",
|
|
1230
|
+
"q_B_ITRF_z",
|
|
1231
|
+
"q_B_ITRF_s",
|
|
1232
|
+
"w_B_ITRF_in_B_x",
|
|
1233
|
+
"w_B_ITRF_in_B_y",
|
|
1234
|
+
"w_B_ITRF_in_B_z",
|
|
1235
|
+
]
|
|
1236
|
+
|
|
1237
|
+
def test_generate_dataframe_from_profile_success_set_time_index_disabled(
|
|
1238
|
+
self,
|
|
1239
|
+
epoch: Instant,
|
|
1240
|
+
profile: Profile,
|
|
1241
|
+
):
|
|
1242
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1243
|
+
profile=profile,
|
|
1244
|
+
instants=[
|
|
1245
|
+
epoch,
|
|
1246
|
+
epoch + Duration.minutes(1.0),
|
|
1247
|
+
],
|
|
1248
|
+
time_column="t",
|
|
1249
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
1250
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
1251
|
+
attitude_columns=["q_1", "q_2", "q_3", "q_4"],
|
|
1252
|
+
angular_velocity_columns=["w_1", "w_2", "w_3"],
|
|
1253
|
+
set_time_index=False,
|
|
1254
|
+
)
|
|
1255
|
+
|
|
1256
|
+
assert list(generated_dataframe.columns) == [
|
|
1257
|
+
"t",
|
|
1258
|
+
"r_1",
|
|
1259
|
+
"r_2",
|
|
1260
|
+
"r_3",
|
|
1261
|
+
"v_1",
|
|
1262
|
+
"v_2",
|
|
1263
|
+
"v_3",
|
|
1264
|
+
"q_1",
|
|
1265
|
+
"q_2",
|
|
1266
|
+
"q_3",
|
|
1267
|
+
"q_4",
|
|
1268
|
+
"w_1",
|
|
1269
|
+
"w_2",
|
|
1270
|
+
"w_3",
|
|
1271
|
+
]
|
|
1272
|
+
|
|
1273
|
+
def test_generate_profile_from_dataframe_with_properties_success(
|
|
1274
|
+
self,
|
|
1275
|
+
epoch: Instant,
|
|
1276
|
+
dataframe_with_properties: pd.DataFrame,
|
|
1277
|
+
):
|
|
1278
|
+
profile: Profile = generate_profile_from_dataframe(
|
|
1279
|
+
dataframe=dataframe_with_properties,
|
|
1280
|
+
)
|
|
1281
|
+
|
|
1282
|
+
assert profile is not None
|
|
1283
|
+
state = profile.get_state_at(epoch)
|
|
1284
|
+
|
|
1285
|
+
assert state.has_subset(CoordinateSubset.mass())
|
|
1286
|
+
assert state.has_subset(CoordinateSubset.drag_coefficient())
|
|
1287
|
+
assert state.has_subset(CoordinateSubset.surface_area())
|
|
1288
|
+
|
|
1289
|
+
# Verify extracted coordinates are correct
|
|
1290
|
+
assert state.extract_coordinate(CoordinateSubset.mass())[0] == 100.0
|
|
1291
|
+
assert state.extract_coordinate(CoordinateSubset.drag_coefficient())[0] == 2.2
|
|
1292
|
+
assert state.extract_coordinate(CoordinateSubset.surface_area())[0] == 10.5
|
|
1293
|
+
|
|
1294
|
+
def test_generate_dataframe_from_profile_with_properties_success(
|
|
1295
|
+
self,
|
|
1296
|
+
epoch: Instant,
|
|
1297
|
+
dataframe_with_properties_indexed_timestamp: pd.DataFrame,
|
|
1298
|
+
):
|
|
1299
|
+
# Create a profile with properties
|
|
1300
|
+
profile_with_props = generate_profile_from_dataframe(
|
|
1301
|
+
dataframe=dataframe_with_properties_indexed_timestamp,
|
|
1302
|
+
)
|
|
1303
|
+
|
|
1304
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1305
|
+
profile=profile_with_props,
|
|
1306
|
+
instants=[
|
|
1307
|
+
epoch,
|
|
1308
|
+
epoch + Duration.minutes(1.0),
|
|
1309
|
+
],
|
|
1310
|
+
)
|
|
1311
|
+
|
|
1312
|
+
assert "mass" in generated_dataframe.columns
|
|
1313
|
+
assert "drag_coefficient" in generated_dataframe.columns
|
|
1314
|
+
assert "surface_area" in generated_dataframe.columns
|
|
1315
|
+
|
|
1316
|
+
# Verify the values
|
|
1317
|
+
assert generated_dataframe["mass"].iloc[0] == 100.0
|
|
1318
|
+
assert generated_dataframe["drag_coefficient"].iloc[0] == 2.2
|
|
1319
|
+
assert generated_dataframe["surface_area"].iloc[0] == 10.5
|
|
1320
|
+
|
|
1321
|
+
def test_generate_dataframe_from_profile_with_custom_property_columns(
|
|
1322
|
+
self,
|
|
1323
|
+
epoch: Instant,
|
|
1324
|
+
dataframe_with_properties_indexed_timestamp: pd.DataFrame,
|
|
1325
|
+
):
|
|
1326
|
+
# Create a profile with properties
|
|
1327
|
+
profile_with_props = generate_profile_from_dataframe(
|
|
1328
|
+
dataframe=dataframe_with_properties_indexed_timestamp,
|
|
1329
|
+
)
|
|
1330
|
+
|
|
1331
|
+
generated_dataframe: pd.DataFrame = generate_dataframe_from_profile(
|
|
1332
|
+
profile=profile_with_props,
|
|
1333
|
+
instants=[
|
|
1334
|
+
epoch,
|
|
1335
|
+
epoch + Duration.minutes(1.0),
|
|
1336
|
+
],
|
|
1337
|
+
time_column="t",
|
|
1338
|
+
position_columns=["r_1", "r_2", "r_3"],
|
|
1339
|
+
velocity_columns=["v_1", "v_2", "v_3"],
|
|
1340
|
+
attitude_columns=["q_1", "q_2", "q_3", "q_4"],
|
|
1341
|
+
angular_velocity_columns=["w_1", "w_2", "w_3"],
|
|
1342
|
+
mass_column="spacecraft_mass",
|
|
1343
|
+
drag_coefficient_column="cd",
|
|
1344
|
+
surface_area_column="area",
|
|
1345
|
+
set_time_index=False,
|
|
1346
|
+
)
|
|
1347
|
+
|
|
1348
|
+
assert "spacecraft_mass" in generated_dataframe.columns
|
|
1349
|
+
assert "cd" in generated_dataframe.columns
|
|
1350
|
+
assert "area" in generated_dataframe.columns
|
|
1351
|
+
|
|
1352
|
+
# Verify the values
|
|
1353
|
+
assert generated_dataframe["spacecraft_mass"].iloc[0] == 100.0
|
|
1354
|
+
assert generated_dataframe["cd"].iloc[0] == 2.2
|
|
1355
|
+
assert generated_dataframe["area"].iloc[0] == 10.5
|