open-fdd 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- open_fdd/air_handling_unit/faults/__init__.py +2253 -0
- open_fdd/air_handling_unit/faults/fault_condition.py +12 -10
- open_fdd/air_handling_unit/faults/fault_condition_eight.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_eleven.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_fifteen.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_five.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_four.py +34 -2
- open_fdd/air_handling_unit/faults/fault_condition_fourteen.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_nine.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_one.py +37 -6
- open_fdd/air_handling_unit/faults/fault_condition_seven.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_six.py +39 -2
- open_fdd/air_handling_unit/faults/fault_condition_ten.py +39 -3
- open_fdd/air_handling_unit/faults/fault_condition_thirteen.py +38 -2
- open_fdd/air_handling_unit/faults/fault_condition_three.py +32 -2
- open_fdd/air_handling_unit/faults/fault_condition_twelve.py +40 -3
- open_fdd/air_handling_unit/faults/fault_condition_two.py +32 -2
- open_fdd/air_handling_unit/faults/helper_utils.py +1 -29
- open_fdd/air_handling_unit/reports/__init__.py +894 -0
- open_fdd/air_handling_unit/reports/fault_report.py +41 -0
- open_fdd/tests/ahu/test_ahu_fc1.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc10.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc11.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc12.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc13.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc14.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc15.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc2.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc3.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc4.py +199 -127
- open_fdd/tests/ahu/test_ahu_fc5.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc6.py +2 -2
- open_fdd/tests/ahu/test_ahu_fc7.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc8.py +1 -1
- open_fdd/tests/ahu/test_ahu_fc9.py +1 -1
- {open_fdd-0.1.3.dist-info → open_fdd-0.1.5.dist-info}/METADATA +21 -14
- {open_fdd-0.1.3.dist-info → open_fdd-0.1.5.dist-info}/RECORD +40 -39
- {open_fdd-0.1.3.dist-info → open_fdd-0.1.5.dist-info}/LICENSE +0 -0
- {open_fdd-0.1.3.dist-info → open_fdd-0.1.5.dist-info}/WHEEL +0 -0
- {open_fdd-0.1.3.dist-info → open_fdd-0.1.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,894 @@
|
|
1
|
+
import matplotlib.pyplot as plt
|
2
|
+
from open_fdd.air_handling_unit.reports.fault_report import BaseFaultReport
|
3
|
+
import pandas as pd
|
4
|
+
|
5
|
+
|
6
|
+
class FaultCodeOneReport(BaseFaultReport):
|
7
|
+
def __init__(self, config):
|
8
|
+
super().__init__(config, "fc1_flag")
|
9
|
+
self.vfd_speed_percent_err_thres = config["VFD_SPEED_PERCENT_ERR_THRES"]
|
10
|
+
self.duct_static_col = config["DUCT_STATIC_COL"]
|
11
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
12
|
+
self.duct_static_setpoint_col = config["DUCT_STATIC_SETPOINT_COL"]
|
13
|
+
|
14
|
+
def create_plot(self, df: pd.DataFrame):
|
15
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
16
|
+
fig.suptitle("Fault Conditions 1 Plot")
|
17
|
+
ax1.plot(df.index, df[self.duct_static_col], label="STATIC")
|
18
|
+
ax1.legend(loc="best")
|
19
|
+
ax1.set_ylabel("Inch WC")
|
20
|
+
ax2.plot(df.index, df[self.supply_vfd_speed_col], color="g", label="FAN")
|
21
|
+
ax2.legend(loc="best")
|
22
|
+
ax2.set_ylabel("%")
|
23
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
24
|
+
ax3.set_xlabel("Date")
|
25
|
+
ax3.set_ylabel("Fault Flags")
|
26
|
+
ax3.legend(loc="best")
|
27
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
28
|
+
plt.show()
|
29
|
+
plt.close()
|
30
|
+
|
31
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
32
|
+
delta = df.index.to_series().diff()
|
33
|
+
summary = {
|
34
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
35
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
36
|
+
"hours_fc1_mode": round(
|
37
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
38
|
+
),
|
39
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
40
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
41
|
+
"flag_true_duct_static": round(
|
42
|
+
df[self.duct_static_col].where(df[self.fault_col] == 1).mean(), 2
|
43
|
+
),
|
44
|
+
"flag_true_duct_static_spt": round(
|
45
|
+
df[self.duct_static_setpoint_col].where(df[self.fault_col] == 1).mean(),
|
46
|
+
2,
|
47
|
+
),
|
48
|
+
"hours_motor_runtime": round(
|
49
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
50
|
+
/ pd.Timedelta(hours=1),
|
51
|
+
2,
|
52
|
+
),
|
53
|
+
}
|
54
|
+
return summary
|
55
|
+
|
56
|
+
|
57
|
+
class FaultCodeTwoReport(BaseFaultReport):
|
58
|
+
def __init__(self, config):
|
59
|
+
super().__init__(config, "fc2_flag")
|
60
|
+
self.mix_degf_err_thres = config["MIX_DEGF_ERR_THRES"]
|
61
|
+
self.return_degf_err_thres = config["RETURN_DEGF_ERR_THRES"]
|
62
|
+
self.outdoor_degf_err_thres = config["OUTDOOR_DEGF_ERR_THRES"]
|
63
|
+
self.mat_col = config["MAT_COL"]
|
64
|
+
self.rat_col = config["RAT_COL"]
|
65
|
+
self.oat_col = config["OAT_COL"]
|
66
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
67
|
+
|
68
|
+
def create_plot(self, df: pd.DataFrame):
|
69
|
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(25, 8))
|
70
|
+
fig.suptitle("Fault Conditions 2 Plot")
|
71
|
+
|
72
|
+
ax1.plot(df.index, df[self.mat_col], color="r", label="Mix Temp")
|
73
|
+
ax1.plot(df.index, df[self.rat_col], color="b", label="Return Temp")
|
74
|
+
ax1.plot(df.index, df[self.oat_col], color="g", label="Out Temp")
|
75
|
+
ax1.legend(loc="best")
|
76
|
+
ax1.set_ylabel("°F")
|
77
|
+
|
78
|
+
ax2.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
79
|
+
ax2.set_xlabel("Date")
|
80
|
+
ax2.set_ylabel("Fault Flags")
|
81
|
+
ax2.legend(loc="best")
|
82
|
+
|
83
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
84
|
+
plt.show()
|
85
|
+
plt.close()
|
86
|
+
|
87
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
88
|
+
delta = df.index.to_series().diff()
|
89
|
+
summary = {
|
90
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
91
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
92
|
+
"hours_fc2_mode": round(
|
93
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
94
|
+
),
|
95
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
96
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
97
|
+
"flag_true_mat": round(
|
98
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
99
|
+
),
|
100
|
+
"flag_true_oat": round(
|
101
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
102
|
+
),
|
103
|
+
"flag_true_rat": round(
|
104
|
+
df[self.rat_col].where(df[self.fault_col] == 1).mean(), 2
|
105
|
+
),
|
106
|
+
"hours_motor_runtime": round(
|
107
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
108
|
+
/ pd.Timedelta(hours=1),
|
109
|
+
2,
|
110
|
+
),
|
111
|
+
}
|
112
|
+
return summary
|
113
|
+
|
114
|
+
|
115
|
+
class FaultCodeThreeReport(BaseFaultReport):
|
116
|
+
def __init__(self, config):
|
117
|
+
super().__init__(config, "fc3_flag")
|
118
|
+
self.mix_degf_err_thres = config["MIX_DEGF_ERR_THRES"]
|
119
|
+
self.return_degf_err_thres = config["RETURN_DEGF_ERR_THRES"]
|
120
|
+
self.outdoor_degf_err_thres = config["OUTDOOR_DEGF_ERR_THRES"]
|
121
|
+
self.mat_col = config["MAT_COL"]
|
122
|
+
self.rat_col = config["RAT_COL"]
|
123
|
+
self.oat_col = config["OAT_COL"]
|
124
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
125
|
+
|
126
|
+
def create_plot(self, df: pd.DataFrame):
|
127
|
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(25, 8))
|
128
|
+
fig.suptitle("Fault Conditions 3 Plot")
|
129
|
+
|
130
|
+
ax1.plot(df.index, df[self.mat_col], color="r", label="Mix Temp")
|
131
|
+
ax1.plot(df.index, df[self.rat_col], color="b", label="Return Temp")
|
132
|
+
ax1.plot(df.index, df[self.oat_col], color="g", label="Out Temp")
|
133
|
+
ax1.legend(loc="best")
|
134
|
+
ax1.set_ylabel("°F")
|
135
|
+
|
136
|
+
ax2.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
137
|
+
ax2.set_xlabel("Date")
|
138
|
+
ax2.set_ylabel("Fault Flags")
|
139
|
+
ax2.legend(loc="best")
|
140
|
+
|
141
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
142
|
+
plt.show()
|
143
|
+
plt.close()
|
144
|
+
|
145
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
146
|
+
delta = df.index.to_series().diff()
|
147
|
+
summary = {
|
148
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
149
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
150
|
+
"hours_fc3_mode": round(
|
151
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
152
|
+
),
|
153
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
154
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
155
|
+
"flag_true_mat": round(
|
156
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
157
|
+
),
|
158
|
+
"flag_true_oat": round(
|
159
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
160
|
+
),
|
161
|
+
"flag_true_rat": round(
|
162
|
+
df[self.rat_col].where(df[self.fault_col] == 1).mean(), 2
|
163
|
+
),
|
164
|
+
"hours_motor_runtime": round(
|
165
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
166
|
+
/ pd.Timedelta(hours=1),
|
167
|
+
2,
|
168
|
+
),
|
169
|
+
}
|
170
|
+
return summary
|
171
|
+
|
172
|
+
|
173
|
+
class FaultCodeFourReport(BaseFaultReport):
|
174
|
+
def __init__(self, config):
|
175
|
+
super().__init__(config, "fc4_flag")
|
176
|
+
self.delta_os_max = config["DELTA_OS_MAX"]
|
177
|
+
self.heating_mode_calc_col = "heating_mode"
|
178
|
+
self.econ_only_cooling_mode_calc_col = "econ_only_cooling_mode"
|
179
|
+
self.econ_plus_mech_cooling_mode_calc_col = "econ_plus_mech_cooling_mode"
|
180
|
+
self.mech_cooling_only_mode_calc_col = "mech_cooling_only_mode"
|
181
|
+
|
182
|
+
def create_plot(self, df: pd.DataFrame):
|
183
|
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(25, 8))
|
184
|
+
fig.suptitle("Fault Condition 4 Plots")
|
185
|
+
|
186
|
+
ax1.plot(df.index, df[self.heating_mode_calc_col], label="Heat", color="orange")
|
187
|
+
ax1.plot(
|
188
|
+
df.index,
|
189
|
+
df[self.econ_only_cooling_mode_calc_col],
|
190
|
+
label="Econ Clg",
|
191
|
+
color="olive",
|
192
|
+
)
|
193
|
+
ax1.plot(
|
194
|
+
df.index,
|
195
|
+
df[self.econ_plus_mech_cooling_mode_calc_col],
|
196
|
+
label="Econ + Mech Clg",
|
197
|
+
color="c",
|
198
|
+
)
|
199
|
+
ax1.plot(
|
200
|
+
df.index,
|
201
|
+
df[self.mech_cooling_only_mode_calc_col],
|
202
|
+
label="Mech Clg",
|
203
|
+
color="m",
|
204
|
+
)
|
205
|
+
ax1.set_xlabel("Date")
|
206
|
+
ax1.set_ylabel("Calculated AHU Operating States")
|
207
|
+
ax1.legend(loc="best")
|
208
|
+
|
209
|
+
ax2.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
210
|
+
ax2.set_xlabel("Date")
|
211
|
+
ax2.set_ylabel("Fault Flags")
|
212
|
+
ax2.legend(loc="best")
|
213
|
+
|
214
|
+
plt.tight_layout()
|
215
|
+
plt.show()
|
216
|
+
plt.close()
|
217
|
+
|
218
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
219
|
+
delta = df.index.to_series().diff()
|
220
|
+
summary = {
|
221
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
222
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
223
|
+
"hours_fc4_mode": round(
|
224
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
225
|
+
),
|
226
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
227
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
228
|
+
"percent_of_time_AHU_in_mech_clg_mode": round(
|
229
|
+
df[self.mech_cooling_only_mode_calc_col].mean() * 100, 2
|
230
|
+
),
|
231
|
+
"percent_of_time_AHU_in_econ_plus_mech_clg_mode": round(
|
232
|
+
df[self.econ_plus_mech_cooling_mode_calc_col].mean() * 100, 2
|
233
|
+
),
|
234
|
+
"percent_of_time_AHU_in_econ_free_clg_mode": round(
|
235
|
+
df[self.econ_only_cooling_mode_calc_col].mean() * 100, 2
|
236
|
+
),
|
237
|
+
"percent_of_time_AHU_in_heating_mode": round(
|
238
|
+
df[self.heating_mode_calc_col].mean() * 100, 2
|
239
|
+
),
|
240
|
+
"total_hours_heating_mode": round(
|
241
|
+
(delta * df[self.heating_mode_calc_col]).sum() / pd.Timedelta(hours=1),
|
242
|
+
2,
|
243
|
+
),
|
244
|
+
"total_hours_econ_mode": round(
|
245
|
+
(delta * df[self.econ_only_cooling_mode_calc_col]).sum()
|
246
|
+
/ pd.Timedelta(hours=1),
|
247
|
+
2,
|
248
|
+
),
|
249
|
+
"total_hours_econ_mech_clg_mode": round(
|
250
|
+
(delta * df[self.econ_plus_mech_cooling_mode_calc_col]).sum()
|
251
|
+
/ pd.Timedelta(hours=1),
|
252
|
+
2,
|
253
|
+
),
|
254
|
+
"total_hours_mech_clg_mode": round(
|
255
|
+
(delta * df[self.mech_cooling_only_mode_calc_col]).sum()
|
256
|
+
/ pd.Timedelta(hours=1),
|
257
|
+
2,
|
258
|
+
),
|
259
|
+
}
|
260
|
+
return summary
|
261
|
+
|
262
|
+
|
263
|
+
class FaultCodeFiveReport(BaseFaultReport):
|
264
|
+
def __init__(self, config):
|
265
|
+
super().__init__(config, "fc5_flag")
|
266
|
+
self.mix_degf_err_thres = config["MIX_DEGF_ERR_THRES"]
|
267
|
+
self.supply_degf_err_thres = config["SUPPLY_DEGF_ERR_THRES"]
|
268
|
+
self.delta_t_supply_fan = config["DELTA_T_SUPPLY_FAN"]
|
269
|
+
self.mat_col = config["MAT_COL"]
|
270
|
+
self.sat_col = config["SAT_COL"]
|
271
|
+
self.heating_sig_col = config["HEATING_SIG_COL"]
|
272
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
273
|
+
|
274
|
+
def create_plot(self, df: pd.DataFrame):
|
275
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
276
|
+
fig.suptitle("Fault Conditions 5 Plot")
|
277
|
+
|
278
|
+
ax1.plot(df.index, df[self.mat_col], color="g", label="Mix Temp")
|
279
|
+
ax1.plot(df.index, df[self.sat_col], color="b", label="Supply Temp")
|
280
|
+
ax1.legend(loc="best")
|
281
|
+
ax1.set_ylabel("°F")
|
282
|
+
|
283
|
+
ax2.plot(df.index, df[self.heating_sig_col], label="Htg Valve", color="r")
|
284
|
+
ax2.set_xlabel("Date")
|
285
|
+
ax2.set_ylabel("%")
|
286
|
+
ax2.legend(loc="best")
|
287
|
+
|
288
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
289
|
+
ax3.set_xlabel("Date")
|
290
|
+
ax3.set_ylabel("Fault Flags")
|
291
|
+
ax3.legend(loc="best")
|
292
|
+
|
293
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
294
|
+
plt.show()
|
295
|
+
plt.close()
|
296
|
+
|
297
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
298
|
+
delta = df.index.to_series().diff()
|
299
|
+
summary = {
|
300
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
301
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
302
|
+
"hours_fc5_mode": round(
|
303
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
304
|
+
),
|
305
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
306
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
307
|
+
"flag_true_mat": round(
|
308
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
309
|
+
),
|
310
|
+
"flag_true_sat": round(
|
311
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
312
|
+
),
|
313
|
+
"hours_motor_runtime": round(
|
314
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
315
|
+
/ pd.Timedelta(hours=1),
|
316
|
+
2,
|
317
|
+
),
|
318
|
+
}
|
319
|
+
return summary
|
320
|
+
|
321
|
+
|
322
|
+
class FaultCodeSixReport(BaseFaultReport):
|
323
|
+
def __init__(self, config):
|
324
|
+
super().__init__(config, "fc6_flag")
|
325
|
+
self.supply_fan_air_volume_col = config["SUPPLY_FAN_AIR_VOLUME_COL"]
|
326
|
+
self.mat_col = config["MAT_COL"]
|
327
|
+
self.oat_col = config["OAT_COL"]
|
328
|
+
self.rat_col = config["RAT_COL"]
|
329
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
330
|
+
|
331
|
+
def create_plot(self, df: pd.DataFrame):
|
332
|
+
fig, (ax1, ax2, ax3, ax4, ax5) = plt.subplots(5, 1, figsize=(25, 8))
|
333
|
+
fig.suptitle("Fault Conditions 6 Plot")
|
334
|
+
|
335
|
+
ax1.plot(df.index, df["rat_minus_oat"], label="Rat Minus Oat")
|
336
|
+
ax1.legend(loc="best")
|
337
|
+
ax1.set_ylabel("°F")
|
338
|
+
|
339
|
+
ax2.plot(
|
340
|
+
df.index,
|
341
|
+
df[self.supply_fan_air_volume_col],
|
342
|
+
label="Total Air Flow",
|
343
|
+
color="r",
|
344
|
+
)
|
345
|
+
ax2.set_xlabel("Date")
|
346
|
+
ax2.set_ylabel("CFM")
|
347
|
+
ax2.legend(loc="best")
|
348
|
+
|
349
|
+
ax3.plot(df.index, df["percent_oa_calc"], label="OA Frac Calc", color="m")
|
350
|
+
ax3.plot(df.index, df["perc_OAmin"], label="OA Perc Min Calc", color="y")
|
351
|
+
ax3.set_xlabel("Date")
|
352
|
+
ax3.set_ylabel("%")
|
353
|
+
ax3.legend(loc="best")
|
354
|
+
|
355
|
+
ax4.plot(
|
356
|
+
df.index,
|
357
|
+
df["percent_oa_calc_minus_perc_OAmin"],
|
358
|
+
label="OA Error Frac Vs Perc Min Calc",
|
359
|
+
color="g",
|
360
|
+
)
|
361
|
+
ax4.set_xlabel("Date")
|
362
|
+
ax4.set_ylabel("%")
|
363
|
+
ax4.legend(loc="best")
|
364
|
+
|
365
|
+
ax5.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
366
|
+
ax5.set_xlabel("Date")
|
367
|
+
ax5.set_ylabel("Fault Flags")
|
368
|
+
ax5.legend(loc="best")
|
369
|
+
|
370
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
371
|
+
plt.show()
|
372
|
+
plt.close()
|
373
|
+
|
374
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
375
|
+
delta = df.index.to_series().diff()
|
376
|
+
summary = {
|
377
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
378
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
379
|
+
"hours_fc6_mode": round(
|
380
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
381
|
+
),
|
382
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
383
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
384
|
+
"flag_true_mat": round(
|
385
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
386
|
+
),
|
387
|
+
"flag_true_rat": round(
|
388
|
+
df[self.rat_col].where(df[self.fault_col] == 1).mean(), 2
|
389
|
+
),
|
390
|
+
"flag_true_oat": round(
|
391
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
392
|
+
),
|
393
|
+
"hours_motor_runtime": round(
|
394
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
395
|
+
/ pd.Timedelta(hours=1),
|
396
|
+
2,
|
397
|
+
),
|
398
|
+
}
|
399
|
+
return summary
|
400
|
+
|
401
|
+
|
402
|
+
class FaultCodeSevenReport(BaseFaultReport):
|
403
|
+
def __init__(self, config):
|
404
|
+
super().__init__(config, "fc7_flag")
|
405
|
+
self.sat_col = config["SAT_COL"]
|
406
|
+
self.sat_setpoint_col = config["SAT_SETPOINT_COL"]
|
407
|
+
self.heating_sig_col = config["HEATING_SIG_COL"]
|
408
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
409
|
+
|
410
|
+
def create_plot(self, df: pd.DataFrame):
|
411
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
412
|
+
fig.suptitle("Fault Conditions 7 Plot")
|
413
|
+
|
414
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
415
|
+
ax1.plot(df.index, df[self.sat_setpoint_col], label="SATsp")
|
416
|
+
ax1.legend(loc="best")
|
417
|
+
ax1.set_ylabel("AHU Supply Temps °F")
|
418
|
+
|
419
|
+
ax2.plot(df.index, df[self.heating_sig_col], color="r", label="AHU Heat Vlv")
|
420
|
+
ax2.legend(loc="best")
|
421
|
+
ax2.set_ylabel("%")
|
422
|
+
|
423
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
424
|
+
ax3.set_xlabel("Date")
|
425
|
+
ax3.set_ylabel("Fault Flags")
|
426
|
+
ax3.legend(loc="best")
|
427
|
+
|
428
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
429
|
+
plt.show()
|
430
|
+
plt.close()
|
431
|
+
|
432
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
433
|
+
delta = df.index.to_series().diff()
|
434
|
+
summary = {
|
435
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
436
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
437
|
+
"hours_fc7_mode": round(
|
438
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
439
|
+
),
|
440
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
441
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
442
|
+
"flag_true_satsp": round(
|
443
|
+
df[self.sat_setpoint_col].where(df[self.fault_col] == 1).mean(), 2
|
444
|
+
),
|
445
|
+
"flag_true_sat": round(
|
446
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
447
|
+
),
|
448
|
+
"hours_motor_runtime": round(
|
449
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
450
|
+
/ pd.Timedelta(hours=1),
|
451
|
+
2,
|
452
|
+
),
|
453
|
+
}
|
454
|
+
return summary
|
455
|
+
|
456
|
+
|
457
|
+
class FaultCodeEightReport(BaseFaultReport):
|
458
|
+
def __init__(self, config):
|
459
|
+
super().__init__(config, "fc8_flag")
|
460
|
+
self.sat_col = config["SAT_COL"]
|
461
|
+
self.mat_col = config["MAT_COL"]
|
462
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
463
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
464
|
+
|
465
|
+
def create_plot(self, df: pd.DataFrame):
|
466
|
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(25, 8))
|
467
|
+
fig.suptitle("Fault Conditions 8 Plot")
|
468
|
+
|
469
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
470
|
+
ax1.plot(df.index, df[self.mat_col], label="MAT")
|
471
|
+
ax1.legend(loc="best")
|
472
|
+
ax1.set_ylabel("AHU Temps °F")
|
473
|
+
|
474
|
+
ax2.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
475
|
+
ax2.set_xlabel("Date")
|
476
|
+
ax2.set_ylabel("Fault Flags")
|
477
|
+
ax2.legend(loc="best")
|
478
|
+
|
479
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
480
|
+
plt.show()
|
481
|
+
plt.close()
|
482
|
+
|
483
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
484
|
+
delta = df.index.to_series().diff()
|
485
|
+
summary = {
|
486
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
487
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
488
|
+
"hours_fc8_mode": round(
|
489
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
490
|
+
),
|
491
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
492
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
493
|
+
"flag_true_mat": round(
|
494
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
495
|
+
),
|
496
|
+
"flag_true_sat": round(
|
497
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
498
|
+
),
|
499
|
+
"hours_motor_runtime": round(
|
500
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
501
|
+
/ pd.Timedelta(hours=1),
|
502
|
+
2,
|
503
|
+
),
|
504
|
+
}
|
505
|
+
return summary
|
506
|
+
|
507
|
+
|
508
|
+
class FaultCodeNineReport(BaseFaultReport):
|
509
|
+
def __init__(self, config):
|
510
|
+
super().__init__(config, "fc9_flag")
|
511
|
+
self.sat_setpoint_col = config["SAT_SETPOINT_COL"]
|
512
|
+
self.oat_col = config["OAT_COL"]
|
513
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
514
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
515
|
+
|
516
|
+
def create_plot(self, df: pd.DataFrame):
|
517
|
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(25, 8))
|
518
|
+
fig.suptitle("Fault Conditions 9 Plot")
|
519
|
+
|
520
|
+
ax1.plot(df.index, df[self.sat_setpoint_col], label="SATSP")
|
521
|
+
ax1.plot(df.index, df[self.oat_col], label="OAT")
|
522
|
+
ax1.legend(loc="best")
|
523
|
+
ax1.set_ylabel("AHU Temps °F")
|
524
|
+
|
525
|
+
ax2.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
526
|
+
ax2.set_xlabel("Date")
|
527
|
+
ax2.set_ylabel("Fault Flags")
|
528
|
+
ax2.legend(loc="best")
|
529
|
+
|
530
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
531
|
+
plt.show()
|
532
|
+
plt.close()
|
533
|
+
|
534
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
535
|
+
delta = df.index.to_series().diff()
|
536
|
+
summary = {
|
537
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
538
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
539
|
+
"hours_fc9_mode": round(
|
540
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
541
|
+
),
|
542
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
543
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
544
|
+
"flag_true_oat": round(
|
545
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
546
|
+
),
|
547
|
+
"flag_true_satsp": round(
|
548
|
+
df[self.sat_setpoint_col].where(df[self.fault_col] == 1).mean(), 2
|
549
|
+
),
|
550
|
+
"hours_motor_runtime": round(
|
551
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
552
|
+
/ pd.Timedelta(hours=1),
|
553
|
+
2,
|
554
|
+
),
|
555
|
+
}
|
556
|
+
return summary
|
557
|
+
|
558
|
+
|
559
|
+
class FaultCodeTenReport(BaseFaultReport):
|
560
|
+
def __init__(self, config):
|
561
|
+
super().__init__(config, "fc10_flag")
|
562
|
+
self.oat_col = config["OAT_COL"]
|
563
|
+
self.mat_col = config["MAT_COL"]
|
564
|
+
self.cooling_sig_col = config["COOLING_SIG_COL"]
|
565
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
566
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
567
|
+
|
568
|
+
def create_plot(self, df: pd.DataFrame):
|
569
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
570
|
+
fig.suptitle("Fault Conditions 10 Plot")
|
571
|
+
|
572
|
+
ax1.plot(df.index, df[self.mat_col], label="MAT")
|
573
|
+
ax1.plot(df.index, df[self.oat_col], label="OAT")
|
574
|
+
ax1.legend(loc="best")
|
575
|
+
ax1.set_ylabel("AHU Temps °F")
|
576
|
+
|
577
|
+
ax2.plot(df.index, df[self.cooling_sig_col], label="AHU Cool Vlv", color="r")
|
578
|
+
ax2.plot(df.index, df[self.economizer_sig_col], label="AHU Dpr Cmd", color="g")
|
579
|
+
ax2.legend(loc="best")
|
580
|
+
ax2.set_ylabel("%")
|
581
|
+
|
582
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
583
|
+
ax3.set_xlabel("Date")
|
584
|
+
ax3.set_ylabel("Fault Flags")
|
585
|
+
ax3.legend(loc="best")
|
586
|
+
|
587
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
588
|
+
plt.show()
|
589
|
+
plt.close()
|
590
|
+
|
591
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
592
|
+
delta = df.index.to_series().diff()
|
593
|
+
summary = {
|
594
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
595
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
596
|
+
"hours_fc10_mode": round(
|
597
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
598
|
+
),
|
599
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
600
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
601
|
+
"flag_true_oat": round(
|
602
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
603
|
+
),
|
604
|
+
"flag_true_mat": round(
|
605
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
606
|
+
),
|
607
|
+
"hours_motor_runtime": round(
|
608
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
609
|
+
/ pd.Timedelta(hours=1),
|
610
|
+
2,
|
611
|
+
),
|
612
|
+
}
|
613
|
+
return summary
|
614
|
+
|
615
|
+
|
616
|
+
class FaultCodeElevenReport(BaseFaultReport):
|
617
|
+
def __init__(self, config):
|
618
|
+
super().__init__(config, "fc11_flag")
|
619
|
+
self.sat_setpoint_col = config["SAT_SETPOINT_COL"]
|
620
|
+
self.oat_col = config["OAT_COL"]
|
621
|
+
self.cooling_sig_col = config["COOLING_SIG_COL"]
|
622
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
623
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
624
|
+
|
625
|
+
def create_plot(self, df: pd.DataFrame):
|
626
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
627
|
+
fig.suptitle("Fault Conditions 11 Plot")
|
628
|
+
|
629
|
+
ax1.plot(df.index, df[self.sat_setpoint_col], label="SATSP")
|
630
|
+
ax1.plot(df.index, df[self.oat_col], label="OAT")
|
631
|
+
ax1.legend(loc="best")
|
632
|
+
ax1.set_ylabel("AHU Temps °F")
|
633
|
+
|
634
|
+
ax2.plot(df.index, df[self.cooling_sig_col], label="AHU Cool Vlv", color="r")
|
635
|
+
ax2.plot(df.index, df[self.economizer_sig_col], label="AHU Dpr Cmd", color="g")
|
636
|
+
ax2.legend(loc="best")
|
637
|
+
ax2.set_ylabel("%")
|
638
|
+
|
639
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
640
|
+
ax3.set_xlabel("Date")
|
641
|
+
ax3.set_ylabel("Fault Flags")
|
642
|
+
ax3.legend(loc="best")
|
643
|
+
|
644
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
645
|
+
plt.show()
|
646
|
+
plt.close()
|
647
|
+
|
648
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
649
|
+
delta = df.index.to_series().diff()
|
650
|
+
summary = {
|
651
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
652
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
653
|
+
"hours_fc11_mode": round(
|
654
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
655
|
+
),
|
656
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
657
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
658
|
+
"flag_true_oat": round(
|
659
|
+
df[self.oat_col].where(df[self.fault_col] == 1).mean(), 2
|
660
|
+
),
|
661
|
+
"flag_true_sat_sp": round(
|
662
|
+
df[self.sat_setpoint_col].where(df[self.fault_col] == 1).mean(), 2
|
663
|
+
),
|
664
|
+
"hours_motor_runtime": round(
|
665
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
666
|
+
/ pd.Timedelta(hours=1),
|
667
|
+
2,
|
668
|
+
),
|
669
|
+
}
|
670
|
+
return summary
|
671
|
+
|
672
|
+
|
673
|
+
class FaultCodeTwelveReport(BaseFaultReport):
|
674
|
+
def __init__(self, config):
|
675
|
+
super().__init__(config, "fc12_flag")
|
676
|
+
self.sat_col = config["SAT_COL"]
|
677
|
+
self.mat_col = config["MAT_COL"]
|
678
|
+
self.cooling_sig_col = config["COOLING_SIG_COL"]
|
679
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
680
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
681
|
+
|
682
|
+
def create_plot(self, df: pd.DataFrame):
|
683
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
684
|
+
fig.suptitle("Fault Conditions 12 Plot")
|
685
|
+
|
686
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
687
|
+
ax1.plot(df.index, df[self.mat_col], label="MAT")
|
688
|
+
ax1.legend(loc="best")
|
689
|
+
ax1.set_ylabel("AHU Temps °F")
|
690
|
+
|
691
|
+
ax2.plot(df.index, df[self.cooling_sig_col], label="AHU Cool Vlv", color="r")
|
692
|
+
ax2.plot(df.index, df[self.economizer_sig_col], label="AHU Dpr Cmd", color="g")
|
693
|
+
ax2.legend(loc="best")
|
694
|
+
ax2.set_ylabel("%")
|
695
|
+
|
696
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
697
|
+
ax3.set_xlabel("Date")
|
698
|
+
ax3.set_ylabel("Fault Flags")
|
699
|
+
ax3.legend(loc="best")
|
700
|
+
|
701
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
702
|
+
plt.show()
|
703
|
+
plt.close()
|
704
|
+
|
705
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
706
|
+
delta = df.index.to_series().diff()
|
707
|
+
summary = {
|
708
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
709
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
710
|
+
"hours_fc12_mode": round(
|
711
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
712
|
+
),
|
713
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
714
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
715
|
+
"flag_true_mat": round(
|
716
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
717
|
+
),
|
718
|
+
"flag_true_sat": round(
|
719
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
720
|
+
),
|
721
|
+
"hours_motor_runtime": round(
|
722
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
723
|
+
/ pd.Timedelta(hours=1),
|
724
|
+
2,
|
725
|
+
),
|
726
|
+
}
|
727
|
+
return summary
|
728
|
+
|
729
|
+
|
730
|
+
class FaultCodeThirteenReport(BaseFaultReport):
|
731
|
+
def __init__(self, config):
|
732
|
+
super().__init__(config, "fc13_flag")
|
733
|
+
self.sat_col = config["SAT_COL"]
|
734
|
+
self.mat_col = config["MAT_COL"]
|
735
|
+
self.cooling_sig_col = config["COOLING_SIG_COL"]
|
736
|
+
self.economizer_sig_col = config["ECONOMIZER_SIG_COL"]
|
737
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
738
|
+
|
739
|
+
def create_plot(self, df: pd.DataFrame):
|
740
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
741
|
+
fig.suptitle("Fault Conditions 13 Plot")
|
742
|
+
|
743
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
744
|
+
ax1.plot(df.index, df[self.mat_col], label="MAT")
|
745
|
+
ax1.legend(loc="best")
|
746
|
+
ax1.set_ylabel("AHU Temps °F")
|
747
|
+
|
748
|
+
ax2.plot(df.index, df[self.cooling_sig_col], label="AHU Cool Vlv", color="r")
|
749
|
+
ax2.plot(df.index, df[self.economizer_sig_col], label="AHU Dpr Cmd", color="g")
|
750
|
+
ax2.legend(loc="best")
|
751
|
+
ax2.set_ylabel("%")
|
752
|
+
|
753
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
754
|
+
ax3.set_xlabel("Date")
|
755
|
+
ax3.set_ylabel("Fault Flags")
|
756
|
+
ax3.legend(loc="best")
|
757
|
+
|
758
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
759
|
+
plt.show()
|
760
|
+
plt.close()
|
761
|
+
|
762
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
763
|
+
delta = df.index.to_series().diff()
|
764
|
+
summary = {
|
765
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
766
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
767
|
+
"hours_fc13_mode": round(
|
768
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
769
|
+
),
|
770
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
771
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
772
|
+
"flag_true_mat": round(
|
773
|
+
df[self.mat_col].where(df[self.fault_col] == 1).mean(), 2
|
774
|
+
),
|
775
|
+
"flag_true_sat": round(
|
776
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
777
|
+
),
|
778
|
+
"hours_motor_runtime": round(
|
779
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
780
|
+
/ pd.Timedelta(hours=1),
|
781
|
+
2,
|
782
|
+
),
|
783
|
+
}
|
784
|
+
return summary
|
785
|
+
|
786
|
+
|
787
|
+
class FaultCodeFourteenReport(BaseFaultReport):
|
788
|
+
def __init__(self, config):
|
789
|
+
super().__init__(config, "fc14_flag")
|
790
|
+
self.sat_col = config["SAT_COL"]
|
791
|
+
self.clt_col = config["CLT_COL"]
|
792
|
+
self.cooling_sig_col = config["COOLING_SIG_COL"]
|
793
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
794
|
+
|
795
|
+
def create_plot(self, df: pd.DataFrame):
|
796
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
797
|
+
fig.suptitle("Fault Conditions 14 Plot")
|
798
|
+
|
799
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
800
|
+
ax1.plot(df.index, df[self.clt_col], label="CLT")
|
801
|
+
ax1.legend(loc="best")
|
802
|
+
ax1.set_ylabel("AHU Temps °F")
|
803
|
+
|
804
|
+
ax2.plot(df.index, df[self.cooling_sig_col], label="AHU Cool Vlv", color="r")
|
805
|
+
ax2.legend(loc="best")
|
806
|
+
ax2.set_ylabel("%")
|
807
|
+
|
808
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
809
|
+
ax3.set_xlabel("Date")
|
810
|
+
ax3.set_ylabel("Fault Flags")
|
811
|
+
ax3.legend(loc="best")
|
812
|
+
|
813
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
814
|
+
plt.show()
|
815
|
+
plt.close()
|
816
|
+
|
817
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
818
|
+
delta = df.index.to_series().diff()
|
819
|
+
summary = {
|
820
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
821
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
822
|
+
"hours_fc14_mode": round(
|
823
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
824
|
+
),
|
825
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
826
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
827
|
+
"flag_true_clt": round(
|
828
|
+
df[self.clt_col].where(df[self.fault_col] == 1).mean(), 2
|
829
|
+
),
|
830
|
+
"flag_true_sat": round(
|
831
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
832
|
+
),
|
833
|
+
"hours_motor_runtime": round(
|
834
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
835
|
+
/ pd.Timedelta(hours=1),
|
836
|
+
2,
|
837
|
+
),
|
838
|
+
}
|
839
|
+
return summary
|
840
|
+
|
841
|
+
|
842
|
+
class FaultCodeFifteenReport(BaseFaultReport):
|
843
|
+
def __init__(self, config):
|
844
|
+
super().__init__(config, "fc15_flag")
|
845
|
+
self.sat_col = config["SAT_COL"]
|
846
|
+
self.hlt_col = config["HLT_COL"]
|
847
|
+
self.heating_sig_col = config["HEATING_SIG_COL"]
|
848
|
+
self.supply_vfd_speed_col = config["SUPPLY_VFD_SPEED_COL"]
|
849
|
+
|
850
|
+
def create_plot(self, df: pd.DataFrame):
|
851
|
+
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(25, 8))
|
852
|
+
fig.suptitle("Fault Conditions 15 Plot")
|
853
|
+
|
854
|
+
ax1.plot(df.index, df[self.sat_col], label="SAT")
|
855
|
+
ax1.plot(df.index, df[self.hlt_col], label="HLT")
|
856
|
+
ax1.legend(loc="best")
|
857
|
+
ax1.set_ylabel("AHU Temps °F")
|
858
|
+
|
859
|
+
ax2.plot(df.index, df[self.heating_sig_col], label="AHU Heat Vlv", color="r")
|
860
|
+
ax2.legend(loc="best")
|
861
|
+
ax2.set_ylabel("%")
|
862
|
+
|
863
|
+
ax3.plot(df.index, df[self.fault_col], label="Fault", color="k")
|
864
|
+
ax3.set_xlabel("Date")
|
865
|
+
ax3.set_ylabel("Fault Flags")
|
866
|
+
ax3.legend(loc="best")
|
867
|
+
|
868
|
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
869
|
+
plt.show()
|
870
|
+
plt.close()
|
871
|
+
|
872
|
+
def summarize_fault_times(self, df: pd.DataFrame) -> dict:
|
873
|
+
delta = df.index.to_series().diff()
|
874
|
+
summary = {
|
875
|
+
"total_days": round(delta.sum() / pd.Timedelta(days=1), 2),
|
876
|
+
"total_hours": round(delta.sum() / pd.Timedelta(hours=1)),
|
877
|
+
"hours_fc15_mode": round(
|
878
|
+
(delta * df[self.fault_col]).sum() / pd.Timedelta(hours=1)
|
879
|
+
),
|
880
|
+
"percent_true": round(df[self.fault_col].mean() * 100, 2),
|
881
|
+
"percent_false": round((100 - df[self.fault_col].mean() * 100), 2),
|
882
|
+
"flag_true_hlt": round(
|
883
|
+
df[self.hlt_col].where(df[self.fault_col] == 1).mean(), 2
|
884
|
+
),
|
885
|
+
"flag_true_sat": round(
|
886
|
+
df[self.sat_col].where(df[self.fault_col] == 1).mean(), 2
|
887
|
+
),
|
888
|
+
"hours_motor_runtime": round(
|
889
|
+
(delta * df[self.supply_vfd_speed_col].gt(0.01).astype(int)).sum()
|
890
|
+
/ pd.Timedelta(hours=1),
|
891
|
+
2,
|
892
|
+
),
|
893
|
+
}
|
894
|
+
return summary
|