oodeel 0.1.1__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of oodeel might be problematic. Click here for more details.

Files changed (47) hide show
  1. oodeel/__init__.py +1 -1
  2. oodeel/datasets/__init__.py +2 -1
  3. oodeel/datasets/data_handler.py +162 -94
  4. oodeel/datasets/deprecated/DEPRECATED_data_handler.py +236 -0
  5. oodeel/datasets/{ooddataset.py → deprecated/DEPRECATED_ooddataset.py} +14 -13
  6. oodeel/datasets/deprecated/DEPRECATED_tf_data_handler.py +671 -0
  7. oodeel/datasets/deprecated/DEPRECATED_torch_data_handler.py +769 -0
  8. oodeel/datasets/deprecated/__init__.py +31 -0
  9. oodeel/datasets/tf_data_handler.py +105 -167
  10. oodeel/datasets/torch_data_handler.py +109 -181
  11. oodeel/eval/metrics.py +7 -2
  12. oodeel/eval/plots/features.py +2 -2
  13. oodeel/eval/plots/plotly.py +2 -2
  14. oodeel/extractor/feature_extractor.py +30 -9
  15. oodeel/extractor/keras_feature_extractor.py +70 -13
  16. oodeel/extractor/torch_feature_extractor.py +120 -33
  17. oodeel/methods/__init__.py +17 -1
  18. oodeel/methods/base.py +103 -17
  19. oodeel/methods/dknn.py +22 -9
  20. oodeel/methods/energy.py +8 -0
  21. oodeel/methods/entropy.py +8 -0
  22. oodeel/methods/gen.py +118 -0
  23. oodeel/methods/gram.py +307 -0
  24. oodeel/methods/mahalanobis.py +14 -12
  25. oodeel/methods/mls.py +8 -0
  26. oodeel/methods/odin.py +8 -0
  27. oodeel/methods/rmds.py +122 -0
  28. oodeel/methods/she.py +197 -0
  29. oodeel/methods/vim.py +5 -5
  30. oodeel/preprocess/__init__.py +31 -0
  31. oodeel/preprocess/tf_preprocess.py +95 -0
  32. oodeel/preprocess/torch_preprocess.py +97 -0
  33. oodeel/utils/operator.py +72 -2
  34. oodeel/utils/tf_operator.py +72 -4
  35. oodeel/utils/tf_training_tools.py +26 -3
  36. oodeel/utils/torch_operator.py +75 -4
  37. oodeel/utils/torch_training_tools.py +31 -2
  38. {oodeel-0.1.1.dist-info → oodeel-0.3.0.dist-info}/METADATA +141 -107
  39. oodeel-0.3.0.dist-info/RECORD +57 -0
  40. {oodeel-0.1.1.dist-info → oodeel-0.3.0.dist-info}/WHEEL +1 -1
  41. tests/tests_tensorflow/tf_methods_utils.py +2 -1
  42. tests/tests_torch/tools_torch.py +9 -9
  43. tests/tests_torch/torch_methods_utils.py +34 -27
  44. tests/tools_operator.py +10 -1
  45. oodeel-0.1.1.dist-info/RECORD +0 -46
  46. {oodeel-0.1.1.dist-info → oodeel-0.3.0.dist-info/licenses}/LICENSE +0 -0
  47. {oodeel-0.1.1.dist-info → oodeel-0.3.0.dist-info}/top_level.txt +0 -0
oodeel/methods/she.py ADDED
@@ -0,0 +1,197 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ import numpy as np
24
+
25
+ from ..types import DatasetType
26
+ from ..types import TensorType
27
+ from ..types import Union
28
+ from .base import OODBaseDetector
29
+
30
+
31
+ class SHE(OODBaseDetector):
32
+ """
33
+ "Out-of-Distribution Detection based on In-Distribution Data Patterns Memorization
34
+ with Modern Hopfield Energy"
35
+ [link](https://openreview.net/forum?id=KkazG4lgKL)
36
+
37
+ This method first computes the mean of the internal layer representation of ID data
38
+ for each ID class. This mean is seen as the average of the ID activation patterns
39
+ as defined in the original paper.
40
+ The method then returns the maximum value of the dot product between the internal
41
+ layer representation of the input and the average patterns, which is a simplified
42
+ version of Hopfield energy as defined in the original paper.
43
+
44
+ Remarks:
45
+ * An input perturbation is applied in the same way as in Mahalanobis score
46
+ * The original paper only considers the penultimate layer of the neural
47
+ network, while we aggregate the results of multiple layers after normalizing by
48
+ the dimension of each vector (the activation vector for dense layers, and the
49
+ average pooling of the feature map for convolutional layers).
50
+
51
+ Args:
52
+ eps (float): magnitude for gradient based input perturbation.
53
+ Defaults to 0.0014.
54
+ """
55
+
56
+ def __init__(
57
+ self,
58
+ eps: float = 0.0014,
59
+ ):
60
+ super().__init__()
61
+ self.eps = eps
62
+ self.postproc_fns = None
63
+
64
+ def _postproc_feature_maps(self, feature_map):
65
+ if len(feature_map.shape) > 2:
66
+ feature_map = self.op.avg_pool_2d(feature_map)
67
+ return self.op.flatten(feature_map)
68
+
69
+ def _fit_to_dataset(
70
+ self,
71
+ fit_dataset: Union[TensorType, DatasetType],
72
+ ) -> None:
73
+ """
74
+ Compute the means of the input dataset in the activation space of the selected
75
+ layers. The means are computed for each class in the dataset.
76
+
77
+ Args:
78
+ fit_dataset (Union[TensorType, DatasetType]): input dataset (ID) to
79
+ construct the index with.
80
+ ood_dataset (Union[TensorType, DatasetType]): OOD dataset to tune the
81
+ aggregation coefficients.
82
+ """
83
+ self.postproc_fns = [
84
+ self._postproc_feature_maps
85
+ for i in range(len(self.feature_extractor.feature_layers_id))
86
+ ]
87
+
88
+ features, infos = self.feature_extractor.predict(
89
+ fit_dataset, postproc_fns=self.postproc_fns
90
+ )
91
+
92
+ labels = infos["labels"]
93
+ preds = self.op.argmax(infos["logits"], dim=-1)
94
+ preds = self.op.convert_to_numpy(preds)
95
+
96
+ # unique sorted classes
97
+ self._classes = np.sort(np.unique(self.op.convert_to_numpy(labels)))
98
+ labels = self.op.convert_to_numpy(labels)
99
+
100
+ self._mus = list()
101
+ for feature in features:
102
+ mus_f = list()
103
+ for cls in self._classes:
104
+ indexes = np.equal(labels, cls) & np.equal(preds, cls)
105
+ _features_cls = feature[indexes]
106
+ mus_f.append(
107
+ self.op.unsqueeze(self.op.mean(_features_cls, dim=0), dim=0)
108
+ )
109
+ self._mus.append(self.op.permute(self.op.cat(mus_f), (1, 0)))
110
+
111
+ def _score_tensor(self, inputs: TensorType) -> np.ndarray:
112
+ """
113
+ Computes an OOD score for input samples "inputs" based on
114
+ the aggregation of neural mean discrepancies from different layers.
115
+
116
+ Args:
117
+ inputs: input samples to score
118
+
119
+ Returns:
120
+ scores
121
+ """
122
+
123
+ inputs_p = self._input_perturbation(inputs)
124
+ features, logits = self.feature_extractor.predict_tensor(
125
+ inputs_p, postproc_fns=self.postproc_fns
126
+ )
127
+
128
+ scores = self._get_she_output(features)
129
+
130
+ return -self.op.convert_to_numpy(scores)
131
+
132
+ def _get_she_output(self, features):
133
+ scores = None
134
+ for feature, mus_f in zip(features, self._mus):
135
+ she = self.op.matmul(self.op.squeeze(feature), mus_f) / feature.shape[1]
136
+ she = self.op.max(she, dim=1)
137
+ scores = she if scores is None else she + scores
138
+ return scores
139
+
140
+ def _input_perturbation(self, inputs: TensorType) -> TensorType:
141
+ """
142
+ Apply small perturbation on inputs to make the in- and out- distribution
143
+ samples more separable.
144
+
145
+ Args:
146
+ inputs (TensorType): input samples
147
+
148
+ Returns:
149
+ TensorType: Perturbed inputs
150
+ """
151
+
152
+ def __loss_fn(inputs: TensorType) -> TensorType:
153
+ """
154
+ Loss function for the input perturbation.
155
+
156
+ Args:
157
+ inputs (TensorType): input samples
158
+
159
+ Returns:
160
+ TensorType: loss value
161
+ """
162
+ # extract features
163
+ out_features, _ = self.feature_extractor.predict(
164
+ inputs, detach=False, postproc_fns=self.postproc_fns
165
+ )
166
+ # get mahalanobis score for the class maximizing it
167
+ she_score = self._get_she_output(out_features)
168
+ log_probs_f = self.op.log(she_score)
169
+ return self.op.mean(log_probs_f)
170
+
171
+ # compute gradient
172
+ gradient = self.op.gradient(__loss_fn, inputs)
173
+ gradient = self.op.sign(gradient)
174
+
175
+ inputs_p = inputs - self.eps * gradient
176
+ return inputs_p
177
+
178
+ @property
179
+ def requires_to_fit_dataset(self) -> bool:
180
+ """
181
+ Whether an OOD detector needs a `fit_dataset` argument in the fit function.
182
+
183
+ Returns:
184
+ bool: True if `fit_dataset` is required else False.
185
+ """
186
+ return True
187
+
188
+ @property
189
+ def requires_internal_features(self) -> bool:
190
+ """
191
+ Whether an OOD detector acts on internal model features.
192
+
193
+ Returns:
194
+ bool: True if the detector perform computations on an intermediate layer
195
+ else False.
196
+ """
197
+ return True
oodeel/methods/vim.py CHANGED
@@ -61,7 +61,7 @@ class VIM(OODBaseDetector):
61
61
  pca_origin (str): either "pseudo" for using $W^{-1}b$ where $W^{-1}$ is
62
62
  the pseudo inverse of the final linear layer applied to bias term
63
63
  (as in the VIM paper), or "center" for using the mean of the data in
64
- feature space. Defaults to "center".
64
+ feature space. Defaults to "pseudo".
65
65
  """
66
66
 
67
67
  def __init__(
@@ -86,7 +86,7 @@ class VIM(OODBaseDetector):
86
86
  """
87
87
  # extract features from fit dataset
88
88
  all_features_train, info = self.feature_extractor.predict(fit_dataset)
89
- features_train = all_features_train
89
+ features_train = all_features_train[0]
90
90
  logits_train = info["logits"]
91
91
  features_train = self.op.flatten(features_train)
92
92
  self.feature_dim = features_train.shape[1]
@@ -101,7 +101,7 @@ class VIM(OODBaseDetector):
101
101
  # )
102
102
  W, b = self.feature_extractor.get_weights(-1)
103
103
  W, b = self.op.from_numpy(W), self.op.from_numpy(b.reshape(-1, 1))
104
- _W = self.op.transpose(W) if self.backend == "tensorflow" else W
104
+ _W = self.op.t(W) if self.backend == "tensorflow" else W
105
105
  self.center = -self.op.reshape(self.op.matmul(self.op.pinv(_W), b), (-1,))
106
106
  else:
107
107
  raise NotImplementedError(
@@ -111,7 +111,7 @@ class VIM(OODBaseDetector):
111
111
  # compute eigvalues and eigvectors of empirical covariance matrix
112
112
  centered_features = features_train - self.center
113
113
  emp_cov = (
114
- self.op.matmul(self.op.transpose(centered_features), centered_features)
114
+ self.op.matmul(self.op.t(centered_features), centered_features)
115
115
  / centered_features.shape[0]
116
116
  )
117
117
  eig_vals, eigen_vectors = self.op.eigh(emp_cov)
@@ -174,7 +174,7 @@ class VIM(OODBaseDetector):
174
174
  """
175
175
  # extract features
176
176
  features, logits = self.feature_extractor.predict_tensor(inputs)
177
- features = self.op.flatten(features)
177
+ features = self.op.flatten(features[0])
178
178
  # vim score
179
179
  res_scores = self._compute_residual_score_tensor(features)
180
180
  logits = self.op.convert_to_numpy(logits)
@@ -0,0 +1,31 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ try:
24
+ from .tf_preprocess import TFRandomPatchPermutation
25
+ except ImportError:
26
+ pass
27
+
28
+ try:
29
+ from .torch_preprocess import TorchRandomPatchPermutation
30
+ except ImportError:
31
+ pass
@@ -0,0 +1,95 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ import numpy as np
24
+ import tensorflow as tf
25
+
26
+ from ..types import Optional
27
+ from ..types import Tuple
28
+
29
+
30
+ class TFRandomPatchPermutation:
31
+ def __init__(self, patch_size: Tuple[int] = (8, 8)):
32
+ """Randomly permute the patches of an image. This transformation is used in NMD
33
+ paper to artificially craft OOD data from ID images.
34
+
35
+ Source (NMD paper):
36
+ "Neural Mean Discrepancy for Efficient Out-of-Distribution Detection"
37
+ [link](https://arxiv.org/pdf/2104.11408.pdf)
38
+
39
+ Args:
40
+ patch_size (Tuple[int], optional): Patch dimensions (h, w), should be
41
+ divisors of the image dimensions (H, W). Defaults to (8, 8).
42
+ """
43
+ self.patch_size = patch_size
44
+
45
+ def __call__(self, tensor: tf.Tensor, seed: Optional[int] = None):
46
+ """Apply random patch permutation.
47
+
48
+ Args:
49
+ tensor (tf.Tensor): Tensor of shape [H, W, C]
50
+ seed (Optinal[int]): Seed number to set for the permutation if not None.
51
+
52
+ Returns:
53
+ tf.Tensor: Transformed tensor.
54
+ """
55
+ h, w = self.patch_size
56
+ H, W, C = tensor.shape
57
+ tensor_ = tensor
58
+
59
+ # raise warning if patch dimensions are not divisors of image dimensions
60
+ if H % h != 0:
61
+ print(
62
+ f"Warning! Patch height ({h}) should be a divisor of the image height"
63
+ + f" ({H}). Zero padding will be added to get the correct output shape."
64
+ )
65
+ tensor_ = tensor[: -(H % h)]
66
+ if W % w != 0:
67
+ print(
68
+ f"Warning! Patch width ({w}) should be a divisor of the image width"
69
+ + f" ({W}). Zero padding will be added to get the correct output shape."
70
+ )
71
+ tensor_ = tensor_[:, : -(W % w)]
72
+
73
+ # === patch permutation ===
74
+ # divide the batch of images into non-overlapping patches
75
+ # => [num_patches, h * w, C]
76
+ u = tf.transpose(
77
+ tf.reshape(tensor_, (H // h, h, W // w, w, C)), (0, 2, 1, 3, 4)
78
+ )
79
+ u = tf.reshape(u, (-1, h * w, C))
80
+
81
+ # permute the patches of each image in the batch
82
+ # => [num_patches, h * w, C]
83
+ # Note: we use numpy rng for deterministic index shuffling because
84
+ # `tf.stateless_shuffle` is still experimental
85
+ g = np.random.default_rng(seed=seed)
86
+ indices = np.arange(u.shape[0])
87
+ g.shuffle(indices)
88
+ pu = tf.gather(u, indices)
89
+
90
+ # fold the permuted patches back together
91
+ # => [H, W, C]
92
+ f = tf.transpose(tf.reshape(pu, (H // h, W // w, h, w, C)), (0, 2, 1, 3, 4))
93
+ f = tf.reshape(f, tensor_.shape)
94
+ f = tf.pad(f, tf.constant([[0, H % h], [0, W % w], [0, 0]]))
95
+ return f
@@ -0,0 +1,97 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright IRT Antoine de Saint Exupéry et Université Paul Sabatier Toulouse III - All
3
+ # rights reserved. DEEL is a research program operated by IVADO, IRT Saint Exupéry,
4
+ # CRIAQ and ANITI - https://www.deel.ai/
5
+ #
6
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ # of this software and associated documentation files (the "Software"), to deal
8
+ # in the Software without restriction, including without limitation the rights
9
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ # copies of the Software, and to permit persons to whom the Software is
11
+ # furnished to do so, subject to the following conditions:
12
+ #
13
+ # The above copyright notice and this permission notice shall be included in all
14
+ # copies or substantial portions of the Software.
15
+ #
16
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ # SOFTWARE.
23
+ import torch
24
+ import torch.nn.functional as F
25
+
26
+ from ..types import Optional
27
+ from ..types import Tuple
28
+
29
+
30
+ class TorchRandomPatchPermutation:
31
+ def __init__(self, patch_size: Tuple[int] = (8, 8)):
32
+ """Randomly permute the patches of an image. This transformation is used in NMD
33
+ paper to artificially craft OOD data from ID images.
34
+
35
+ Source (NMD paper):
36
+ "Neural Mean Discrepancy for Efficient Out-of-Distribution Detection"
37
+ [link](https://arxiv.org/pdf/2104.11408.pdf)
38
+
39
+ Args:
40
+ patch_size (Tuple[int], optional): Patch dimensions (h, w), should be
41
+ divisors of the image dimensions (H, W). Defaults to (8, 8).
42
+ """
43
+ self.patch_size = patch_size
44
+
45
+ def __call__(self, tensor: torch.Tensor, seed: Optional[int] = None):
46
+ """Apply random patch permutation.
47
+
48
+ Args:
49
+ tensor (torch.Tensor): Tensor of shape [C, H, W]
50
+ seed (Optinal[int]): Seed number to set for the permutation if not None.
51
+
52
+ Returns:
53
+ torch.Tensor: Transformed tensor.
54
+ """
55
+ h, w = self.patch_size
56
+ H, W, _ = tensor.shape
57
+
58
+ # set generator if seed is not None
59
+ g = None
60
+ if seed is not None:
61
+ g = torch.Generator(device=tensor.device)
62
+ g.manual_seed(seed)
63
+
64
+ # raise warning if patch dimensions are not divisors of image dimensions
65
+ if H % h != 0:
66
+ print(
67
+ f"Warning! Patch height ({h}) should be a divisor of the image height"
68
+ + f" ({H}). Zero padding will be added to get the correct output shape."
69
+ )
70
+ if W % w != 0:
71
+ print(
72
+ f"Warning! Patch width ({w}) should be a divisor of the image width"
73
+ + f" ({W}). Zero padding will be added to get the correct output shape."
74
+ )
75
+
76
+ # === patch permutation ===
77
+ # [C, H, W] => [1, C, H, W]
78
+ x = tensor.unsqueeze(0)
79
+ # divide the batch of images into non-overlapping patches
80
+ # => [1, h * w, num_patches]
81
+ u = F.unfold(x, kernel_size=self.patch_size, stride=self.patch_size, padding=0)
82
+ # permute the patches of each image in the batch
83
+ # => [1, h * w, num_patches]
84
+ pu = torch.cat(
85
+ [b_[:, torch.randperm(b_.shape[-1], generator=g)][None, ...] for b_ in u],
86
+ dim=0,
87
+ )
88
+ # fold the permuted patches back together
89
+ # => [1, C, H, W]
90
+ f = F.fold(
91
+ pu,
92
+ x.shape[-2:],
93
+ kernel_size=self.patch_size,
94
+ stride=self.patch_size,
95
+ padding=0,
96
+ )
97
+ return f.squeeze(0)
oodeel/utils/operator.py CHANGED
@@ -49,10 +49,20 @@ class Operator(ABC):
49
49
 
50
50
  @staticmethod
51
51
  @abstractmethod
52
- def max(tensor: TensorType, dim: Optional[int] = None) -> TensorType:
52
+ def max(
53
+ tensor: TensorType, dim: Optional[int] = None, keepdim: bool = False
54
+ ) -> TensorType:
53
55
  """Max function"""
54
56
  raise NotImplementedError()
55
57
 
58
+ @staticmethod
59
+ @abstractmethod
60
+ def min(
61
+ tensor: TensorType, dim: Optional[int] = None, keepdim: bool = False
62
+ ) -> TensorType:
63
+ """Min function"""
64
+ raise NotImplementedError()
65
+
56
66
  @staticmethod
57
67
  @abstractmethod
58
68
  def one_hot(tensor: TensorType, num_classes: int) -> TensorType:
@@ -138,7 +148,13 @@ class Operator(ABC):
138
148
 
139
149
  @staticmethod
140
150
  @abstractmethod
141
- def transpose(tensor: TensorType) -> TensorType:
151
+ def t(tensor: TensorType) -> TensorType:
152
+ "Transpose function for tensor of rank 2"
153
+ raise NotImplementedError()
154
+
155
+ @staticmethod
156
+ @abstractmethod
157
+ def permute(tensor: TensorType) -> TensorType:
142
158
  "Transpose function for tensor of rank 2"
143
159
  raise NotImplementedError()
144
160
 
@@ -181,3 +197,57 @@ class Operator(ABC):
181
197
  def relu(tensor: TensorType) -> TensorType:
182
198
  "Apply relu to a tensor"
183
199
  raise NotImplementedError()
200
+
201
+ @staticmethod
202
+ @abstractmethod
203
+ def einsum(equation: str, *tensors: TensorType) -> TensorType:
204
+ "Computes the einsum between tensors following equation"
205
+ raise NotImplementedError()
206
+
207
+ @staticmethod
208
+ @abstractmethod
209
+ def tril(tensor: TensorType, diagonal: int = 0) -> TensorType:
210
+ "Set the upper triangle of the matrix formed by the last two dimensions of"
211
+ "tensor to zero"
212
+ raise NotImplementedError()
213
+
214
+ @staticmethod
215
+ def sum(tensor: TensorType, dim: Union[tuple, list, int] = None) -> TensorType:
216
+ "sum along dim"
217
+ raise NotImplementedError()
218
+
219
+ @staticmethod
220
+ def unsqueeze(tensor: TensorType, dim: int) -> TensorType:
221
+ "unsqueeze/expand_dim along dim"
222
+ raise NotImplementedError()
223
+
224
+ @staticmethod
225
+ def squeeze(tensor: TensorType, dim: int = None) -> TensorType:
226
+ "squeeze along dim"
227
+ raise NotImplementedError()
228
+
229
+ @staticmethod
230
+ def abs(tensor: TensorType) -> TensorType:
231
+ "compute absolute value"
232
+ raise NotImplementedError()
233
+
234
+ @staticmethod
235
+ def where(
236
+ condition: TensorType,
237
+ input: Union[TensorType, float],
238
+ other: Union[TensorType, float],
239
+ ) -> TensorType:
240
+ "Applies where function to condition"
241
+ raise NotImplementedError()
242
+
243
+ @staticmethod
244
+ @abstractmethod
245
+ def avg_pool_2d(tensor: TensorType) -> TensorType:
246
+ """Perform avg pool in 2d as in torch.nn.functional.adaptive_avg_pool2d"""
247
+ raise NotImplementedError()
248
+
249
+ @staticmethod
250
+ @abstractmethod
251
+ def log(tensor: TensorType) -> TensorType:
252
+ """Perform log"""
253
+ raise NotImplementedError()
@@ -65,9 +65,18 @@ class TFOperator(Operator):
65
65
  return tf.argmax(tensor, axis=dim)
66
66
 
67
67
  @staticmethod
68
- def max(tensor: TensorType, dim: Optional[int] = None) -> tf.Tensor:
68
+ def max(
69
+ tensor: TensorType, dim: Optional[int] = None, keepdim: bool = False
70
+ ) -> tf.Tensor:
69
71
  """Max function"""
70
- return tf.reduce_max(tensor, axis=dim)
72
+ return tf.reduce_max(tensor, axis=dim, keepdims=keepdim)
73
+
74
+ @staticmethod
75
+ def min(
76
+ tensor: TensorType, dim: Optional[int] = None, keepdim: bool = False
77
+ ) -> tf.Tensor:
78
+ """Min function"""
79
+ return tf.reduce_min(tensor, axis=dim, keepdims=keepdim)
71
80
 
72
81
  @staticmethod
73
82
  def one_hot(tensor: TensorType, num_classes: int) -> tf.Tensor:
@@ -152,13 +161,18 @@ class TFOperator(Operator):
152
161
  def from_numpy(arr: np.ndarray) -> tf.Tensor:
153
162
  "Convert a NumPy array to a tensor"
154
163
  # TODO change dtype
155
- return tf.constant(arr, dtype=tf.float32)
164
+ return tf.convert_to_tensor(arr)
156
165
 
157
166
  @staticmethod
158
- def transpose(tensor: TensorType) -> tf.Tensor:
167
+ def t(tensor: TensorType) -> tf.Tensor:
159
168
  "Transpose function for tensor of rank 2"
160
169
  return tf.transpose(tensor)
161
170
 
171
+ @staticmethod
172
+ def permute(tensor: TensorType, dims) -> tf.Tensor:
173
+ "Transpose function for tensor of rank 2"
174
+ return tf.transpose(tensor, dims)
175
+
162
176
  @staticmethod
163
177
  def diag(tensor: TensorType) -> tf.Tensor:
164
178
  "Diagonal function: return the diagonal of a 2D tensor"
@@ -195,3 +209,57 @@ class TFOperator(Operator):
195
209
  def relu(tensor: TensorType) -> tf.Tensor:
196
210
  "Apply relu to a tensor"
197
211
  return tf.nn.relu(tensor)
212
+
213
+ @staticmethod
214
+ def einsum(equation: str, *tensors: TensorType) -> tf.Tensor:
215
+ "Computes the einsum between tensors following equation"
216
+ return tf.einsum(equation, *tensors)
217
+
218
+ @staticmethod
219
+ def tril(tensor: TensorType, diagonal: int = 0) -> tf.Tensor:
220
+ "Set the upper triangle of the matrix formed by the last two dimensions of"
221
+ "tensor to zero"
222
+ return tf.experimental.numpy.tril(tensor, k=diagonal)
223
+
224
+ @staticmethod
225
+ def sum(tensor: TensorType, dim: Union[tuple, list, int] = None) -> tf.Tensor:
226
+ "sum along dim"
227
+ return tf.reduce_sum(tensor, axis=dim)
228
+
229
+ @staticmethod
230
+ def unsqueeze(tensor: TensorType, dim: int) -> tf.Tensor:
231
+ "expand_dim along dim"
232
+ return tf.expand_dims(tensor, dim)
233
+
234
+ @staticmethod
235
+ def squeeze(tensor: TensorType, dim: int = None) -> tf.Tensor:
236
+ "expand_dim along dim"
237
+ return tf.squeeze(tensor, dim)
238
+
239
+ @staticmethod
240
+ def abs(tensor: TensorType) -> tf.Tensor:
241
+ "compute absolute value"
242
+ return tf.abs(tensor)
243
+
244
+ @staticmethod
245
+ def where(
246
+ condition: TensorType,
247
+ input: Union[TensorType, float],
248
+ other: Union[TensorType, float],
249
+ ) -> tf.Tensor:
250
+ "Applies where function to condition"
251
+ return tf.where(condition, input, other)
252
+
253
+ @staticmethod
254
+ def percentile(x, q):
255
+ return tfp.stats.percentile(x, q)
256
+
257
+ @staticmethod
258
+ def avg_pool_2d(tensor: TensorType) -> tf.Tensor:
259
+ """Perform avg pool in 2d as in torch.nn.functional.adaptive_avg_pool2d"""
260
+ return tf.reduce_mean(tensor, axis=(-3, -2))
261
+
262
+ @staticmethod
263
+ def log(tensor: TensorType) -> tf.Tensor:
264
+ """Perform log"""
265
+ return tf.math.log(tensor)